

DASH: a Recipe for a Flash-based Data Intensive
Supercomputer

Jiahua He, Arun Jagatheesan, Sandeep Gupta, Jeffrey Bennett, and Allan Snavely

San Diego Supercomputer Center (SDSC)
University of California, San Diego

Emails: jiahua@gmail.com, {arun, sandeep, jab, allans}@sdsc.edu

Abstract—Data intensive computing can be defined as
computation involving large datasets and complicated I/O
patterns. Data intensive computing is challenging because there is
a five-orders-of-magnitude latency gap between main memory
DRAM and spinning hard disks; the result is that an inordinate
amount of time in data intensive computing is spent accessing
data on disk. To address this problem we designed and built a
prototype data intensive supercomputer named DASH that
exploits flash-based Solid State Drive (SSD) technology and also
virtually aggregated DRAM to fill the “latency gap”. DASH uses
commodity parts including Intel® X25-E flash drives and
distributed shared memory (DSM) software from ScaleMP®. The
system is highly competitive with several commercial offerings by
several metrics including achieved IOPS (input output operations
per second), IOPS per dollar of system acquisition cost, IOPS per
watt during operation, and IOPS per gigabyte (GB) of available
storage. We present here an overview of the design of DASH, an
analysis of its cost efficiency, then a detailed recipe for how we
designed and tuned it for high data-performance, lastly show that
running data-intensive scientific applications from graph theory,
biology, and astronomy, we achieved as much as two orders-of-
magnitude speedup compared to the same applications run on
traditional architectures.

I. INTRODUCTION

Certain domains of science, such as genomics [1] and
astronomy [2], are literally "drowning in a sea of data" in that
disks are filling up with raw data from sequencing machines
and space telescopes faster than that data can be
analyzed. Some data analysis problems can be solved by
parallel processing with many compute nodes thus spreading
out the data across many physically distributed memories.
Others, limited by low parallelism or challenging access
patterns depend on fast I/O or large fast shared memory for
good performance.

By talking to users, examining their applications, and
participating in community application studies [3] [4] [5] [6],
we identified data intensive HPC applications spanning a
broad range of science and engineering disciplines that could
benefit from fast I/O and large shared memory packed onto a
modest number of nodes; included are applications in the
growing areas of 1) data mining and 2) predictive science used
to analyze large model output data.

In a typical data mining application, one may start with a large
amount of raw data on disk [7]. In the initial phase of analysis,
these raw data are read into memory and indexed; the resulting
database is then written back to disk. In subsequent steps, the
indexed data are further analyzed based upon queries, and the
database will also need to be reorganized and re-indexed from
time to time. As a general rule, data miners are less concerned
about raw performance and place higher value on productivity,
as measured by ease of programming and time to solution [8].
Moreover, some data mining applications have complex data
structures that make parallelization difficult [9]. Taken
together, this means that a large shared memory and shared
memory programming will be more attractive and productive
than a message passing approach for the emerging community
of data miners. I/O speed is also important for accessing data
sets so large that they do not fit entirely into DRAM memory.

A typical predictive science application may start from
(perhaps modest) amounts of input data representing initial
conditions but then generate large intermediate results that
may be further analyzed in memory, or the intermediate data
may simply be written to disk for later data intensive post-
processing. The former approach benefits from large memory;
the latter needs fast I/O to disk. Predictive scientists also face
challenges in scaling their applications due to the increasing
parallelism required for peta-scale and beyond [9]; they
benefit from large memory per processor as this mitigates the
scaling difficulties, allowing them to solve their problems with
fewer processors.

As we forecast the characteristics of data intensive
applications in the future, we find that today’s supercomputers
are, for the most part, not particularly well-balanced for their
needs. Creating a balanced data intensive system requires
acknowledging and addressing an architectural shortcoming of
today’s HPC systems.

