
Resource Discovery using PageRank Technique in Grid Environment

Noorisyam Hamid, Fazilah Haron and Chan Huah Yong
School of Computer Sciences,

Universiti Sains Malaysia
11800 Minden,Penang, Malaysia

{syam, fazilah and hychan}@cs.usm.my

Abstract

The grid deals with large scale and ever-expanding

environment which contains million of users and
resources. For this reason, resource selection has been
a challenging task especially in meeting user’s demand
for a quality of service (QoS). A quality of service is
the ability to serve a job by providing quality and
reliable resource in fulfilling the user’s need. Quality
and reliable resource selections naturally yield
excellent and quality results. The background of the
users and where the resource belongs to are important
in determining the quality of a resource. This paper
concerns with efficient and quality-based resource
discovery using Condor ClassAd and PageRank
technique in order to achieve a quality resource
matching. The paper discusses how quality of users
and resources are determined and considered in the
discovery process prior to allocating jobs to resources.

1. Introduction

Grid technology provides facility which enable sharing
of a large scale, distributed and heterogeneous
computing resources [1]. Hence, an efficient resource
discovery mechanism is necessary to meet user’s
demand on quality of service (QoS).

Most grid resource discovery or schedulers [6, 12,
13] focus on selecting and allocating jobs to suitable
resources by mapping the requirements and constraints
between users and resources. None considers the
background and quality of the users and resources
involved. Users may end up with low quality or
inconsistent resources leading to disappointing results.
They may play tricks by requesting more resources
than required. This can lead to unfair competition in
getting resources among users.

This paper emphasizes on improving the current
resource discovery technique in grid scheduler by
taking into account the quality and reliability of both,
users and resources. We begin our discussion by

positioning our work in relation to existing work
(section 2) and followed by a discussion on how
quality and reliable users and resources are identified
(section 3). We then proceed with detail discussion on
how to incorporate PageRank. Section 4 summarizes
and suggests the future direction of the work.

2. Related Work

2.1 The World Wide Web vs. Grid

Resource in the World Wide Web (WWW) are the web
pages which comprises of text- and hypertext-based
entities that are independent and uncontrolled [3]. In
grid environment, resources are represented as
different form of entities such as computing power,
databases, files, applications software and storage. We
focus on compute resource which is used to perform
and execute any submitted jobs. In order to enable
resource sharing in grid, authentication is needed and
only authorized user is allowed to participate. This is
why the grid is referred to as a well-controlled
environment.

Google search engine is one of the most popular
WWW search engine which sorts and returns the
search results based on quality and reliable web pages.
The search engine employs an interesting technique
called PageRank [2, 3, 4] to rank the large number of
web pages based on importance. This is done by
utilizing the link structure of the web page [2, 3, 4].
Google’s PageRank is a numeric value that represents
the importance of a page on the web. A page has a high
rank if the sum of its backlinks is high. We believe the
PageRank idea can be applied in grid by treating the
resource usage as the link structure to identify the
quality and reliability of the resource.

Google search engine uses meta-search as a
matching technique where user put their keywords in
the search box to find specific information [12]. User’s
keywords are then sent to the search engine’s index
server to extract relevant information based on user’s

query. In grid environment, there are various matching
techniques which are used in the grid scheduler for the
purpose of discovering resource [6, 12, 13]. Condor
ClassAd is one of the matching technique currently
implemented in Condor scheduler. It is a semi-
structured data model or language that can be used to
specify the characteristics, constraint and preference of
principles [6, 8]. In other words, ClassAd is a
symmetric attribute-based matching technique. Figure
1 shows the example of ClassAds of requestor and
provider. In Condor, a matchmaker is used to discover
compatible ClassAd between principals (providers and
requestors). Unfortunately, ClassAd only evaluates the
physical characteristics/specifications of the machine
and job, but ignores the quality of the principals.

Request ClassAd:
[Type = “Job”; Owner = “User1”;
 Constraint = other.Type == “Machine”
 && Arch == “INTEL” && OpSys == “SOLARIS251”
 && Disk >= 10000; Rank = other.Memory;]

Resource ClassAd:
[Type = “Machine”; Name = “m1”; Disk = 30000;
 OpSys = “SOLARIS251”; ResearchGrp = “user1”,
 “user2”;
 Constraint = member(other.Owner,
 ResearchGrp)
 && DayTime > 18*60*60;
 Rank = member(other.Owner, ResearchGrp)]

Fig.1. Two examples of Condor ClassAds. For each resource-request

pair, constraint clauses are checked for compatibility against the
other’s properties. Rank is used to select among multiple matches.

3.0 Our Approach

Our Quality-based Grid Resource Discovery (Q-GreD)
aims at providing a grid resource discovery which
takes into account the quality and reliability of both
users and resources. We propose a resource discovery
technique which is based on Condor ClassAd but
incorporate the idea of PageRank (which we refer to as
ResourceRank) in determining the quality and
reliability of the grid resources.

