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ABSTRACT 
Convolutional neural networks (CNN) accelerators have been 
proposed as an efficient hardware solution for deep learning based 
applications, which are known to be both compute-and-memory 
intensive. Although the most advanced CNN accelerators can 
deliver high computational throughput, the performance is highly 
unstable. Once changed to accommodate a new network with 
different parameters like layers and kernel size, the fixed 
hardware structure, may no longer well match the data flows. 
Consequently, the accelerator will fail to deliver high performance 
due to the underutilization of either logic resource or memory 
bandwidth. To overcome this problem, we proposed a novel deep 
learning accelerator, which offers multiple types of data-level 
parallelism: inter-kernel, intra-kernel and hybrid. Our design can 
adaptively switch among the three types of parallelism and the 
corresponding data tiling schemes to dynamically match different 
networks or even different layers of a single network.  No matter 
how we change the hardware configurations or network types, the 
proposed network mapping strategy ensures the optimal 
performance and energy-efficiency. Compared with previous 
state-of-the-art NN accelerators, it is possible to achieve a 
speedup of 4.0x-8.3x for some layers of the well-known large 
scale CNNs. For the whole phase of network forward-
propagation, our design achieves 28.04% PE energy saving, 
90.3% on-chip memory energy saving on average. 

1. INTRODUCTION 
Deep Convolutional Neural Network algorithms are gaining 

popularity in machine learning and making breakthroughs in 
many fields, such as image recognition[1], automatic speech 
recognition[2] and video recognition[3]. Deep learning also begin 
to migrate into smartphones, wearable devices, solving real world 
problems in robot vision, surveillance and driver-less cars[4]. 
Unfortunately, such deep learning algorithms are highly time-
consuming and require large amount of computing resources. Due 
to the computational requirements of deep learning, various NN 
accelerators have been proposed recently to make it inexpensive 
and ubiquitous for embedded or even cyber-physical applications. 

From the aspect of hardware platform, most CNN 
acceleration solutions are based on GPGPU[5], FPGA[6], ASICs 
and application-specific neural processor[7]. The GPGPU solution 
is too cumbersome to be used in low-power platforms, embedded 
applications or even cost-sensitive data centers. Compared to 
GPU-based system, FPGA and ASIC are more attractive 

approaches to map the NN to hardware, because they possess 
advantages of high performance and energy efficiency. However, 
they are not flexible enough to handle a myriad of complex NN 
models from different areas. Worse still, application-specific NN 
accelerators fully expand the topology of a NN model, which is a 
power and area disaster for large scale Deep NNs. 

Therefore, a general purpose neural processor (NP) like[8] 
and [9] is thought as a promising solution to offer both flexibility 
and efficiency. Such a NP has many good features. First, it reuses 
the limited hardware resources in a time multiplexing way to 
increase hardware and power utility. Second, it relies on multi-
aspect data tiling methods to exploit data locality and relieve the 
pressure to on-chip memory. Last of all, NP are often designed to 
support a wide range of NN models. With all these good merits, 
state-of-the-art NPs also face some common design weaknesses, 
and still have a huge space for both performance and power 
optimization. One of the key issues is the severe performance 
variation to different network parameters of different models. We 
found in experiments that an important reason for this drawback is 
that most of current NPs rely on a comparatively rigid method to 
exploit the data-level parallelism and fixed data tiling policy in 
NNs. They are pursuing data-level parallelism as it does in 
conventional vector processor architectures. However, NPs for 
deep learning accelerators are basically intended to address the 
huge space of NN algorithms in the most energy-efficient way. 
More specifically, rigid vector machine structure often fails to 
deal with the complexity of data flows or fully exploit the multi-
aspect parallelism in diverse NNs, leading to the under-utilization 
of hardware resources and precious memory bandwidth. 
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Figure 1. A typical CNN containing multiple layers 
Taking a typical CNN illustrated in Fig. 1 for example, the 

forward propagation of a CNN includes repetitive layers of 
kernel-level operations, like convolution and pooling, which are 
the critical tasks to accelerate for NPs. Generally, there are two 
major types of data-level parallelism to exploit in such kernel 
operations: inter-kernel and intra-kernel parallelization. Exploiting 
them with NP will induce quite different memory access 
behaviors (details will be introduced in section 4).  

