
C-Brain: A Deep Learning Accelerator
that Tames the Diversity of CNNs through

Adaptive Data-level Parallelization
Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng Liu, Xiaowei Li State Key Laboratory of Computer

Architecture Institute of Computing Technology, Chinese Academy of Sciences, Beijing, P.R. China

Presented by:

Ryan Barton
17M38035

What we’ll cover

• What is a Convolutional Neural
Network (CNN)?

• Accelerators: problem statement and
paper introduction

• Data-parallelization scheme
• Kernel-level parallelism

• Adaptivity, regardless of NN topology &
hardware

• Putting the “petal to the metal” –
performance and energy evaluation

Convolutional Neural Network (CNN)

• A Deep Learning, feed-forward, neural network known for its success
in image recognition (think Facebook’s tagging algorithm)

• General idea: make series of reductions of an image, analyze its
fundamental properties, and arrive at a result

• 3 types of layers:
• Convolutional layers

• Pooling layers

• Fully connected layers

• Our example CNN: is input an X or an O?

Convolutional layer

• Input: image of n x n pixels.
• 3D stack of layers called features (ex. RGB, lines)

• Output: smaller image of values.
• A map showing how well that feature is

represented throughout original image.

• In our example, values 0 <= c <= 1

• What is a convolution?
• The act of sliding a kernel (window) k x k pixels

across an image, and looking for something.
Called stride.

• Usually a matrix of parameters the NN is trying to
learn

Convolution example
• Define feature

• Any property of X. Let’s say the top left slant.

• White pixel = 1, black pixel -1

• In kernel, compare each pixel in feature to those in image

• Perform dot product and divide by # of pixels in feature.

Images for this example courtesy of
Brandon Rohrer

http://brohrer.github.io/how_convolut
ional_neural_networks_work.html

Convolution example cont.
• After iterating over the entire image, below we get our feature map

*Aside: On Instagram, this is
known as a Box Blur.

Pooling layer

• Input: convolutional layer

• Output: even smaller image containing max values of input layer

• Like convolution, pick kernel and stride

• Calculate maximum value, insert value p into new image

Trick: Normalization (Linear Rectified Units (ReLU))
• Input: convolution layer or pooling layer

• Output: same image, with all c and p > 0.

• This keeps math consistent throughout the network

Fully Connected layer

• All neurons in a layer L1 is connected to all neurons in layer L2.

• Basically, each neuron has a say in the final result (X or O?).

Bringing it all together

These layer operations can be combined in any order (generally speaking).

Back propagation works in same way as other NNs, with gradient descent.

In CNNs there are potentially many steps, so indeed they’re computational beasts!

Accelerating CNNs

• How to make CNNs faster
• Parallelizing:

• Output layer creation

• Inner-kernel operations (without buffers for data re-use)

• Memory bandwidth utilization (between layers)

• Using special hardware (FPGAs)

• However, these attempts consistently ignore:
• Data reuse – too much data!

• Network topology – too specific!

• Hardware overreliance – too power hungry & costly!

C-Brain Introduction

• This paper tries to solve these problems by proposing a 2-pronged
software-based approach

1. Kernel partitioning scheme
• Inter- and intra- kernel parallelization, by splitting and transferring kernel data

intelligently

• Pros and cons to both styles, so a hybrid approach is desired

2. Adaptiveness scheme
• Generalizing inter- and intra- kernel strategy with –any – network topology or hardware

Tested on 4 main NNs: Alexnet, GoogleNet, VGG, and NIN

Inter-kernel Parallelization
• Goal: efficiently transfer data in one kernel k * k

across several input layers from memory to the Processing Elements (PEs)

• Result: load pairs into input buffer, compute k * k operations, sum them
up, load number into output buffer

Inter-kernel Parallelization (2) Direct Insert
• Problem: Parallelization is limited by dimensions of Din and Dout.

• Ideal case: input map size well matches size Tin

AlexNet example

C1 = 3 layers
1 layer assigned per PE

if Tin = 16, we have 16 PEs

16-3 = 13 PEs not used.
Waste of resources!

PROS: if layers can be inserted in PEs well, then super fast
CONS: if PEs really underestimate or overestimate # of layers,

either we use too few resources, or wait unnecessarily for time on PE.

Intra-kernel Parallelization

• Goal: efficiently transfer data from several kernels k1 k2 … kn

across one input layer from memory into the Pes
• In CNNs, layer size X * Y almost always > layer depth Din. So intra- is more

efficient than inter-

• Strategies:

1. Data unrolling

2. Sliding window

3. 2D PEs

Intra-kernel (2) Data Unrolling

• Involves unrolling (doing all
kernel operations on a given
layer) in 1-fell swoop on a PE.

• Example:

28 x 28 pixel layer

5 x 5 pixel kernel

stride of 1 pixel

• While great (and super
efficient) in theory, data
duplicates everywhere!

28 x 28

5 x 5

1

28 x 28
28 x 28

24 x 24 x 25
Input layer

Data unrolling to PE

Intra-kernel (3) Data Unrolling cont.

Example:
28 x 28 pixel layer
5 x 5 pixel kernel
stride of 1 pixel

Data increase by factor of T, given input layer X*Y, kernel k, stride s

= 4.22x raw input size

Data duplication
rose by factor of
9x ~ 18.9x
on AlexNet and
GoogleNet

We’ll tackle this later!

Intra-kernel (4) Sliding Window

• Only good when kernel size = stride (k=s)
• In most cases, k > s

• This special case avoids the data overlap & duplication we saw before

Intra-kernel (5) 2D-PEs
• The best solution for that pesky data overlap/duplication

• Flexible system where we can store consistently-accessed

input data OR weight in buffer, rather than external memory

k11 can be stored in buffer
while PE cycles through all kernels in I1.

I1 can be stored in buffer
while PE cycles through all weights k11~kn. OR

PROS: Lowered bus traffic considerably. More power efficient, too.
CONS: Layers vary in kernel size and parameters, so making sure everything is aligned in PEs is hard

Hybrid (inter- & intra-)
How can we use inter- and intra-
kernel parallelization intelligently?

…Kernel-Partitioning!

Given k x k >> Tin, and s < k x k

g = # of kernel partitions

ks = kernel partition stride

In this example, we’ve convolved a
large image of 228x228 to just 9
images of size 55 x 55, all on PEs

Furthering the mapping scheme for Kernel-Partitioning

• In particular, how to better use inter-kernel parallelization
• Recall inter- tends to ignore data reuse between kernel and layer

• Striding kernel tends to reuse data
• Instead of computing whole kernel before striding,

do partial sums 1/(k x k) then stride

• Partial sums all sent to output buffer, ready to be added after entire image is
complete. Extra store-and-sum operations better than many buffer loads.

Partial sums result in:
X * Y * Dout * k * k more stores

But…

(Din/Tin) * X * Y * Dout * k * k less loads

Kernel-Partitioning Summary

Self adaptiveness

• Truth about CNNs:
• Surface layers: small # input maps, big

kernels
• Deeper layers: large # input maps, small

kernels
** Due to more and more feature
abstractions
• Thus there is a need to adapt to the

changing structure as we venture deep

• Solution: Algorithm to best choose
which type of kernel parallelism is best
in a given point of the CNN

• 2 adaptive versions were tested:
• Adpa1- original (limited) inter-kernel

parallelism
• Adpa 2- improved inter-kernel mapping

Performance evaluation: Speedup
System specs:
• Verilog-based CNN accelerator
• Synopsys Design Compiler
Neural Net specs:
• Pre-trained CNNs with fixed accuracies
• Only forward propagation
• Data recorded were cycles of simulation

Outperforms Zhang-7-64’s FPGA (circa 2015) by
2.22x on Conv1 1.20x whole network

Outperforms Intel Xeon 2.2GHz by whopping 696.88x max

Performance evaluation: Energy Consumption

System specs:
• Verilog-based CNN accelerator
• Synopsys Design Compiler
Neural Net specs:
• Pre-trained CNNs with fixed accuracies
• Only forward propagation
• Data recorded were cycles of simulation

Best result: Adpa2 90.13% memory traffic reduction Thus, Adpa2 also achieved 47.1% energy reduction

Conclusion

• Achieved a generalized, flexible, CNN accelerator that outperforms
several current accelerators on popular CNNs

• Uses a variety of innovative data-parallel schemes

• Highly adaptive, which allows it to maintain speedups and save
energy, no matter what network, or what layers within a network

Thank you!