In PageRank, if a page links to another page this
means that it is casting a vote as an indication that the
other page is good. If many pages link to a page then
that page has more votes and its worth should be
higher [2]. Similar idea can be applied to grid where
submission of jobs to resources indicates that the
resource is good. Resource can obtain higher
ResourceRank score, if many users from different
organizations submit jobs to that resource or there exist
users with high ResourceRank using the resource. In
general, this is true for stable and reliable resources
which are consistent in providing QoS. Furthermore,
these resources tend to have many users and more jobs.
Different from PageRank approach where ‘importance’

is tied to each individual web page [3], the
ResourceRank is computed by adding up
ResourceRank score of each resource provided by the
organization.

RR(A) = (1-d) + d (RR(Ti)/C(Ti) + RR(Tn)/C(Tn))

Where
RR(A) - ResourceRank of resource A,
RR(Ti) - ResourceRank of resource Ti which
 uses the resource A,
N(Ti) – the number of times user in
 organization Ti submits job to
 current resource in an organization
d - damping factor which usually set to
 0.85

Fig.2. Resource Rank Algorithm (adapted from [2])

Figure 2 shows the algorithm used to calculate the
rank score. ResouceRank is actuallty a backlink
calculation [2, 4] where in order to obtain the score of
a resource, we need to get the ResourceRank score of
users that currently vote or use that resource. Since
users’ votes can influence the ResourceRank score,
there is a possibility of an organization plays a trick by
asking the same user to keep submitting jobs into their
resources. In order to prevent this problem, we modify
the PageRank algorithm by including a new variable
N(Ti). If the same user submits jobs into a resource, the
user’s ResourceRank score will be divided by the
number of times that user submits jobs to that
particular resource. Figure 3 illustrates how
ResourceRank is calculated.

Key: U=user and R=Resource

RR(A) = 0.15(base) + 0.1275(C) = 0.2775
RR(B) = 0.15(base) + 0.1275/2(A) = 0.2135
RR(C) = 0.15(base) + 0.1275(A) + 0.1275(B)
 + 0.1275(D) = 0.5325
RR(D) = 0.15(base) + 0.1275(A) = 0.2775

Fig.3. Example calculation of ResourceRank score

Assuming that there are four virtual organizations;

A, B, C and D with one user and one resource each.
Two arrows from organization A to B implies user
from organization A has submitted two jobs to

resource in organization B while an arrow from
organization D to C implies user from organization D
has submitted a job to resource in organization C.
ResourceRank score of organization A is obtained by
calculating the backlink of other user’s ResourceRank;
in this case is the user in the organization C who
submits jobs to resource in the organization A. The
base value is the initial value of each resource where
there is no incoming vote or outgoing vote. User’s
ranking value depends on the ResourceRank of the
organization. Organization C provides the most quality
and reliable resources since there are many users’ votes
for resources in organization C. The final calculation
indicates that the higher the ResourceRank score, the
quality and the more reliable the resources provided by
the organization.

3.2 Matching Technique in Q-GReD

ClassAd relies on the following expression to
perform matching and find similarity between
requestor and provider.

1. Constraint = attribute type which
 principal would like to be
 matched

Where,
Similarity (a, b) = {True if a=b else false}

Constraint is used by the matchmaker to validate
every attribute value whether there are any
similarities between provider and requester. It will
return 1, if attribute values on the provider are
similar and return 0 if not.

2. Rank = preferences

Requestor and provider are considered as matched
when both are evaluated to TRUE. Rank is used
when Condor finds more than one principal’s
ClassAd which met the constraints. In other
words, rank denoted the goodness of the
candidate.

We incorporates ResourceRank into the rank

equation in Condor ClassAd. Hence, ResourceRank
becomes a new constraint that must be considered
when matchmaking is performed. The matchmaking
are carried out according to the following steps:

1. The discovery and matchmaking is strictly
based on ResourceRank value on each
principal.

2. Requestor with high ResourceRank has a high

possibility to claim and to be placed into
quality and reliable resource.

3. For the case of requestor, if ResourceRank =
N then the claim will only allowed to provider
with ResourceRank = N and below.

4. For the case of provider, the claim is valid and
accepted to any requestors which have the
same ResourceRank value or above.

Requestor interacts with Q-GReD by placing their

requirements or specifications on targeted resources as
constraints. Figure 4 represents the modified ClassAds
with ResourceRank for each requestor in organization
A and B and also provider’s ClassAd in organization C
and D.

