
C-Brain: A Deep Learning Accelerator that Tames the Diversity
of CNNs through Adaptive Data-level Parallelization

Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng Liu, Xiaowei Li
State Key Laboratory of Computer Architecture

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, P.R. China
{songlili, wangying2009, yinhes, zhaoxin, liubosheng, lxw}@ict.ac.cn

ABSTRACT
Convolutional neural networks (CNN) accelerators have been
proposed as an efficient hardware solution for deep learning based
applications, which are known to be both compute-and-memory
intensive. Although the most advanced CNN accelerators can
deliver high computational throughput, the performance is highly
unstable. Once changed to accommodate a new network with
different parameters like layers and kernel size, the fixed
hardware structure, may no longer well match the data flows.
Consequently, the accelerator will fail to deliver high performance
due to the underutilization of either logic resource or memory
bandwidth. To overcome this problem, we proposed a novel deep
learning accelerator, which offers multiple types of data-level
parallelism: inter-kernel, intra-kernel and hybrid. Our design can
adaptively switch among the three types of parallelism and the
corresponding data tiling schemes to dynamically match different
networks or even different layers of a single network. No matter
how we change the hardware configurations or network types, the
proposed network mapping strategy ensures the optimal
performance and energy-efficiency. Compared with previous
state-of-the-art NN accelerators, it is possible to achieve a
speedup of 4.0x-8.3x for some layers of the well-known large
scale CNNs. For the whole phase of network forward-
propagation, our design achieves 28.04% PE energy saving,
90.3% on-chip memory energy saving on average.

1. INTRODUCTION
Deep Convolutional Neural Network algorithms are gaining

popularity in machine learning and making breakthroughs in
many fields, such as image recognition[1], automatic speech
recognition[2] and video recognition[3]. Deep learning also begin
to migrate into smartphones, wearable devices, solving real world
problems in robot vision, surveillance and driver-less cars[4].
Unfortunately, such deep learning algorithms are highly time-
consuming and require large amount of computing resources. Due
to the computational requirements of deep learning, various NN
accelerators have been proposed recently to make it inexpensive
and ubiquitous for embedded or even cyber-physical applications.

From the aspect of hardware platform, most CNN
acceleration solutions are based on GPGPU[5], FPGA[6], ASICs
and application-specific neural processor[7]. The GPGPU solution
is too cumbersome to be used in low-power platforms, embedded
applications or even cost-sensitive data centers. Compared to
GPU-based system, FPGA and ASIC are more attractive

approaches to map the NN to hardware, because they possess
advantages of high performance and energy efficiency. However,
they are not flexible enough to handle a myriad of complex NN
models from different areas. Worse still, application-specific NN
accelerators fully expand the topology of a NN model, which is a
power and area disaster for large scale Deep NNs.

Therefore, a general purpose neural processor (NP) like[8]
and [9] is thought as a promising solution to offer both flexibility
and efficiency. Such a NP has many good features. First, it reuses
the limited hardware resources in a time multiplexing way to
increase hardware and power utility. Second, it relies on multi-
aspect data tiling methods to exploit data locality and relieve the
pressure to on-chip memory. Last of all, NP are often designed to
support a wide range of NN models. With all these good merits,
state-of-the-art NPs also face some common design weaknesses,
and still have a huge space for both performance and power
optimization. One of the key issues is the severe performance
variation to different network parameters of different models. We
found in experiments that an important reason for this drawback is
that most of current NPs rely on a comparatively rigid method to
exploit the data-level parallelism and fixed data tiling policy in
NNs. They are pursuing data-level parallelism as it does in
conventional vector processor architectures. However, NPs for
deep learning accelerators are basically intended to address the
huge space of NN algorithms in the most energy-efficient way.
More specifically, rigid vector machine structure often fails to
deal with the complexity of data flows or fully exploit the multi-
aspect parallelism in diverse NNs, leading to the under-utilization
of hardware resources and precious memory bandwidth.

k

X

Y

Din

k

Convolution by k*k*D
kernel

X,Y = the size of the input maps,
Din = # input feature maps, Dout = # output feature maps,

k = convolutional kernel size, p = pooling kernel

Dout

Pooling by
p*p kernel

Dout

p

p

Full-connection

This is intra

This is inter

Figure 1. A typical CNN containing multiple layers
Taking a typical CNN illustrated in Fig. 1 for example, the

forward propagation of a CNN includes repetitive layers of
kernel-level operations, like convolution and pooling, which are
the critical tasks to accelerate for NPs. Generally, there are two
major types of data-level parallelism to exploit in such kernel
operations: inter-kernel and intra-kernel parallelization. Exploiting
them with NP will induce quite different memory access
behaviors (details will be introduced in section 4).

