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What we’ll cover

e What is a Convolutional Neural
Network (CNN)?

* Accelerators: problem statement and

paper introduction

* Data-parallelization scheme
* Kernel-level parallelism

» Adaptivity, regardless of NN topology &

hardware

* Putting the “petal to the metal” —
performance and energy evaluation
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Convolutional Neural Network (CNN)

* A Deep Learning, feed-forward, neural network known for its success
in image recognition (think Facebook’s tagging algorithm)

* General idea: make series of reductions of an image, analyze its
fundamental properties, and arrive at a result

e 3 types of layers:
* Convolutional layers
* Pooling layers
* Fully connected layers

* Our example CNN: is input an X or an O?



Convolutional layer

* Input: image of n x n pixels.
* 3D stack of layers called features (ex. RGB, lines)

e Output: smaller image of values.

* A map showing how well that feature is
represented throughout original image.

* In our example, values0<=c<=1

* What is a convolution?

* The act of sliding a kernel (window) k x k pixels
across an image, and looking for something.
Called stride.

e Usually a matrix of parameters the NN is trying to
learn




Convolution example

* Define feature
* Any property of X. Let’s say the top left slant.
* White pixel = 1, black pixel -1
* In kernel, compare each pixel in feature to those in image
* Perform dot product and divide by # of pixels in feature.
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Images for this example courtesy of
Brandon Rohrer

http://brohrer.github.io/how_convolut
ional_neural_networks_work.html
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Convolution example cont.

» After iterating over the entire image, below we get our feature map
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*Aside: On Instagram, this is
known as a Box Blur.




Pooling layer

* Input: convolutional layer

e Qutput: even smaller image containing max values of input layer
* Like convolution, pick kernel and stride

* Calculate maximum value, insert value p into new image
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Trick: Normalization (Linear Rectified Units (RelLU))

* Input: convolution layer or pooling layer
e OQutput: same image, with all cand p > 0.
* This keeps math consistent throughout the network
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Fully Connected layer

* All neurons in a layer L1 is connected to all neurons in layer L2.
 Basically, each neuron has a say in the final result (X or O?).
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Bringing it all together

These layer operations can be combined in any order (generally speaking).

Convolution Pooling Comnvolution Pooling Fully Fully Output Predictions
+ RelU +Relll Connected Connected

] |
- ~—me  dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)
O gl
_________

Back propagation works in same way as other NNs, with gradient descent.
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In CNNs there are potentially many steps, so indeed they’re computational beasts!



Accelerating CNNs

e How to make CNNs & faster

 Parallelizing:

Output layer creation

Inner-kernel operations (without buffers for data re-use)
Memory bandwidth utilization (between layers)

Using special hardware (FPGAS)

* However, these attempts consistently ignore:
* Data reuse —too much data!
* Network topology — too specific!
* Hardware overreliance — too power hungry & costly!



C-Brain Introduction

* This paper tries to solve these problems by proposing a 2-pronged
approach

1. Kernel partitioning scheme

* Inter- and intra- kernel parallelization, by splitting and transferring kernel data
intelligently

* Pros and cons to both styles, so a hybrid approach is desired
2. Adaptiveness scheme

* Generalizing inter- and intra- kernel strategy with —any — network topology or hardware
Tested on 4 main NNs: Alexnet, GoogleNet, VGG, and NIN



Inter-kernel Parallelization

* Goal: efficiently transfer data in one kernel k * k

across several input layers from memory to the Processing Elements (PEs)

* Result: load pairs into input buffer, compute k * k operations, sum them

up, load number into output buffer
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Inter-kernel Parallelization (2) Direct Insert

* Problem: Parallelization is limited by dimensions of Din and Dou.

* |deal case: input map size well matches size Ti

PROS: if layers can be inserted in PEs well, then super fast
CONS:  if PEs really underestimate or overestimate # of layers,
either we use too few resources, or wait unnecessarily for time on PE.

AlexNet example mmm - o |
Data : I
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Intra-kernel Parallelization

e Goal: efficiently transfer data from several kernels k: k- ... ka
across one input layer from memory into the Pes

* In CNNs, layer size X * Y almost always > layer depth Din. So intra-is more
efficient than inter-
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Intra-kernel (2) Data Unrolling

* Involves unrolling (doing all
kernel operations on a given
layer) in 1-fell swoop on a PE.

* Example:
28 x 28 pixel layer
5 x 5 pixel kernel
stride of 1 pixel

* While great (and super
efficient) in theory, data
duplicates everywhere!

Input layer

S8 H

1

28 x 28 »

Data unrol

24 x 24 x 25

ing to PE



Intra-kernel (3) Data Unrolling cont.

Data increase by factor of T, given input layer X*Y, kernel k, stride s
Example:

28 x 28 pixel layer X—k)/s+1)x((Y—k)/ s+1) xkexk
5 x 5 pixel kernel T=(( )/ s+ 1{(¥Y-k)/s+1 = 4.22X raw Input size

XXY
stride of 1 pixel

Data duplication 1 E+7
rose by factor of

1.E+6
Ox ~ 18.9x B
on AlexNet and L I I I I I I I I I

GoogleNet 3 c4 5 | cl 22 c3a3 cv.a 5 c3b_3
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We’ll tackle this later!



Intra-kernel (4) Sliding Window

* Only good when kernel size = stride (k=s)
* In most cases, k> s

* This special case avoids the data overlap & duplication we saw before
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External Memory

Intra-kernel (5) 2D-PEs

* The best solution for that pesky data overlap/duplication

* Flexible system where we can store consistently-accessed

input data OR weight in buffer, rather than external memory

PROS: Lowered bus traffic considerably. More power efficient, too.
CONS: Layers vary in kernel size and parameters, so making sure everything is aligned in PEs is hard
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Hybrid (inter- & intra-)

How can we use inter- and intra-
kernel parallelization intelligently?

..Kernel-Partitioning!

Given k x k >> Tin, and s <k x k
g=ceil(k/s), k,=s

g = # of kernel partitions

ks = kernel partition stride

In this example, we’ve convolved a
large image of 228x228 to just 9
images of size 55 x 55, all on PEs

Input:
k:kernel,s:stride k kernel after partition, g:the groups of partion, Ti,:the
number multiplier in a PE, size,,sizey:the size of output maps, G=gxg
1:For 1=1:G
2: load wyg to PE
FOR j; = 1%g:(1%gts1zey), 1. = 1:s1zey
FOR j,=(1/g+1):(1/gtsize,),ry=1:s1ze,

Mapping d(jx.jy) to PE

Calcuate

IF 1=1, THEN store the result to buffer as a pixel located at

(1,Iy) of output map ryg(in Fig. 5d)
8: ELSE reload pixel(ry,ry)of 11y from buffer, add the MAC
result to it, then store the sum as a pixel(r,,1ry) of rig

9:END END END END

A AR

4 8 12 b 1 2 4 LR 32 55

51ze x—227 size _y—227 12__-
Kbig=11, stride =4, k small=4 1 4

(a) raw data (c)weight (d) add



Furthering the mapping scheme for Kernel-Partitioning

* |[n particular, how to better use inter-kernel parallelization
* Recall inter- tends to ignore data reuse between kernel and layer

* Striding kernel tends to reuse data
* Instead of computing whole kernel before striding,
do partial sums 1/(k x k) then stride

 Partial sums all sent to output buffer, ready to be added after entire image is
complete. Extra store-and-sum operations better than many buffer loads.
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Kernel-Partitioning Summary

Table 1. Parallelization scheme comparison

scheme  Suited layer characteristic Advantages
Inter Large #1mput maps and small kernel Implement easily
Intra Kernel = stride Less memory traffic

partition  Big kernel or small #input maps Both of above




Self adaptiveness

e Truth about CNNs:

e Surface layers: small # input maps, big
kernels

* Deeper layers: large # input maps, small
kernels

** Due to more and more feature
abstractions

* Thus there is a need to adapt to the
changing structure as we venture deep

* Solution: Algorithm to best choose
which type of kernel parallelism is best
in a given point of the CNN

e 2 adaptive versions were tested:
e Adpal- original (limited) inter-kernel
parallelism
* Adpa 2- improved inter-kernel mapping

Given a NN layer:

1: IF k=s and k#1, THEN select intra-kernel parallelism
2: ELSE-IF Dy, <Ti,, THEN select kernel-partition

3: ELSE Select inter-kernel parallelism

4:IF (paralellism scheme of nextlayer 1s inter-kernel),
store in inter-order(Din, XY in Fig. 1)

5:ELSE Stroe in intra-order(X,Y,Din in Fig. 1)

Move to next NN layer



Performance evaluation: Speedup

System specs:

. Verilog-based CNN accelerator
. Synopsys Design Compiler
Neural Net specs:

. Pre-trained CNNs with fixed accuracies
. Only forward propagation
. Data recorded were cycles of simulation
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Performance comparison

Network Alexnet google net VGG NiN

Convl detail 3,11,4,96 3,7,2,64 3,3,1,64 3,11,4,96
#conv layers 5 57 16 12

Kernel types 11,53 7,5,3,1 3 11,5,3,1
name bandwidth size opertation cycle
PE 16-16,32-32 16bit mulitplication 1
InOut-buf 16,32 2M Byte add 1
Weight-buf  256,1024 1M Byte load 1
Bias buf 16,32 4K Byte store 1

Outperforms Intel Xeon 2.2GHz by whopping 696.88x max

Table 4 Performance comparied to CPU(ms)

CPU adap-16-16  speedup  adap-32-32  speedup
Anet 376.50 2.83 133.02x 091 414.58x
Gnet 1418.8 6.69 212.11x  2.04 696.88x
Vegg 10071.71  77.51 12994 x 2041 493 .44x
Nin 55343 6.72 82.35x 2.05 269.77x
Outperforms Zhang-7-64’s FPGA (circa 2015) by
2.22x on Conv1 1.20x whole network
21.6
30 20.4 81 s
w 20 ‘_—‘\‘\‘ e—tr—whole NN
g 10 o4 —8— convl
3 23
. —_ 3 io— x

zhang-7,64 adpa-16-24 adpa-16-28 adpa-16-32



access fimes/bit

Performance evaluation: Energy Consumption

Network Alexnet google net VGG NiN
System specs: Convl1 detail 3.11.4,96 3,7,2,64 3.3.1.64 3,11,4,96
. Verilog-based CNN accelerator #conv layers S 37 16 12
. Synopsys Design Compiler Kernel types 11,5,3 7531 3 11,531
Neural Net specs: .
*  Pre-trained CNNs with fixed accuracies flatme bandwidth size opertation cycle
. Only forward propagation PE 16-16,32-32 16bit mulitplication 1
. Data recorded were cycles of simulation InOut-buf 16,32 2M Byte add L
Weight-buf  256,1024 1M Byte load 1
Bias buf 16,32 4K Byte store 1

Best result: Adpa2 90.13% memory traffic reduction Thus, Adpa2 also achieved 47.1% energy reduction

1.E+11 Binter Mintra ®partition Wadap-1 ®adap-2
) Table 5 PEs Energy reduction (%)
1.LE+09 inter(base) intra partition adap-1 adap-2
III I I I III I I I I Alexnet 0.00 32.85 40.23 47.77 47.71
1.E+07 I 1 1
' " Anet Gnet vgg 1nin Anet Gnet vgg nin GOOg enet 0.00 9.66 22.77 31.48 31.40
16.16 ' 32.32 ' VGG 0.00 -44.72 -8.61 3.00 2.89

Buffer traffic comparison



Conclusion

* Achieved a generalized, flexible, CNN accelerator that outperforms
several current accelerators on popular CNNs

e Uses a variety of innovative data-parallel schemes

* Highly adaptive, which allows it to maintain speedups and save
energy, no matter what network, or what layers within a network



Thank you!