Request ClassAd:
[Type = “Job”; Owner = “UserA”;
ResourceRank = “10”; Organization = “A”;
Constraint = other.Type == “Machine”
&& Arch == “INTEL” && OpSys == “SOLARIS251”
&& Disk >= 10000; Rank = other.Memory +
other.ResourceRank;]

Request ClassAd:
[Type = “Job”; Owner = “UserB”;
ResourceRank = “4”; Organization = “B”;
Constraint = other.Type == “Machine”
&& Arch == “INTEL” && OpSys == “SOLARIS251”
&& Disk >= 10000; Rank = other.Memory +
other.ResourceRank;]

Resource ClassAd:
[Type = “Machine”; Name = “m1”; Disk = 30000;
OpSys = “SOLARIS251”; ResourceRank = “6”;
Organization = “C”;
Constraint = other.Owner,
&& DayTime > 18*60*60;
Rank = other.ResourceRank]

Resource ClassAd:
[Type = “Machine”; Name = “m2”; Disk = 30000;
OpSys = “SOLARIS251”; ResourceRank = “3”;
Organization = “D”;
Constraint = other.Owner,
&& DayTime > 18*60*60;
Rank = other.ResourceRank]

Fig.4. Requestor’s Requirements

In Q-GReD, user in organization A is only allowed

to request resource from organization C and D. The
reason being the ResourceRank of user A is = 10
which is over than ResourceRank for the organization
C and D. The idea is to utilize the resource where
quality resource is only for quality job. User B which
has lower ResourceRank than user A is only allowed to
request resource from organization D. Our approach is
better than static approach implemented by Condor
where a fair allocation can be ensured among the
competing users. In Condor, after the matchmaker

finds the compatible ClassAds, the system proceeds
with claiming process which is based on the priority
factor (set by provider) [7, 8, 10]. We found that the
priority factor is not a good metric of the fairshare
since the distribution of the priority is depend on the
resource provider. In our work, ResourceRank replaces
the priority factor and plays an important role in
distributing the priority.

4.0 Conclusion and Future Work

In this paper, we have presented Q-GReD, a quality-
based resource discovery technique in grid
environment. The main goal of the Q-GReD is to
provide a better resource discovery in a challenging
large-scale grid environment. Q-GReD concerns with
selecting quality and reliable resources for job
allocation. Future work includes implementing the Q-
GReD technique and studying other potential
matchmaking algorithms.

5.0 Reference

[1] Foster, I. and Kesselman, C. Globus: The Grid: Blueprint for a

Future Computing Infrastructure. Morgan Kaufmann, 1999.
[2] Chris Ridings and Mike Shishigin, PageRank Uncovered,

2002.
[3] Sergey Brin and Lawrence Page, “The Anatomy of a Large-

Scale Hypertextual Web Search Engine”. In Proceedings of the
7th World Wide Web Conference, Brisbane, Australia, 1998.
http://www-db.stanford.edu/~backrub/google.html

[4] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. “The pagerank citation algorithm: bringing order to
the web”. In Proceedings of the seventh conference on World
Wide Web, Brisbane, Australia, April 1998.

[5] Douglas Thain, Todd Tannenbaum, and Miron Livny, Condor
and the Grid, in Fran Berman, Anthony J.G. Hey, Geoffrey
Fox, editors, Grid Computing: Making the Global
Infrastructure a Reality, John Wiley, 2003. ISBN: 0-470-
85319-0

[6] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron
Livny. Condor - A Distributed Job Scheduler, in Thomas
Sterling, editor, Beowulf Cluster Computing with Linux, The
MIT Press, 2002. ISBN: 0-262-69274-0

[7] Nicholas Coleman, Rajesh Raman, Miron Livny and Marvin
Solomon, Distributed Policy Management and Comprehension
with Classified Advertisements, University of Wisconsin-
Madison Computer Sciences Technical Report #1481, April
2003.

[8] Rajesh Raman, Miron Livny, and Marvin Solomon,
“Matchmaking: Distributed Resource Management for High
Throughput Computing”. In Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed
Computing, July 28-31, 1998, Chicago, IL.

[9] Alain Roy and Miron Livny, “Condor and Preemptive Resume
Scheduling”, Published in Grid Resource Management: State
of the Art and Future Trends, Fall 2003, pages 135-144, Fall
2003, Edited by Jarek Nabrzyski, Jennifer M. Schopf and Jan
Weglarz, published by Kluwer Academic Publishers.

[10] Rajesh Raman. Matchmaking Frameworks for Distributed
Resource Management. PhD thesis, University of Wisconsin,
October 2000.

[11] Ding Choon Hoong and Rajkumar Buyya. Guided Google: A
Meta Search Engine and its Implementation using the Google
Distributed Web Services. Technical Report, GRIDS-TR-2003-
1, Grid Computing and Distributed Systems (GRIDS)
Laboratory, The University of Melbourne, Australia, January
2003.

[12] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: An
Architecture for a Resource Management and Scheduling
System in a Global Computational Grid”, 4th Intl. Conf. on
High Performance Computing in Asia-Pacific Region (HPC
Asia 2000), China.

[13] Portable Batch System Administrator Guide. Release:
OpenPBS 2.3, Printed: August, 2000.