According to our observation, different networks or even
different layers of the same network have distinct parameters, so
sticking to one type of parallelism and data mapping policy cannot
fit all network topologies. In this paper, we proposed a kernel-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
DAC '16, June 05-09, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4236-0/16/06…$15.00
DOI: http://dx.doi.org/10.1145/2897937.2897995

partitioning scheme accompanied by a new data tiling method to
eliminate the dependencies between adjacent convolutional
windows, which increase the parallelism remarkably. What’s
more, we investigated an adaptive data mapping scheme for large
NNs to fundamentally reduce memory-traffic demand of the acce-
lerator, ensuring the optimal performance and energy-efficiency
under various types of networks and hardware configurations.
In summary, we make the contributions as follows:

-We proposed a kernel partitioning scheme that pursues both
intra-kernel and inter-kernel parallelism to accelerate the
convolutional layers in CNN as a hybrid approach. It partitions the
original kernel into properly-sized tiles to eliminate the
overlapping between adjacent kernel windows and better preserve
data locality, resolving the problem that it is hard to accelerate the
critical bottom layers in prior designs due to data thrashing.

-We proposed an adaptive data-level parallelization scheme
for hardware CNN accelerator which combines inter-kernel, intra-
kernel parallelism and hybrid (kernel-partitioning) according to
network parameters and hardware resources. The experiments
proved that this dynamic scheme can optimize performance and
minimize energy consuming simultaneously.

-We designed and implemented the deep learning accelerator
that support adaptive data tiling and parallelization schemes. The
proposal is evaluated with multiple state-of-the-art large NN
architectures, e.g. Alexnet[1], GoogleNet[10], VGG[3].

2. RELATED WORK
Early CNN accelerators are focused on data-path

optimization. [11] and [12] mainly utilize parallelism within
feature maps and kernel, and they cannot scale to various NN
types and layers. [13] pursues “inter-output” and “intra-output”
parallelism, but does not use on-chip buffers for data reuse and
give little concern to locality exploitation. [7] organizes data path
according to the sliding window property of convolutional layers,
but it also ignores the data reusing patterns of feature maps.

Another class of accelerators put enough emphasis on
memory-level optimization in CNNs. [6] chooses to maximize
date reuse and minimize bandwidth requirement, but the
addressing and data mapping are quite complicated and rely on
the reconfigurability of FPGA to process different layers. [14]
also takes advantage of data locality, and balances the resources of
bandwidth and FPGA computation power. However, they just
give a solution for Alexnet. The design philosophy in [8], which
focuses on memory bandwidth utilization, can be applied to
different NN layers. However, they use the same data-level
parallelism and tiling scheme for different networks, leading to
the underutilization of hardware resources under some sceneries.

In contrast, our work outperforms previous approaches for
the following reasons. First, we seek to provide a hybrid
parallelization with a novel data partitioning policy to better
preserve locality. Second, instead of keeping a fixed data-level
parallelization scheme for all layers, our architecture offers
multiple ways of NN parallelization. The data tiling and mapping
policy is changed according to the parameters of neural layers to
increase the data reusability and moves the data fetch operations
off the critical path of NN accelerator. Therefore, our design can
adaptively switch among different parallelization strategies and
the corresponding data mapping method to dynamically match
different networks or even different layers of a single network.

3. PRIMER ON DEEP CNN AND DEEP
LEARNING ACCELERATOR

Deep CNN are typically organized into interleaved
convolutional and pooling layers followed by a number of fully-

connected layers as illustrated in Fig. 1. In this paper, we
primarily discuss convolution operation, which typically makes
90% of the computational workload of a CNN[12]. Fig. 1
illustrates the basic pattern of convolution. An input cube is
convolved with Dout groups of kernels (Din×k×k) at stride s. Each
kernel is shifted in a sliding-window (with an offset s) across the
multiple input maps. During each shift, every weight belonging to
the kernel is multiplied to the according input element in the input
maps and then added-up. And then an optional pooling operation
(defined by p and sp) is used to subsample the convolved output.
Fig. 2 is a typical architecture of state-of-the-art deep learning
accelerators [8, 13, 14], which consists of four main components:
one input data buffer, one output data buffers, one weight buffer, a
computational block (neural Processing Unit, PE) and a logic
Control Unit (CU). There is always a compiler, executed on host
platform, that automatically translate network specification
(numbers of layers, kernel size etc.) written by domain experts
into a code segment, which can be mapped, scheduled and
executed on the accelerator. Once the instructions are ready, the
raw image data and weights of pre-trained model are injected into
the external memory as the input. And then, CU reads instructions
one by one, loads data and weights to on-chip buffer, and
computing. The accelerator performs forward propagation layer
by layer and finally output the results to the external memory.