According to our observation, different networks or even 
different layers of the same network have distinct parameters, so 
sticking to one type of parallelism and data mapping policy cannot 
fit all network topologies. In this paper, we proposed a kernel-
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partitioning scheme accompanied by a new data tiling method to 
eliminate the dependencies between adjacent convolutional 
windows, which increase the parallelism remarkably. What’s 
more, we investigated an adaptive data mapping scheme for large 
NNs to fundamentally reduce memory-traffic demand of the acce-
lerator, ensuring the optimal performance and energy-efficiency 
under various types of networks and hardware configurations. 
In summary, we make the contributions as follows: 

-We proposed a kernel partitioning scheme that pursues both 
intra-kernel and inter-kernel parallelism to accelerate the 
convolutional layers in CNN as a hybrid approach. It partitions the 
original kernel into properly-sized tiles to eliminate the 
overlapping between adjacent kernel windows and better preserve 
data locality, resolving the problem that it is hard to accelerate the 
critical bottom layers in prior designs due to data thrashing. 

-We proposed an adaptive data-level parallelization scheme 
for hardware CNN accelerator which combines inter-kernel, intra-
kernel parallelism and hybrid (kernel-partitioning) according to 
network parameters and hardware resources. The experiments 
proved that this dynamic scheme can optimize performance and 
minimize energy consuming simultaneously. 

-We designed and implemented the deep learning accelerator 
that support adaptive data tiling and parallelization schemes. The 
proposal is evaluated with multiple state-of-the-art large NN 
architectures, e.g. Alexnet[1], GoogleNet[10], VGG[3].  

2. RELATED WORK 
Early CNN accelerators are focused on data-path 

optimization. [11] and [12] mainly utilize parallelism within 
feature maps and kernel, and they cannot scale to various NN 
types and layers. [13] pursues “inter-output” and “intra-output” 
parallelism, but does not use on-chip buffers for data reuse and 
give little concern to locality exploitation. [7] organizes data path 
according to the sliding window property of convolutional layers, 
but it also ignores the data reusing patterns of feature maps. 

Another class of accelerators put enough emphasis on 
memory-level optimization in CNNs. [6] chooses to maximize 
date reuse and minimize bandwidth requirement, but the 
addressing and data mapping are quite complicated and rely on 
the reconfigurability of FPGA to process different layers. [14] 
also takes advantage of data locality, and balances the resources of 
bandwidth and FPGA computation power. However, they just 
give a solution for Alexnet. The design philosophy in [8], which 
focuses on memory bandwidth utilization, can be applied to 
different NN layers. However, they use the same data-level 
parallelism and tiling scheme for different networks, leading to 
the underutilization of hardware resources under some sceneries. 

In contrast, our work outperforms previous approaches for 
the following reasons. First, we seek to provide a hybrid 
parallelization with a novel data partitioning policy to better 
preserve locality. Second, instead of keeping a fixed data-level 
parallelization scheme for all layers, our architecture offers 
multiple ways of NN parallelization. The data tiling and mapping 
policy is changed according to the parameters of neural layers to 
increase the data reusability and moves the data fetch operations 
off the critical path of NN accelerator. Therefore, our design can 
adaptively switch among different parallelization strategies and 
the corresponding data mapping method to dynamically match 
different networks or even different layers of a single network. 

3. PRIMER ON DEEP CNN AND DEEP 
LEARNING ACCELERATOR 

Deep CNN are typically organized into interleaved 
convolutional and pooling layers followed by a number of fully-

connected layers as illustrated in Fig. 1. In this paper, we 
primarily discuss convolution operation, which typically makes 
90% of the computational workload of a CNN[12]. Fig. 1 
illustrates the basic pattern of convolution. An input cube is 
convolved with Dout groups of kernels (Din×k×k) at stride s. Each 
kernel is shifted in a sliding-window (with an offset s) across the 
multiple input maps. During each shift, every weight belonging to 
the kernel is multiplied to the according input element in the input 
maps and then added-up. And then an optional pooling operation 
(defined by p and sp) is used to subsample the convolved output. 
Fig. 2 is a typical architecture of state-of-the-art deep learning 
accelerators [8, 13, 14], which consists of four main components: 
one input data buffer, one output data buffers, one weight buffer, a 
computational block (neural Processing Unit, PE) and a logic 
Control Unit (CU). There is always a compiler, executed on host 
platform, that automatically translate network specification 
(numbers of layers, kernel size etc.) written by domain experts 
into a code segment, which can be mapped, scheduled and 
executed on the accelerator. Once the instructions are ready, the 
raw image data and weights of pre-trained model are injected into 
the external memory as the input. And then, CU reads instructions 
one by one, loads data and weights to on-chip buffer, and 
computing. The accelerator performs forward propagation layer 
by layer and finally output the results to the external memory. 
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 Figure 2. Architecture of a typical deep learning accelerator 
Based on the deep CNNs and the general purpose deep 

learning accelerator architecture, we discuss two major 
computation acceleration policy: inter-kernel and intra-kernel 
parallelization, and propose a hybrid method that combines their 
advantages and avoid their disadvantage. In addition, there are 
also two kinds of data tiling schemes in coordination with the 
parallelization schemes, which will be stated in the following 
sections. To extract the best performance out of CNNs with 
distinct layer parameters and diverse topology, we also propose an 
adaptive method to adaptively switch between the three 
parallelization schemes for different stages of NN propagation. 

4. METHODOLOGY 
4.1 Analyzing the pros and cons of uniform 
parallelization schemes  
4.1.1 Inter-kernel parallelization 

Inter-kernel parallelization is to transfer n pixels in the Din 
direction, which belong to same kernel position but different input 
maps (Fig. 1), to the computing unit PEs (Fig. 2). Each operation 
loads N <data-weight> pairs to PEs and this procedure repeats for 
the whole kernel window (k×k), then accumulate the result of k×k 
operations and send the sum to output buffer. 

This approach can straightforwardly map input data from 
memory to PEs, but its maximum parallelism degree is restricted 
by the dimension of input and output maps (Din and Dout). Take 
Alexnet [1] as example, the c1,c2 and c3 are different convolution 



layers(Din=3,48,256 respectively), and number '16' and '32'  are 
Tin (the number of multiplier of one PE)in Fig. 2. When the 
number of input maps well matches Tin, the real performance is 
equal to the ideal performance, c2-16, c3-32, etc. Otherwise, some 
PE computing resources are wasted, like c2-32, especially for c1 
(the number of input maps is just 3, so 13 PEs unutilized when Tin 
= 16). It can be inferred that with the Tin becomes wider, more and 
more computing resources will be wasted, leading to poor 
scalability. The same logic also applies to Dout and Tout. 

More importantly, the inter-kernel parallelism ignores the 
important characteristic of convolution layers, kernel sharing, so 
data reuse rate is quite low. Since the concurrent data in PE 
belong to different input maps in depth, each operation has to 
reload and flush the data and weight. Thus, the buffer traffic is 
very heavy, leading to high power consumption. But in general, 
inter-kernel is easier to be implemented and its performance is 
relatively good for the layers with big input maps (Din). 

4.1.2 Intra-kernel parallelization 
Different from inter-kernel parallelism, intra-kernel 

parallelism is to transfer one or several k×k windows in same 
input maps to PE. Because map size is mostly bigger than map 
depth (X×Y>Din, in Fig. 1), intra-kernel parallelism is more 
efficient compared to inter-kernel. However, due to the 
characteristics of convolution and diverse parameters of different 
layers, the kernel sizes and data folding schemes are various, 
which in turn leading to complicated data alignment and data 
mapping from memory to PE. According to our study, there are 
three approaches to handle the problem. 

1. Data unrolling. This scheme is easy to do the mapping, 
but creates extremely large foot-print size due to data duplication 
and need to reshape data layout before move to next layer of 
CNN. For example, given a 28×28 map with k = 5 and s = 1, after 
unrolling, the data map size is 24 ×24×25. Thus the on chip buffer 
size and memory traffic will be enlarged for almost (k/s) × (k/s) 
times. Data duplicates for T times as given by Equation 1: 

( )( ) ( )( )/ /
T

− × − × ×
=

×
X k s+1 Y k s+1 k k

X Y          Equation 1 

Where X, Y are the sizes of input maps, s is stride, and k is 
kernel size. Fig. 3 shows the first five Conv layers in Alexnet and 
GoogleNet, the unrolled data size increases to 9x~18.9x of the 
raw input. In addition, it’s difficult to reshape data from raw data 
to the unrolled one in hardware, so it sometimes relies on a host 
possessor to do that at considerable overhead. So this method is 
always used in software system[18], not in hardware accelerator. 

 
Figure 3. Data unrolling scheme 

2. Sliding window. Another approach is to use sliding 
window, which has quite high requirements for data alignment.  It 
is efficient only when k is equal to s, so that no data overlapping 
exists between two adjacent kernel windows. We just need to put 
data within the same kernel window to the buffer in sequence.  
Data pixels in the same map are continuously loaded together 
from buffer to PE. In most cases, k is bigger than s. There are 
overlapping of two adjacent kernel windows both X direction and 
Y direction, as show in Fig.  4(a). No matter how to arrange the 
raw data to buffer(X direction or Y direction), after shifting the 
window, the data in same window will distributed across buffer 

lines (or rows). As a result, the memory access intensity increases 
because requests have to be issued for several times to load data 
from buffer to PE. When kernel size is much bigger or smaller 
than Tin in PE, the memory access pattern will become more 
complicated. In that case, the performance and power cost will be 
prohibitively high for an efficient accelerator. 
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Figure 4. Sliding window and kernel sharing 

3. 2D-PE. Additional, there is another method that realizes 
the intra-kernel level parallelization, which is a different structure 
of 2D mesh PE similar to systolic array [11, 15]. This design 
exhibits a very high data reusability and is very effective when 
dealing with specific network topology in vision processing. 
However, this highly-effective 2D-PE design will encounter 
performance degradation or underutilization issue when it 
encounters networks with varied size of kernels and stride. 

However, intra-kernel parallelism has a big advantage in 
terms of energy reduction. It is based on the fact that the 
concurrent data in PE belong to the same input maps  and share 
same kernel across the whole layers, so each operation just need 
to reload either data or weight in buffer, not both. Fig. 4(b) gives 
an example of 4 input maps and n output maps with 4*n groups of 
weights. For weight k11 is shared in input map I1, so we can keep 
k11 in PE and load different data windows in I1, until the whole 
input map is traversed completely, then the fixed weight k11 will 
never be re-accessed. We also can keep one data window of I1 in 
PE and sequence load k11 to k1n, then the fixed data window will 
never be re-accessed. Thus, the buffer traffic is reduced 
dramatically compared to inter-kernel in most cases. As the 
analysis of [8], buffer traffic is the largest part of energy con-
sumption, so it is remarkable in whole system energy reduction. 

4.2 The proposed parallelization scheme 
Based on above analysis, both inter and intra-kernel 

parallelization schemes have advantages and disadvantages. In 
term of performance, the former is usually better except for the 
critical bottom layers ([1, 3, 10, 16]), which are obviously more 
suitable to be accelerated by intra-kernel parallelization. What we 
have to do is to deal with the data alignment issue of intra-kernel 
parallelization and find an easy way to map it onto hardware.  

Therefore, in this section we propose a new parallelization 
scheme to effectively accelerate the critical bottom layers and the 
latter top layers by combining the advantages of both inter- and 
intra-kernel parallelization schemes. In brief, we design the 
method “kernel-partitioning” to make intra-kernel scheme easy 
to map data onto hardware with low memory and buffer 
bandwidth consumption. Also, to accelerate the top layers with 
more number of maps, we improve the inter-kernel scheme to 
utilize the locality of data and weight, thus cost much less power. 

In the end, we also process the adaptiveness to effectively 
accelerate the different networks or different layers. No matter 
how we change the hardware configurations or network 
topologies, the proposed network mapping strategy ensures good 
data reusability and easy alignment in memory and buffer, 
contributing to the optimal performance and energy-efficiency. 
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4.2.1 Kernel partitioning 
The challenge to implement the intra-kernel parallelization is 

the following two aspects. First, kernel window size is much 
bigger than PE width (Tin). Second, the stride is smaller than the 
kernel size. To resolve the problems once for all, we partition the 
kernel window depending on the stride as shown in Equation2:  

( )/ , sg ce k ssil k= =                          Equation 2 
Where g is the number of pieces that a big kernel is 

partitioned into, and ks is the new kernel size after partitioning. 
Fig. 5 shows the details to partition a kernel. Taking Alexnet 

Conv1 for example, Fig. 5(a) shows the raw data. Since the length 
and height of the data are not dividable by ks, '0's are padded at the 
boundary. Fig. 5(b) is the mapping result from the small kernel 
windows (ks× ks, represented by dx,y) to the on-chip buffer in 
sequence. Fig. 5(c) shows the layout of the corresponding 
weights, one more line of '0' is also padded. The weights are 
partitioned into g×g pieces, with size = ks×ks. Each small window 
of weight is represented by wi/9. Specific steps to do the 
partitioning are described in Algorithm 1. 
Algorithm 1 
Input: 
k:kernel,s:stride,ks:kernel after partition, g:the groups of partion,Tin:the 
number multiplier in a PE, sizex,sizey:the size of output maps, G=g×g 
1:For i=1:G 
2:    load wi/G to PE 
3:       FOR jx = i%g:(i%g+sizex),rx = 1:sizex 

4:       FOR jy=(i/g+1):(i/g+sizey),ry=1:sizey 
5:          Mapping d(jx,jy) to PE 
6:          Calcuate 
7:       IF i=1, THEN store the result to buffer as a pixel located at 

(rx,ry) of output map ri/G(in Fig. 5d) 
8:        ELSE reload pixel(rx,ry)of r(i-1)/G from buffer, add the MAC 

result to it, then store the sum as a pixel(rx,ry) of ri/G 
9:END END END END 

For example, the original big kernel (11×11) is partitioned 
into 9 small sub-kernels (4×4) in Fig. 5(c), so the code within the 
first outer loop of Algorithm 1 accomplishes 1/9 computing tasks 
of the original big kernel. The data (Fig. 5a) multiplied to the first 
sub-piece of weights (Fig. 5c) is starting from d1,1 to d55,55, from 
left to right and then top to bottom. Second one is starting from 
d1,2 to d56,56. The same calculation method applied to the following 
7 sub-kernels. Thus the last piece of weights is multiplied to the 
data from d3,3 to d57,57. Ultimately, there will be 9 output maps as 
shown in Fig. 5(d), with map size to be 55×55. So the final result 
is to add the 9 maps together, which is exactly the same with the 
original computing method with that of big kernels. 
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Figure 5. Kernel partitioning  

The mapping scheme is same to intra-kernel parallelism 
(section 4.1.2), but the basic unit is a small kernel window (ks×ks). 
When Tin is bigger than the size of small kernel window (ks×ks), 
we map multiple small windows to PE in one operation. 

4.2.2 Improvement for inter-kernel parallelism 
As is mentioned at the beginning of section 4.2, in terms of 

performance, inter-layer parallelism is already good enough for 
subsequent top layers of NN. However, considering the energy 
consumption, inter-kernel parallelism ignores the important 
characteristic of convolution layers-kernel sharing within the 
maps, so data reuse rate is quite low. In this section, we proposed 
an improvement for the mapping scheme of inter-kernel 
parallelism to increase the data reuse rate. 
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 Figure 6.  Mapping scheme of kernel partitioning 

As shown in Fig. 6, there are Din input maps and Dout output 
maps with Din×Dout groups of weight, and kernel size is k. Prior 
designs go through the whole kernel window at first, which means 
the kernel window will not shift to right or downward until it 
accomplished a complete pixels of the output map (need k×k×Din 
times of multiplication). They have to reload both data and weight 
repetitively on each mul-operation. In our design, to better reuse 
both data or weight for less memory access, each time we move to 
the same pixel in the next output map or the next pixel in the same 
output map to calculate the 1/(k×k) partial sum instead of the 
complete sum. In this case, the output buffer is used to store the 
partial sums, and it requires additional “add-and-store” operations 
to accumulate the partial sums to obtain the final result. However, 
this method has better data or weight reusability and so reduces 
buffer loading at a cost of additional buffer store operations. For 
instance in Fig 6, accumulating the partial sums induces 
X×Y×Dout×k×k more times of store operations, but it saves almost 
X×Y×Dout×k×k×Din/Tin times of load operations. Since Din is 
always much bigger than Tin in top layers, this method 
dramatically decreases buffer bandwidth occupancy. Besides, 
store is thought off the critical path of computation. 

Compared with inter-kernel parallelization scheme, we 
minimized memory or buffer access traffic, at the same time, 
maximized the use ratio of logic resources. 

4.2.3 Providing Self-adaptiveness 
Because the structures of different neuron layers in a network 

have entirely distinct kernel parameters, they must be processed 
with different parallelization schemes instead of a fixed policy to 
achieve the optimal performance. According to our statistics, the 
arrangement of neural layers in deep CNNs follows a rule that the 
bottom layers always have big kernels and small number of input 
maps. As the network goes deeper with feature abstraction, the 
feature size becomes smaller and smaller, the kernel size shrinks 
and the number of input maps increases. Therefore, the three 
parallelization schemes are complementary to each other in many 
aspects as demonstrated in Table 1, which gives us an opportunity 
to hybrid them together in one round of NN propagation. 

Table 1. Parallelization scheme comparison 
scheme Suited layer characteristic Advantages 
Inter Large #input maps and small kernel Implement  easily 
Intra Kernel = stride  Less memory traffic 
partition Big kernel or small #input maps Both of above 



Algorithm 2 shows the algorithm rule of how to select the 
properly scheme to accelerate NN computing. 
Algorithm 2 
Given a NN layer: 
1:  IF k=s and k 1, THEN select intra-kernel parallelism 
2: ELSE-IF Din <Tin,THEN select kernel-partition 
3: ELSE Select inter-kernel parallelism 
4:IF(paralellism scheme of nextlayer is inter-kernel), 
store in inter-order(Din,X,Y in  Fig. 1)  
5:ELSE Stroe in intra-order(X,Y,Din in Fig. 1) 
Move to next NN layer 

To orchestrate different parallelization schemes in a whole 
network, we proposed a smart data tiling and mapping scheme to 
cooperate with it, which optimizes the data layout in memory so 
that the weight and data of one neuron layer is mapped and 
aligned according to the needed parallelization scheme of this 
layer. Our design requires no special hardware like rotatable 
buffers[6] or data layout transformation unit [8]. 

5. EVALUATION 
5.1 Experimental setup 

To evaluate our proposal, we implemented a Verilog based 
CNN accelerator. We synthesized the implementation using 
Synopsys Design Compiler (DC, under TSMC 45nm library), then 
verified the design using Synopsys VCS. Additionally, we also 
designed a compiler that generates the macro instruction flow for 
the accelerator. 

We implement different parallelism schemes into the 
accelerator for comparison. In this paper, we just consider the 
inference operation (net forwarding). Since the network models 
are pre-trained, the accuracies of NNs are fixed under different 
parallelism schemes, and we just care about speed and energy 
consumption of NN forward-propagation. We recorded the cycles 
of simulation to quantify the performance and evaluated the power 
consumption based on the synthesized results of DC. 

Benchmark. We selected several recent popular large NN 
structures, Alexnet[1], GoogleNet[10], VGG[3] and Nin[16]. The 
first two are the champions of ILSVRC[17] 2012, 2014 
respectively, which is one of the most popular object detection 
and image classification challenges over the world. The 
characteristics of these network architectures are shown in Table 
2. Note that the first row in the table is the detailed parameters of 
conv1, and the data are #input maps, k, s, #output maps 
respectively. Second row is the number of Conv-layers of NN. 
Third row is the kernel size used in the whole NN.  

Table 2. Benchmark 
Network Alexnet google net VGG NiN 
Conv1 detail 3,11,4,96 3,7,2,64 3,3,1,64 3,11,4,96 
#conv layers 5 57 16 12 
Kernel types 11,5,3 7,5,3,1 3 11,5,3,1 

Experimental settings. To fully evaluate the performance of 
our accelerator design, we compared all of the following schemes 
based on our accelerator, including inter-kernel, intra-kernel, and 
kernel-partition parallelization with adaptive mapping scheme. 
Table 3 gives the accelerator parameter. Please note that the data 
width of the neural processing element(PE) is 16-bit fixed-point, 
which is validated to be good enough with reference of [8].  We 
set the ideal performance to be the upper bound performance, 
which assumes that all the computing components are 100% 
utilized at running time and data alignment is also ideal without 
wasting any buffer space and bandwidth. 

Table 3. Accelerator parameters 
name bandwidth size opertation cycle 
PE  16-16,32-32 16bit mulitplication 1 

InOut-buf 16,32 2M Byte add 1 
Weight-buf 256,1024 1M Byte load 1 
Bias_buf 16,32 4K Byte store 1 

5.2 Performance 
1. In order to compare the performance of kernel-partition 

scheme with the other two, we ran 3 groups of experiments on 
layer Conv1 (Conv1’s performance accounts for a large portion of 
the whole network, because the input map size is the biggest), 
defined as inter, intra and partition in Fig. 7. Also, we set PE 
width(Tin,Tout) to be '16-16' and '32-32' respectively.’16-16’ stands 
for the computation engine with 16 inputs from input feature 
maps, 16 inputs from weights, thus the number of multipliers is 
256, and the number of adder tree is 16(each with 16 adders).’32-
32’ is the same.  inter are the scheme proposed in [8]. intra is 
similar to [6] except for the data reshaping method. partition is the 
kernel partition scheme we proposed in Section 4.2.1. 

The left part in Fig. 7 is the experimental results when PE 
width is 16-16, and the right part is under 32-32. For each 
situation, we compare the three schemes across different NNs, 
including Alexnet, GoogleNet, VGG and Nin from left to right. 
The results show that intra and partition schemes are much better 
than inter, which almost reach the upper bound performance. This 
is because the number of input maps is 3 in Conv1, which is very 
small, and the inter scheme waste lots of computing resources, 
which is not the case in the other two strategies. Moreover, based 
on the analysis in Section 4.1, for intra scheme, sliding window is 
too difficult to be implemented in hardware due to the big kernel 
size and small stride(k=11,7,3,11;s=4,2,1,4) of Conv1, so we 
implemented the unrolling scheme in this paper. Since the extra 
memory traffic of unrolling scheme, intra is also slower than 
partition. To be specific, average of 4 NNs, partition outperforms 
inter and intra by a 5.8x and 2.1x speed-ups respectively. 

 
Figure 7. Comparison of execution time of layer Conv-1 

2. Regarding the adaptive scheme proposed in Section 4.2.3, 
we ran 5 groups of experiments, including inter, intra, partition 
and adpa-1 and adpa-2. The first 3 schemes are the same with the 
previous experiment and the only difference is that we run the 
whole network this time using the same scheme across all the 
layers of the NN. We added our adaptive scheme, which 
adaptively change the parallelization schemes between layers, to 
do the comparison. The difference of adpa-1 and adap-2 is that 
the inter-kernel parallelism in adap-1 is the original one, and adap-
2 is the one improved in section 4.2.2.  It is shown in Fig. 8 that 
the adaptive scheme outperforms the others significantly. In 
particular, adpa outperforms the most commonly used inter by 
1.83x in Alexnet. As average of the 4 NNs, the speedup is 1.43x. 
It should be noted that there are two reasons why the speed up of 
adap is not so remarkable for VGG. First, the size of VGG is very 
large, and the biggest layer need 8M buffer, so we have to 
exchange data frequently between on-chip buffer and off-chip 
memory which is very time consuming. Second, all the layers of 
VGG use almost the same parameter (Din 64, k=3, s=1), the space 
for adaptiveness is rather marginal. Additionally, partition is not 
so good in whole round of NN propagation as previous 
experiment. It is because that partition is good for the bottom 
layers like Conv1, but not suitable for the top layers which have 
large number of input maps and very small kernel. So the adap is 
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preferable to the whole NN. Also, adpa-1 and adpa-2 are the same 
on performance, and their difference are in energy consumption, 
which will be presented later. 

 
Figure 8. Performance comparison 

3. To give a fair evaluation, we also compared our adaptive 
scheme with [14], and the details are illustrated in Fig. 9. Their 
method is denoted as Zhang-7-64 in Fig. 9, where 7-64 is Tin-Tout. 
For fare comparison, we down-scale our design to 100MHz as is 
used in [16]. Since our design configuration is different with [14], 
we change the parameter 7-64 ,which is the optimal one proposed 
in [14], to 16-28, when adap scheme uses the same computing 
resources with [14]. It can be seen from Fig. 9 that our scheme 
adpa-16-28 outperforms [14] with 2.22x and 1.20x speedup on 
Conv1 and the whole network respectively. '28' is not the optimal 
parameter for our design, so we add another 2 configurations in 
the experiments. For adap-16-24, the number of multipliers is 
14% less than [14]; for adap-16-32, the number of multipliers is 
14% more than [14]. For whole network, the speedups are 1.06x, 
1.45x respectively. More importantly, [14] is customized for 
Alexnet and is thought as not competitive as ours for other NNs. 

 
Figure 9.Performance compare with[14] 

4. The performance comparison with CPU (Intel Xeon 
2.20GHz) is shown in Table 4. The software implementations are 
written in C++ based on Caffe[18]. Our accelerator operates at 
1GHz clock. Overall, our implementation adap-16-16 and adap-
32-32 achieve up to 139.35x and 468.67x speedup (avg. of the 4 
NNs) over software implementations respectively. 

Table 4 Performance comparied to CPU(ms)  
 CPU adap-16-16 speedup adap-32-32 speedup 
Anet 376.50 2.83 133.02x 0.91 414.58x 
Gnet 1418.8 6.69 212.11x 2.04 696.88x 
Vgg 10071.71 77.51 129.94 x 20.41 493.44x 
Nin 553.43 6.72 82.35 x 2.05 269.77x 

5.3 Energy consumption 
Table 5 gives the PE energy reduction of different schemes. 

adpa-1 and adpa-2 saves respectively 28.04% and 27.96% more 
energy than inter on average. adap-2’s reduction is slightly 
smaller than adap-1, because  a group of adders and other 
combinatorial logic are added to support “add-and-store” 
operation in adpa-2. However, adap-2 remarkably reduces the 
buffer access intensity, which is the major source of energy 
consumption in NN accelerator(also illustrated in[8]). 

Table 5 PEs Energy reduction (%) 
 inter(base) intra partition adap-1 adap-2 
Alexnet 0.00  32.85  40.23  47.77  47.71  
Googlenet 0.00  9.66  22.77  31.48  31.40  
VGG 0.00  -44.72  -8.61  3.00  2.89  

In Fig. 10, we compare the buffer access count of the 
evaluated schemes for whole NNs. adap-2 achieves 90.13% 
memory traffic reduction on average compared to adap-1. In 
theory, the bandwidth consumption rate of intra and adap-2 
should be close with each other. But in practice, since there are 
many redundant data dues to the data alignment problem in some 

layers of intra, adap-2 is much better than intra, achieving up to 
73.7% buffer traffic reduction on average.  

Additionally, because of the additional “add-and-store” 
operations in latter top layers of VGG, partition have more buffer 
accesses than others, but adpa-2 saves 93.8% and 77.6% buffer 
traffic on average compare to inter and intra respectively. 
Although the performance speedup of adap-2 for VGG is not so 
conspicuous, the energy reduction is tremendous. 

 
Figure 10. Buffer traffic comparison 

6. Conclusion 
In this paper, we proposed a general purpose deep learning 

accelerator which offers multiple types of data-level parallelism: 
inter-kernel, intra-kernel and hybrid. The design can adaptively 
switch among the three types of parallelism and the corresponding 
data tiling schemes to dynamically match different networks or 
even different layers of a single network. No matter how we 
change the hardware configurations or network topologies, the 
proposed network mapping strategy ensures the optimal 
performance and energy-efficiency. 
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