The deficiency is depicted graphically in Figure 1; while each
level of memory hierarchy in today’s typical HPC systems
increases in capacity by 3 orders of magnitude, the costs of
each capacity increase are latencies that increase and
bandwidths that decrease by at least an order of magnitude at
each level. In fact, today’s systems have a latency gap after
main memory. The time to access disks is about 10,000,000

© 2010 IEEE Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.
SC10 November 2010, New Orleans, Louisiana, USA 978-1-4244-7558-2/10/$26.00

processor cycles—five orders of magnitude greater than the
access time to local DRAM memory. It is almost as though
today’s machines are missing a couple of levels of memory
hierarchy that should read and write slower than local DRAM
but orders of magnitude faster than disk. Since some data sets
are becoming so large they may exceed the combined DRAM
of even large parallel supercomputers, a data intensive
computer should, if possible, have additional levels of
hierarchy sitting between DRAM and spinning disk. To fill
these missing levels, a data intensive architecture has at least
two choices: 1) aggregate remote memory and 2) faster disks.
We designed a system named DASH to make use of both.
With these two additional levels (depicted in the Figure 1 as
Remote Memory and Flash Drives), we managed to fill the
latency gap and to present a more graceful hierarchy to data
intensive applications.

Registers
(1 cycle)

Caches
(2-10 cycles)

Spinning Disks
(10,000,000 cycles)

Memory
(100 cycles)

Flash Drives
(100,000 cycles)

Remote Memory
(10,000 cycles)

Figure 1. The memory hierarchy. Each level shows the typical access latency
in processor cycles. Note the five-orders-of-magnitude gap between main
memory and spinning disks.

In section 2 we describe the high-level design of DASH and
compare its efficiency to other designs in the same space. In
section 3 we supply the detailed “recipe” we used to design
and tune the high performing flash-based I/O nodes of DASH-
the intent is that the description is detailed enough so that
anyone can understand our design choices and duplicate them.
Section 4 describes the performance of some scientific
applications - our experiments showed that DASH can achieve
up to two-orders-of-magnitude speedup over traditional
systems on these data intensive applications. Section 5
discusses flash generally and lessons-learned. Section 6 is
related work.

II. SYSTEM OVERVIEW

DASH is comprised of 4 “supernodes” connected by DDR
Infiniband. Each supernode is physically a cluster composed
of 16 compute nodes and 1 I/O node, virtualized as a single
shared memory machine (see Figure 2) by the vSMP system
software from ScaleMP® Inc. [10]. Each compute node
comprised of 2 Intel® quad-core 2.4GHz Xeon Nehalem

E5530 processors with 48GB of local DDR3 DRAM memory.
As a result, each supernode has 128 cores, 1.2TFlops of peak
capability, and 768GB of global (local + remote) shared
memory. The I/O node is loaded with 16 Intel® X25-E 64GB
flash drives, which amount to 1TB in total capacity. DASH
has 4 such supernodes in all, 64 compute nodes with 4.8
TFlops, 3 TB of DRAM and 4 TB of flash. DASH is a
prototype of the larger National Science Foundation (NSF)
machine code-named Gordon slated for delivery in 2011,
which will have more (32) and larger (32-way) supernodes
and will feature 245TFlops of total compute power, 64TB of
memory, and 256TB of flash drives.

8 cores

48 GB DRAM

8 cores

48 GB DRAM
...

8 cores

48 GB DRAM

16 compute nodes

CPU

RAID controller RAID controller

64GB
flash

64GB
flash

64GB
flash

64GB
flash

64GB
flash

64GB
flash

......

8 flash drives 8 flash drives

I/O node

Virtualized by vSMP

128 cores

768 GB DRAM

1TB flash drive

Figure 2. Physical and virtual structure of DASH supernodes. DASH has in
total 4 supernodes IB interconnected of the type shown in the figure.

A. Storage hierarchy

Flash drives provide the first level (closest to the spinning
disk) to fill the latency gap. NAND Flash is a lively research
and industry topic recently [11] [12] [13] [14] [15]. