C-Brain: A Deep Learning Accelerator

that Tames the Diversity of CNNs through
Adaptive Data-level Parallelization

Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng Liu, Xiaowei Li State Key Laboratory of Computer
Architecture Institute of Computing Technology, Chinese Academy of Sciences, Beijing, P.R. China

Presented by:

Ryan Barton
17M38035

What we’ll cover

e What is a Convolutional Neural
Network (CNN)?

* Accelerators: problem statement and

paper introduction

* Data-parallelization scheme
* Kernel-level parallelism

» Adaptivity, regardless of NN topology &

hardware

* Putting the “petal to the metal” —
performance and energy evaluation

"."~ I. \l % W ‘ 1
ol ®lalle) 1972
MU 1 - e »
4 “m;,@ i P

| ﬁ%‘iﬂf ‘Q"ﬂ"‘ |

(1
find
."|lf ' ‘b \
& IIIIII \ 1]

_ | Q
S

Convolutional Neural Network (CNN)

* A Deep Learning, feed-forward, neural network known for its success
in image recognition (think Facebook’s tagging algorithm)

* General idea: make series of reductions of an image, analyze its
fundamental properties, and arrive at a result

e 3 types of layers:
* Convolutional layers
* Pooling layers
* Fully connected layers

* Our example CNN: is input an X or an O?

Convolutional layer

* Input: image of n x n pixels.
* 3D stack of layers called features (ex. RGB, lines)

e Output: smaller image of values.

* A map showing how well that feature is
represented throughout original image.

* In our example, values0<=c<=1

* What is a convolution?

* The act of sliding a kernel (window) k x k pixels
across an image, and looking for something.
Called stride.

e Usually a matrix of parameters the NN is trying to
learn

Convolution example

* Define feature
* Any property of X. Let’s say the top left slant.
* White pixel = 1, black pixel -1
* In kernel, compare each pixel in feature to those in image
* Perform dot product and divide by # of pixels in feature.

5 ot Rt Ly ol N o U o [I 0 [o
9

b | b |
b | fd |
b | b | pud

Images for this example courtesy of
Brandon Rohrer

http://brohrer.github.io/how_convolut
ional_neural_networks_work.html

-1
1
-1
1
-1
1
1
-1
1

1 -
1
=
1
-1
1
1
H -
1E

1(-1[-1]-1]1
1 1
1 1A
12“21
1 1
1[-1[-1]-1]1
1 1

= |
b | Pud | P P
— P— o
| ' |
| | | | | ' |
= R

Convolution example cont.

» After iterating over the entire image, below we get our feature map

—
—

21111t
-1 -1]-
-1 -1

=
= -

Illl‘l‘lll‘

= [| | =

-1
-1
-1
-1
-1
2 |
-1
2 |
-1

' | ' A | ' '
—
' [| ' [
-
| | | '
b | e |
' | [

bd
b

*Aside: On Instagram, this is
known as a Box Blur.

Pooling layer

* Input: convolutional layer

e Qutput: even smaller image containing max values of input layer
* Like convolution, pick kernel and stride

* Calculate maximum value, insert value p into new image

-Ollm-o.ll 0.11 011 -0.11
011 -0.11 M 33 011 -011 E max poo“ng

E e

E-O,ll 0.11 '1-:-M-Oll 0.11
WSS 0.77

0.11 011 -0.11 0.11 p¥el -0.11

Trick: Normalization (Linear Rectified Units (RelLU))

* Input: convolution layer or pooling layer
e OQutput: same image, with all cand p > 0.
* This keeps math consistent throughout the network

0.77 Bt 0 0.55 0.77 0 0.55

1.00 ¢

0 1.00 0 0 0.55

0.55

0.55 gt 0 1.00 gt

1.00 g

0.55 0 0 0.77

Fully Connected layer

* All neurons in a layer L1 is connected to all neurons in layer L2.
 Basically, each neuron has a say in the final result (X or O?).

/b

E m

Bringing it all together

These layer operations can be combined in any order (generally speaking).

Convolution Pooling Comnvolution Pooling Fully Fully Output Predictions
+ RelU +Relll Connected Connected

] |
- ~—me dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)
O gl

Back propagation works in same way as other NNs, with gradient descent.

-0

In CNNs there are potentially many steps, so indeed they’re computational beasts!

Accelerating CNNs

e How to make CNNs & faster

 Parallelizing:

Output layer creation

Inner-kernel operations (without buffers for data re-use)
Memory bandwidth utilization (between layers)

Using special hardware (FPGAS)

* However, these attempts consistently ignore:
* Data reuse —too much data!
* Network topology — too specific!
* Hardware overreliance — too power hungry & costly!

C-Brain Introduction

* This paper tries to solve these problems by proposing a 2-pronged
approach

1. Kernel partitioning scheme

* Inter- and intra- kernel parallelization, by splitting and transferring kernel data
intelligently

* Pros and cons to both styles, so a hybrid approach is desired
2. Adaptiveness scheme

* Generalizing inter- and intra- kernel strategy with —any — network topology or hardware
Tested on 4 main NNs: Alexnet, GoogleNet, VGG, and NIN

Inter-kernel Parallelization

* Goal: efficiently transfer data in one kernel k * k

across several input layers from memory to the Processing Elements (PEs)

* Result: load pairs into input buffer, compute k * k operations, sum them

up, load number into output buffer

This is intra

R e
Thid is inter

“— D™

X.Y = the size of the mput maps,

x Convolution by k*k*D Pooling by o
4 . ° Full-connection
X\ kernel p*p kernel
+D]D+ :4\ j.ﬂ ~
I 4

Y B [!

RS |

k‘l 1 /il/ p')‘/jr'/ R

N e sdn i < N

T 5\ D

Dy, = # input feature maps, Doy = # output feature maps,
k = convolutional kernel size, p = pooling kernel

External Memory

data

_____________ . T T T T T
Control UmtE\CU) Instructions m Muhlpller:
| [: Adder |
Processing jelements(PEs) N}
$ DMA
- PE-1 =
LT N Store
T Output
f“[data
. m Stog
Tin PE-n =
Buffer
Active Function

Inter-kernel Parallelization (2) Direct Insert

* Problem: Parallelization is limited by dimensions of Din and Dou.

* |deal case: input map size well matches size Ti

PROS: if layers can be inserted in PEs well, then super fast
CONS: if PEs really underestimate or overestimate # of layers,
either we use too few resources, or wait unnecessarily for time on PE.

AlexNet example mmm - o |
Data : I
/ '\ : — — — - Control Control UmtE\CUj Instructions Muhlpller:
C1 =3 layers > DMA | Adder |
| ssing|elements(PEs) 3
[Input / DMA
| data > PE-1 S BN
| Store
: Buffer K/
-> DMA ;
16-3 = 13 PEs not used.

- . Sto
Waste of resources! Weight PE-n - Bln '3

Buffer
Active Function
Buffer

1 layer assigned per PE

if Tin =16, we have 16 PEs

Output
data

External Menory

Intra-kernel Parallelization

e Goal: efficiently transfer data from several kernels k: k- ... ka
across one input layer from memory into the Pes

* In CNNs, layer size X * Y almost always > layer depth Din. So intra-is more
efficient than inter-

° St rategleSZ A Convolution {J‘j k*k*D Péoling by

_ Full-connection
X kerngl p*p kernel N

1. Data unrolling C-) (o) I
Y ;/"‘\\ 7 ! || . _‘;_._.7

- : wl | #“?7 N5 A L m—]
2. Sliding window & 7o e "

A4 S~ \‘\ 4_D0m —

D™ -

This is inter
3 i 2 D P ES This is intra X.Y = the size of the input maps,

. Dy, = # input feature maps. Dyye = # output feature maps,
k = convolutional kernel size, p = pooling kernel

Intra-kernel (2) Data Unrolling

* Involves unrolling (doing all
kernel operations on a given
layer) in 1-fell swoop on a PE.

* Example:
28 x 28 pixel layer
5 x 5 pixel kernel
stride of 1 pixel

* While great (and super
efficient) in theory, data
duplicates everywhere!

Input layer

S8 H

1

28 x 28 »

Data unrol

24 x 24 x 25

ing to PE

Intra-kernel (3) Data Unrolling cont.

Data increase by factor of T, given input layer X*Y, kernel k, stride s
Example:

28 x 28 pixel layer X—k)/s+1)x((Y—k)/ s+1) xkexk
5 x 5 pixel kernel T=(()/ s+ 1{(¥Y-k)/s+1 = 4.22X raw Input size

XXY
stride of 1 pixel

Data duplication 1 E+7
rose by factor of

1.E+6
Ox ~ 18.9x B
on AlexNet and L I I I I I I I I I

GoogleNet 3 c4 5 | cl 22 c3a3 cv.a 5 c3b_3

alexnet googlenet

mrawdata munrolling

1t

We’ll tackle this later!

Intra-kernel (4) Sliding Window

* Only good when kernel size = stride (k=s)
* In most cases, k> s

* This special case avoids the data overlap & duplication we saw before

0 k
ILf::i. 7 x| [ﬂ]][ﬂﬂﬂﬂﬁk\ O

k;;;;ff /i fedtedd et - ;_._ 0, ° _‘
: Raw dat3 € =L=”£:
- K A7 A7 T
;“{’f L VA L1t ;ﬁ ;.ﬂ kni}jkm‘E Kar o kan ||
[1 I :_ o
Buffer ! klﬂi‘/:“ k!ﬂ — kEn :-::i-i::-:: k—4ﬂ | | |

(a) (b)

External Memory

Intra-kernel (5) 2D-PEs

* The best solution for that pesky data overlap/duplication

* Flexible system where we can store consistently-accessed

input data OR weight in buffer, rather than external memory

PROS: Lowered bus traffic considerably. More power efficient, too.
CONS: Layers vary in kernel size and parameters, so making sure everything is aligned in PEs is hard

R 2 |
Data . . 0 k
: — — —- Control Control UmtE\CU} Instructions E Muh‘,lpller: | I
> DMA | Ed adder | [F¥7 8
| Processing jelements(PEs) J SN LS
3 DMA .-"'-J.-' 1 '
| . S
I =
- PE-1 » :
: o ‘ Store : Raw dat:
' ¥ Output 0 K
Touc i VA V77
- Sto
Tin PE-n -"L'H g |
_ _ Buffer Buffer
Active Function (a)

ki1 can be stored in buffer

while PE cycles through all kernels in I1.

OR

0,

I,

l1 can be stored in buffer
while PE cycles through all weights kii1~kn.

I

(b)

S

Ky ko = ka3 kay |||

Hybrid (inter- & intra-)

How can we use inter- and intra-
kernel parallelization intelligently?

..Kernel-Partitioning!

Given k x k >> Tin, and s <k x k
g=ceil(k/s), k,=s

g = # of kernel partitions

ks = kernel partition stride

In this example, we’ve convolved a
large image of 228x228 to just 9
images of size 55 x 55, all on PEs

Input:
k:kernel,s:stride k kernel after partition, g:the groups of partion, Ti,:the
number multiplier in a PE, size,,sizey:the size of output maps, G=gxg
1:For 1=1:G
2: load wyg to PE
FOR j; = 1%g:(1%gts1zey), 1. = 1:s1zey
FOR j,=(1/g+1):(1/gtsize,),ry=1:s1ze,

Mapping d(jx.jy) to PE

Calcuate

IF 1=1, THEN store the result to buffer as a pixel located at

(1,Iy) of output map ryg(in Fig. 5d)
8: ELSE reload pixel(ry,ry)of 11y from buffer, add the MAC
result to it, then store the sum as a pixel(r,,1ry) of rig

9:END END END END

A AR

4 8 12 b 1 2 4 LR 32 55

51ze x—227 size _y—227 12__-
Kbig=11, stride =4, k small=4 1 4

(a) raw data (c)weight (d) add

Furthering the mapping scheme for Kernel-Partitioning

* |[n particular, how to better use inter-kernel parallelization
* Recall inter- tends to ignore data reuse between kernel and layer

* Striding kernel tends to reuse data
* Instead of computing whole kernel before striding,
do partial sums 1/(k x k) then stride

 Partial sums all sent to output buffer, ready to be added after entire image is
complete. Extra store-and-sum operations better than many buffer loads.

| — ™ T T T T |
A D A I
— = Y, . M4
N > wETT) ‘IT" Partial sums result in:
—,]]:'I_ I * r,
v | L X *Y * Dout * k * k more stores
F P D L ———— ﬁ
T I =
([wE T e Do But...
—F— W : weight :“ : = : %
D :data - = R
Multiply — -~ ----"" X (Din/Tin) * X * Y * Dout * k * k less loads
S - Adder | : I Y

Kernel-Partitioning Summary

Table 1. Parallelization scheme comparison

scheme Suited layer characteristic Advantages
Inter Large #1mput maps and small kernel Implement easily
Intra Kernel = stride Less memory traffic

partition Big kernel or small #input maps Both of above

Self adaptiveness

e Truth about CNNs:

e Surface layers: small # input maps, big
kernels

* Deeper layers: large # input maps, small
kernels

** Due to more and more feature
abstractions

* Thus there is a need to adapt to the
changing structure as we venture deep

* Solution: Algorithm to best choose
which type of kernel parallelism is best
in a given point of the CNN

e 2 adaptive versions were tested:
e Adpal- original (limited) inter-kernel
parallelism
* Adpa 2- improved inter-kernel mapping

Given a NN layer:

1: IF k=s and k#1, THEN select intra-kernel parallelism
2: ELSE-IF Dy, <Ti,, THEN select kernel-partition

3: ELSE Select inter-kernel parallelism

4:IF (paralellism scheme of nextlayer 1s inter-kernel),
store in inter-order(Din, XY in Fig. 1)

5:ELSE Stroe in intra-order(X,Y,Din in Fig. 1)

Move to next NN layer

Performance evaluation: Speedup

System specs:

. Verilog-based CNN accelerator
. Synopsys Design Compiler
Neural Net specs:

. Pre-trained CNNs with fixed accuracies
. Only forward propagation
. Data recorded were cycles of simulation
5.E+6 mideal wminter ®Wintra Wpartition
2
S 5.E+5
" 1000 ol Al II || || II
5.E+4 llllllll
Anet Gnet Vgg Nin Anet Gnet Vgg Nin
16,16 32,32
Comparison of execution time of layer Conv-1
minter Mintra W partition Madpa-1 ®adap-2
OS.EH’
3]
= e M0 K ol .. ol TROF o
Anet Gnet vgg nin Anet Gnet veg 1in
16,16 32,32

Performance comparison

Network Alexnet google net VGG NiN

Convl detail 3,11,4,96 3,7,2,64 3,3,1,64 3,11,4,96
#conv layers 5 57 16 12

Kernel types 11,53 7,5,3,1 3 11,5,3,1
name bandwidth size opertation cycle
PE 16-16,32-32 16bit mulitplication 1
InOut-buf 16,32 2M Byte add 1
Weight-buf 256,1024 1M Byte load 1
Bias buf 16,32 4K Byte store 1

Outperforms Intel Xeon 2.2GHz by whopping 696.88x max

Table 4 Performance comparied to CPU(ms)

CPU adap-16-16 speedup adap-32-32 speedup
Anet 376.50 2.83 133.02x 091 414.58x
Gnet 1418.8 6.69 212.11x 2.04 696.88x
Vegg 10071.71 77.51 12994 x 2041 493 .44x
Nin 55343 6.72 82.35x 2.05 269.77x
Outperforms Zhang-7-64’s FPGA (circa 2015) by
2.22x on Conv1 1.20x whole network
21.6
30 20.4 81 s
w 20 ‘_—‘\‘\‘ e—tr—whole NN
g 10 o4 —8— convl
3 23
. —_ 3 io— x

zhang-7,64 adpa-16-24 adpa-16-28 adpa-16-32

access fimes/bit

Performance evaluation: Energy Consumption

Network Alexnet google net VGG NiN
System specs: Convl1 detail 3.11.4,96 3,7,2,64 3.3.1.64 3,11,4,96
. Verilog-based CNN accelerator #conv layers S 37 16 12
. Synopsys Design Compiler Kernel types 11,5,3 7531 3 11,531
Neural Net specs: .
* Pre-trained CNNs with fixed accuracies flatme bandwidth size opertation cycle
. Only forward propagation PE 16-16,32-32 16bit mulitplication 1
. Data recorded were cycles of simulation InOut-buf 16,32 2M Byte add L
Weight-buf 256,1024 1M Byte load 1
Bias buf 16,32 4K Byte store 1

Best result: Adpa2 90.13% memory traffic reduction Thus, Adpa2 also achieved 47.1% energy reduction

1.E+11 Binter Mintra ®partition Wadap-1 ®adap-2
) Table 5 PEs Energy reduction (%)
1.LE+09 inter(base) intra partition adap-1 adap-2
III I I I III I I I I Alexnet 0.00 32.85 40.23 47.77 47.71
1.E+07 I 1 1
' " Anet Gnet vgg 1nin Anet Gnet vgg nin GOOg enet 0.00 9.66 22.77 31.48 31.40
16.16 ' 32.32 ' VGG 0.00 -44.72 -8.61 3.00 2.89

Buffer traffic comparison

Conclusion

* Achieved a generalized, flexible, CNN accelerator that outperforms
several current accelerators on popular CNNs

e Uses a variety of innovative data-parallel schemes

* Highly adaptive, which allows it to maintain speedups and save
energy, no matter what network, or what layers within a network

Thank you!