Active Function

Buffer
Store

Store

Buffer

Control Unit(CU)

DMA
 E

xt
er

na
l M

em
or

y

DMA

DMA

Data
Control

Processing elements(PEs)

Buffer

Output
data

Input
data

Weight

Multiplier

Adder
Instructions

PE-1

PE-n

Tout

Tin

Tin

 Figure 2. Architecture of a typical deep learning accelerator
Based on the deep CNNs and the general purpose deep

learning accelerator architecture, we discuss two major
computation acceleration policy: inter-kernel and intra-kernel
parallelization, and propose a hybrid method that combines their
advantages and avoid their disadvantage. In addition, there are
also two kinds of data tiling schemes in coordination with the
parallelization schemes, which will be stated in the following
sections. To extract the best performance out of CNNs with
distinct layer parameters and diverse topology, we also propose an
adaptive method to adaptively switch between the three
parallelization schemes for different stages of NN propagation.

4. METHODOLOGY
4.1 Analyzing the pros and cons of uniform
parallelization schemes
4.1.1 Inter-kernel parallelization

Inter-kernel parallelization is to transfer n pixels in the Din
direction, which belong to same kernel position but different input
maps (Fig. 1), to the computing unit PEs (Fig. 2). Each operation
loads N <data-weight> pairs to PEs and this procedure repeats for
the whole kernel window (k×k), then accumulate the result of k×k
operations and send the sum to output buffer.

This approach can straightforwardly map input data from
memory to PEs, but its maximum parallelism degree is restricted
by the dimension of input and output maps (Din and Dout). Take
Alexnet [1] as example, the c1,c2 and c3 are different convolution

layers(Din=3,48,256 respectively), and number '16' and '32' are
Tin (the number of multiplier of one PE)in Fig. 2. When the
number of input maps well matches Tin, the real performance is
equal to the ideal performance, c2-16, c3-32, etc. Otherwise, some
PE computing resources are wasted, like c2-32, especially for c1
(the number of input maps is just 3, so 13 PEs unutilized when Tin
= 16). It can be inferred that with the Tin becomes wider, more and
more computing resources will be wasted, leading to poor
scalability. The same logic also applies to Dout and Tout.

More importantly, the inter-kernel parallelism ignores the
important characteristic of convolution layers, kernel sharing, so
data reuse rate is quite low. Since the concurrent data in PE
belong to different input maps in depth, each operation has to
reload and flush the data and weight. Thus, the buffer traffic is
very heavy, leading to high power consumption. But in general,
inter-kernel is easier to be implemented and its performance is
relatively good for the layers with big input maps (Din).

4.1.2 Intra-kernel parallelization
Different from inter-kernel parallelism, intra-kernel

parallelism is to transfer one or several k×k windows in same
input maps to PE. Because map size is mostly bigger than map
depth (X×Y>Din, in Fig. 1), intra-kernel parallelism is more
efficient compared to inter-kernel. However, due to the
characteristics of convolution and diverse parameters of different
layers, the kernel sizes and data folding schemes are various,
which in turn leading to complicated data alignment and data
mapping from memory to PE. According to our study, there are
three approaches to handle the problem.

1. Data unrolling. This scheme is easy to do the mapping,
but creates extremely large foot-print size due to data duplication
and need to reshape data layout before move to next layer of
CNN. For example, given a 28×28 map with k = 5 and s = 1, after
unrolling, the data map size is 24 ×24×25. Thus the on chip buffer
size and memory traffic will be enlarged for almost (k/s) × (k/s)
times. Data duplicates for T times as given by Equation 1:

()() ()()/ /
T

− × − × ×
=

×
X k s+1 Y k s+1 k k

X Y Equation 1

Where X, Y are the sizes of input maps, s is stride, and k is
kernel size. Fig. 3 shows the first five Conv layers in Alexnet and
GoogleNet, the unrolled data size increases to 9x~18.9x of the
raw input. In addition, it’s difficult to reshape data from raw data
to the unrolled one in hardware, so it sometimes relies on a host
possessor to do that at considerable overhead. So this method is
always used in software system[18], not in hardware accelerator.

Figure 3. Data unrolling scheme

2. Sliding window. Another approach is to use sliding
window, which has quite high requirements for data alignment. It
is efficient only when k is equal to s, so that no data overlapping
exists between two adjacent kernel windows. We just need to put
data within the same kernel window to the buffer in sequence.
Data pixels in the same map are continuously loaded together
from buffer to PE. In most cases, k is bigger than s. There are
overlapping of two adjacent kernel windows both X direction and
Y direction, as show in Fig. 4(a). No matter how to arrange the
raw data to buffer(X direction or Y direction), after shifting the
window, the data in same window will distributed across buffer

lines (or rows). As a result, the memory access intensity increases
because requests have to be issued for several times to load data
from buffer to PE. When kernel size is much bigger or smaller
than Tin in PE, the memory access pattern will become more
complicated. In that case, the performance and power cost will be
prohibitively high for an efficient accelerator.

0 k

k

a b

I4

O1

On

k11

k1n

I3

I2

I1

0 k

Y

X

Raw data

Buffer

k21

k2n

k31

k3n

k41

k4n

Figure 4. Sliding window and kernel sharing

3. 2D-PE. Additional, there is another method that realizes
the intra-kernel level parallelization, which is a different structure
of 2D mesh PE similar to systolic array [11, 15]. This design
exhibits a very high data reusability and is very effective when
dealing with specific network topology in vision processing.
However, this highly-effective 2D-PE design will encounter
performance degradation or underutilization issue when it
encounters networks with varied size of kernels and stride.

However, intra-kernel parallelism has a big advantage in
terms of energy reduction. It is based on the fact that the
concurrent data in PE belong to the same input maps and share
same kernel across the whole layers, so each operation just need
to reload either data or weight in buffer, not both. Fig. 4(b) gives
an example of 4 input maps and n output maps with 4*n groups of
weights. For weight k11 is shared in input map I1, so we can keep
k11 in PE and load different data windows in I1, until the whole
input map is traversed completely, then the fixed weight k11 will
never be re-accessed. We also can keep one data window of I1 in
PE and sequence load k11 to k1n, then the fixed data window will
never be re-accessed. Thus, the buffer traffic is reduced
dramatically compared to inter-kernel in most cases. As the
analysis of [8], buffer traffic is the largest part of energy con-
sumption, so it is remarkable in whole system energy reduction.

4.2 The proposed parallelization scheme
Based on above analysis, both inter and intra-kernel

parallelization schemes have advantages and disadvantages. In
term of performance, the former is usually better except for the
critical bottom layers ([1, 3, 10, 16]), which are obviously more
suitable to be accelerated by intra-kernel parallelization. What we
have to do is to deal with the data alignment issue of intra-kernel
parallelization and find an easy way to map it onto hardware.

Therefore, in this section we propose a new parallelization
scheme to effectively accelerate the critical bottom layers and the
latter top layers by combining the advantages of both inter- and
intra-kernel parallelization schemes. In brief, we design the
method “kernel-partitioning” to make intra-kernel scheme easy
to map data onto hardware with low memory and buffer
bandwidth consumption. Also, to accelerate the top layers with
more number of maps, we improve the inter-kernel scheme to
utilize the locality of data and weight, thus cost much less power.

In the end, we also process the adaptiveness to effectively
accelerate the different networks or different layers. No matter
how we change the hardware configurations or network
topologies, the proposed network mapping strategy ensures good
data reusability and easy alignment in memory and buffer,
contributing to the optimal performance and energy-efficiency.

1.E+4

1.E+5

1.E+6

1.E+7

c1 c2 c3 c4 c5 c1 c2_2 c3a_3 c3a_5 c3b_3
alexnet googlenet

bi
t

rawdata unrolling

4.2.1 Kernel partitioning
The challenge to implement the intra-kernel parallelization is

the following two aspects. First, kernel window size is much
bigger than PE width (Tin). Second, the stride is smaller than the
kernel size. To resolve the problems once for all, we partition the
kernel window depending on the stride as shown in Equation2:

()/ , sg ce k ssil k= = Equation 2
Where g is the number of pieces that a big kernel is

partitioned into, and ks is the new kernel size after partitioning.
Fig. 5 shows the details to partition a kernel. Taking Alexnet

Conv1 for example, Fig. 5(a) shows the raw data. Since the length
and height of the data are not dividable by ks, '0's are padded at the
boundary. Fig. 5(b) is the mapping result from the small kernel
windows (ks× ks, represented by dx,y) to the on-chip buffer in
sequence. Fig. 5(c) shows the layout of the corresponding
weights, one more line of '0' is also padded. The weights are
partitioned into g×g pieces, with size = ks×ks. Each small window
of weight is represented by wi/9. Specific steps to do the
partitioning are described in Algorithm 1.
Algorithm 1
Input:
k:kernel,s:stride,ks:kernel after partition, g:the groups of partion,Tin:the
number multiplier in a PE, sizex,sizey:the size of output maps, G=g×g
1:For i=1:G
2: load wi/G to PE
3: FOR jx = i%g:(i%g+sizex),rx = 1:sizex

4: FOR jy=(i/g+1):(i/g+sizey),ry=1:sizey
5: Mapping d(jx,jy) to PE
6: Calcuate
7: IF i=1, THEN store the result to buffer as a pixel located at

(rx,ry) of output map ri/G(in Fig. 5d)
8: ELSE reload pixel(rx,ry)of r(i-1)/G from buffer, add the MAC

result to it, then store the sum as a pixel(rx,ry) of ri/G
9:END END END END

For example, the original big kernel (11×11) is partitioned
into 9 small sub-kernels (4×4) in Fig. 5(c), so the code within the
first outer loop of Algorithm 1 accomplishes 1/9 computing tasks
of the original big kernel. The data (Fig. 5a) multiplied to the first
sub-piece of weights (Fig. 5c) is starting from d1,1 to d55,55, from
left to right and then top to bottom. Second one is starting from
d1,2 to d56,56. The same calculation method applied to the following
7 sub-kernels. Thus the last piece of weights is multiplied to the
data from d3,3 to d57,57. Ultimately, there will be 9 output maps as
shown in Fig. 5(d), with map size to be 55×55. So the final result
is to add the 9 maps together, which is exactly the same with the
original computing method with that of big kernels.

1,1 1,2 1,3 1,57

2,1 2,2 2,3 2,57

3,1 3,2 3,3 3,57

57,1 57,2 57,3 57,57

4 8 121

4

8

12

d d d

d d d

d d d

0

0

0

0

0 0 0 0

d

d

d

dddd

1,1
1,2

1 322 4

1/9 2/9

4/9 5/9

1 4 8 12

1

4

8

12

w w

w w

3/9

6/9

0

0

0

w

w

7/9 8/9

0 0
ww

9/9

0
wsize_x=227, size_y=227

kbig=11, stride =4, k_small=4

(b)buffer

(c)weight

57,57
+

+
+

+
+

+
+

+ + 55

55

55

55

(d) add

r1/9

r2/9

r3/9
r4/9

r5/9
r6/9

r7/9
r8/9

r9/9

(a) raw data
Figure 5. Kernel partitioning

The mapping scheme is same to intra-kernel parallelism
(section 4.1.2), but the basic unit is a small kernel window (ks×ks).
When Tin is bigger than the size of small kernel window (ks×ks),
we map multiple small windows to PE in one operation.

4.2.2 Improvement for inter-kernel parallelism
As is mentioned at the beginning of section 4.2, in terms of

performance, inter-layer parallelism is already good enough for
subsequent top layers of NN. However, considering the energy
consumption, inter-kernel parallelism ignores the important
characteristic of convolution layers-kernel sharing within the
maps, so data reuse rate is quite low. In this section, we proposed
an improvement for the mapping scheme of inter-kernel
parallelism to increase the data reuse rate.

W
W

W

W
W

W

D

D

D

W : weight
D : data

: Multiply

O
ut

pu
t B

uf
fe

r

: Adder

k

Tin

Dout
Tout

X
Y

 Figure 6. Mapping scheme of kernel partitioning

As shown in Fig. 6, there are Din input maps and Dout output
maps with Din×Dout groups of weight, and kernel size is k. Prior
designs go through the whole kernel window at first, which means
the kernel window will not shift to right or downward until it
accomplished a complete pixels of the output map (need k×k×Din
times of multiplication). They have to reload both data and weight
repetitively on each mul-operation. In our design, to better reuse
both data or weight for less memory access, each time we move to
the same pixel in the next output map or the next pixel in the same
output map to calculate the 1/(k×k) partial sum instead of the
complete sum. In this case, the output buffer is used to store the
partial sums, and it requires additional “add-and-store” operations
to accumulate the partial sums to obtain the final result. However,
this method has better data or weight reusability and so reduces
buffer loading at a cost of additional buffer store operations. For
instance in Fig 6, accumulating the partial sums induces
X×Y×Dout×k×k more times of store operations, but it saves almost
X×Y×Dout×k×k×Din/Tin times of load operations. Since Din is
always much bigger than Tin in top layers, this method
dramatically decreases buffer bandwidth occupancy. Besides,
store is thought off the critical path of computation.

Compared with inter-kernel parallelization scheme, we
minimized memory or buffer access traffic, at the same time,
maximized the use ratio of logic resources.

4.2.3 Providing Self-adaptiveness
Because the structures of different neuron layers in a network

have entirely distinct kernel parameters, they must be processed
with different parallelization schemes instead of a fixed policy to
achieve the optimal performance. According to our statistics, the
arrangement of neural layers in deep CNNs follows a rule that the
bottom layers always have big kernels and small number of input
maps. As the network goes deeper with feature abstraction, the
feature size becomes smaller and smaller, the kernel size shrinks
and the number of input maps increases. Therefore, the three
parallelization schemes are complementary to each other in many
aspects as demonstrated in Table 1, which gives us an opportunity
to hybrid them together in one round of NN propagation.

Table 1. Parallelization scheme comparison
scheme Suited layer characteristic Advantages
Inter Large #input maps and small kernel Implement easily
Intra Kernel = stride Less memory traffic
partition Big kernel or small #input maps Both of above

Algorithm 2 shows the algorithm rule of how to select the
properly scheme to accelerate NN computing.
Algorithm 2
Given a NN layer:
1: IF k=s and k 1, THEN select intra-kernel parallelism
2: ELSE-IF Din <Tin,THEN select kernel-partition
3: ELSE Select inter-kernel parallelism
4:IF(paralellism scheme of nextlayer is inter-kernel),
store in inter-order(Din,X,Y in Fig. 1)
5:ELSE Stroe in intra-order(X,Y,Din in Fig. 1)
Move to next NN layer

To orchestrate different parallelization schemes in a whole
network, we proposed a smart data tiling and mapping scheme to
cooperate with it, which optimizes the data layout in memory so
that the weight and data of one neuron layer is mapped and
aligned according to the needed parallelization scheme of this
layer. Our design requires no special hardware like rotatable
buffers[6] or data layout transformation unit [8].

5. EVALUATION
5.1 Experimental setup

To evaluate our proposal, we implemented a Verilog based
CNN accelerator. We synthesized the implementation using
Synopsys Design Compiler (DC, under TSMC 45nm library), then
verified the design using Synopsys VCS. Additionally, we also
designed a compiler that generates the macro instruction flow for
the accelerator.

We implement different parallelism schemes into the
accelerator for comparison. In this paper, we just consider the
inference operation (net forwarding). Since the network models
are pre-trained, the accuracies of NNs are fixed under different
parallelism schemes, and we just care about speed and energy
consumption of NN forward-propagation. We recorded the cycles
of simulation to quantify the performance and evaluated the power
consumption based on the synthesized results of DC.

Benchmark. We selected several recent popular large NN
structures, Alexnet[1], GoogleNet[10], VGG[3] and Nin[16]. The
first two are the champions of ILSVRC[17] 2012, 2014
respectively, which is one of the most popular object detection
and image classification challenges over the world. The
characteristics of these network architectures are shown in Table
2. Note that the first row in the table is the detailed parameters of
conv1, and the data are #input maps, k, s, #output maps
respectively. Second row is the number of Conv-layers of NN.
Third row is the kernel size used in the whole NN.

Table 2. Benchmark
Network Alexnet google net VGG NiN
Conv1 detail 3,11,4,96 3,7,2,64 3,3,1,64 3,11,4,96
#conv layers 5 57 16 12
Kernel types 11,5,3 7,5,3,1 3 11,5,3,1

Experimental settings. To fully evaluate the performance of
our accelerator design, we compared all of the following schemes
based on our accelerator, including inter-kernel, intra-kernel, and
kernel-partition parallelization with adaptive mapping scheme.
Table 3 gives the accelerator parameter. Please note that the data
width of the neural processing element(PE) is 16-bit fixed-point,
which is validated to be good enough with reference of [8]. We
set the ideal performance to be the upper bound performance,
which assumes that all the computing components are 100%
utilized at running time and data alignment is also ideal without
wasting any buffer space and bandwidth.

Table 3. Accelerator parameters
name bandwidth size opertation cycle
PE 16-16,32-32 16bit mulitplication 1

InOut-buf 16,32 2M Byte add 1
Weight-buf 256,1024 1M Byte load 1
Bias_buf 16,32 4K Byte store 1

5.2 Performance
1. In order to compare the performance of kernel-partition

scheme with the other two, we ran 3 groups of experiments on
layer Conv1 (Conv1’s performance accounts for a large portion of
the whole network, because the input map size is the biggest),
defined as inter, intra and partition in Fig. 7. Also, we set PE
width(Tin,Tout) to be '16-16' and '32-32' respectively.’16-16’ stands
for the computation engine with 16 inputs from input feature
maps, 16 inputs from weights, thus the number of multipliers is
256, and the number of adder tree is 16(each with 16 adders).’32-
32’ is the same. inter are the scheme proposed in [8]. intra is
similar to [6] except for the data reshaping method. partition is the
kernel partition scheme we proposed in Section 4.2.1.

The left part in Fig. 7 is the experimental results when PE
width is 16-16, and the right part is under 32-32. For each
situation, we compare the three schemes across different NNs,
including Alexnet, GoogleNet, VGG and Nin from left to right.
The results show that intra and partition schemes are much better
than inter, which almost reach the upper bound performance. This
is because the number of input maps is 3 in Conv1, which is very
small, and the inter scheme waste lots of computing resources,
which is not the case in the other two strategies. Moreover, based
on the analysis in Section 4.1, for intra scheme, sliding window is
too difficult to be implemented in hardware due to the big kernel
size and small stride(k=11,7,3,11;s=4,2,1,4) of Conv1, so we
implemented the unrolling scheme in this paper. Since the extra
memory traffic of unrolling scheme, intra is also slower than
partition. To be specific, average of 4 NNs, partition outperforms
inter and intra by a 5.8x and 2.1x speed-ups respectively.

Figure 7. Comparison of execution time of layer Conv-1

2. Regarding the adaptive scheme proposed in Section 4.2.3,
we ran 5 groups of experiments, including inter, intra, partition
and adpa-1 and adpa-2. The first 3 schemes are the same with the
previous experiment and the only difference is that we run the
whole network this time using the same scheme across all the
layers of the NN. We added our adaptive scheme, which
adaptively change the parallelization schemes between layers, to
do the comparison. The difference of adpa-1 and adap-2 is that
the inter-kernel parallelism in adap-1 is the original one, and adap-
2 is the one improved in section 4.2.2. It is shown in Fig. 8 that
the adaptive scheme outperforms the others significantly. In
particular, adpa outperforms the most commonly used inter by
1.83x in Alexnet. As average of the 4 NNs, the speedup is 1.43x.
It should be noted that there are two reasons why the speed up of
adap is not so remarkable for VGG. First, the size of VGG is very
large, and the biggest layer need 8M buffer, so we have to
exchange data frequently between on-chip buffer and off-chip
memory which is very time consuming. Second, all the layers of
VGG use almost the same parameter (Din 64, k=3, s=1), the space
for adaptiveness is rather marginal. Additionally, partition is not
so good in whole round of NN propagation as previous
experiment. It is because that partition is good for the bottom
layers like Conv1, but not suitable for the top layers which have
large number of input maps and very small kernel. So the adap is

5.E+4

5.E+5

5.E+6

Anet Gnet Vgg Nin Anet Gnet Vgg Nin
16,16 32,32

cy
cl

e

ideal inter intra partition

preferable to the whole NN. Also, adpa-1 and adpa-2 are the same
on performance, and their difference are in energy consumption,
which will be presented later.

Figure 8. Performance comparison

3. To give a fair evaluation, we also compared our adaptive
scheme with [14], and the details are illustrated in Fig. 9. Their
method is denoted as Zhang-7-64 in Fig. 9, where 7-64 is Tin-Tout.
For fare comparison, we down-scale our design to 100MHz as is
used in [16]. Since our design configuration is different with [14],
we change the parameter 7-64 ,which is the optimal one proposed
in [14], to 16-28, when adap scheme uses the same computing
resources with [14]. It can be seen from Fig. 9 that our scheme
adpa-16-28 outperforms [14] with 2.22x and 1.20x speedup on
Conv1 and the whole network respectively. '28' is not the optimal
parameter for our design, so we add another 2 configurations in
the experiments. For adap-16-24, the number of multipliers is
14% less than [14]; for adap-16-32, the number of multipliers is
14% more than [14]. For whole network, the speedups are 1.06x,
1.45x respectively. More importantly, [14] is customized for
Alexnet and is thought as not competitive as ours for other NNs.

Figure 9.Performance compare with[14]

4. The performance comparison with CPU (Intel Xeon
2.20GHz) is shown in Table 4. The software implementations are
written in C++ based on Caffe[18]. Our accelerator operates at
1GHz clock. Overall, our implementation adap-16-16 and adap-
32-32 achieve up to 139.35x and 468.67x speedup (avg. of the 4
NNs) over software implementations respectively.

Table 4 Performance comparied to CPU(ms)
 CPU adap-16-16 speedup adap-32-32 speedup
Anet 376.50 2.83 133.02x 0.91 414.58x
Gnet 1418.8 6.69 212.11x 2.04 696.88x
Vgg 10071.71 77.51 129.94 x 20.41 493.44x
Nin 553.43 6.72 82.35 x 2.05 269.77x

5.3 Energy consumption
Table 5 gives the PE energy reduction of different schemes.

adpa-1 and adpa-2 saves respectively 28.04% and 27.96% more
energy than inter on average. adap-2’s reduction is slightly
smaller than adap-1, because a group of adders and other
combinatorial logic are added to support “add-and-store”
operation in adpa-2. However, adap-2 remarkably reduces the
buffer access intensity, which is the major source of energy
consumption in NN accelerator(also illustrated in[8]).

Table 5 PEs Energy reduction (%)
 inter(base) intra partition adap-1 adap-2
Alexnet 0.00 32.85 40.23 47.77 47.71
Googlenet 0.00 9.66 22.77 31.48 31.40
VGG 0.00 -44.72 -8.61 3.00 2.89

In Fig. 10, we compare the buffer access count of the
evaluated schemes for whole NNs. adap-2 achieves 90.13%
memory traffic reduction on average compared to adap-1. In
theory, the bandwidth consumption rate of intra and adap-2
should be close with each other. But in practice, since there are
many redundant data dues to the data alignment problem in some

layers of intra, adap-2 is much better than intra, achieving up to
73.7% buffer traffic reduction on average.

Additionally, because of the additional “add-and-store”
operations in latter top layers of VGG, partition have more buffer
accesses than others, but adpa-2 saves 93.8% and 77.6% buffer
traffic on average compare to inter and intra respectively.
Although the performance speedup of adap-2 for VGG is not so
conspicuous, the energy reduction is tremendous.

Figure 10. Buffer traffic comparison

6. Conclusion
In this paper, we proposed a general purpose deep learning

accelerator which offers multiple types of data-level parallelism:
inter-kernel, intra-kernel and hybrid. The design can adaptively
switch among the three types of parallelism and the corresponding
data tiling schemes to dynamically match different networks or
even different layers of a single network. No matter how we
change the hardware configurations or network topologies, the
proposed network mapping strategy ensures the optimal
performance and energy-efficiency.
7. ACKNOWLEDGMENTS

This work was supported in part by National Natural Science
Foundation of China under Grant No. 61432017, 61176040,
61504153 and 61221062. The corresponding authors are Yinhe
Han and Ying Wang.
8. REFERENCES
[1] Krizhevsky, A., et al., ImageNet Classification with Deep

Convolutional Neural Networks. Advances in Neural Information
Processing Systems, 2012.

[2] Hinton, G., et al., Deep Neural Networks for Acoustic Modeling in
Speech Recognition. IEEE Signal Processing Magazine, 2012.

[3] Simonyan, K., et al., Very Deep Convolutional Networks for Large-
Scale Image Recognition. Arxiv, 2014.

[4] LeCun, Y., et al., Deep learning. Nature, 2015.
[5] Coates, A., et al. Deep learning with COTS HPC systems. In Proc. of

ICML, 2013.
[6] Peemen, M., et al. Memory-centric accelerator design for

convolutional neural networks. In Computer Design (ICCD), 2013.
[7] Farabet, C., et al. Neuflow: A runtime reconfigurable dataflow

processor for vision. In Proc. of CVPRW, 2011.
[8] Chen,T.,et al. Diannao:A small-footprint high-throughput accelerator

for ubiquitous machine-learning. In Proc. of ASPLOS, 2014.
[9] Park, S., et al. 4.6 A1. 93TOPS/W scalable deep learning/inference

processor with tetra-parallel MIMD architecture for big-data
applications. In Proc. of ISSCC, 2015.

[10] Szegedy, C., et al., Going deeper with convolutions. ArXiv, 2014.
[11] Sankaradas, M., et al. A massively parallel coprocessor for

convolutional neural networks. In Proc. Of ASAP, 2009.
[12] Cadambi, S., et al. A programmable parallel accelerator for learning

and classification. In Proc. of PACT, 2010.
[13] Chakradhar, S., et al. A dynamically configurable coprocessor for

convolutional neural networks. In ACM SIGARCH Computer
Architecture News, 2010.

[14] Zhang, C., et al. Optimizing FPGA-based Accelerator Design for
Deep Convolutional Neural Networks. In Proc. of FPGA, 2015.

[15] Du, Z., et al. ShiDianNao: shifting vision processing closer to the
sensor. In Proc. of ISCA, 2015.

[16] Lin, M., et al., <Network In Network>. In Proc.of ICLR, 2014.
[17] Russakovsky, O., et al., Imagenet large scale visual recognition

challenge. International Journal of Computer Vision, 2014.
[18] Jia, Y., et al. Caffe: Convolutional architecture for fast feature

embedding. ArXiv, 2014.

5.E+5

5.E+6

5.E+7

Anet Gnet vgg nin Anet Gnet vgg nin
16,16 32,32

cy
cl

e

inter intra partition adpa-1 adap-2

21.6 20.4 18.1 14.9

7.4
3.3 3.3 2.5

0
10
20
30

zhang-7,64 adpa-16-24 adpa-16-28 adpa-16-32

m
s whole NN

conv1

1.E+07

1.E+09

1.E+11

Anet Gnet vgg nin Anet Gnet vgg nin
16,16 32,32

ac
ce

ss
 ti

m
es

/b
it inter intra partition adap-1 adap-2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

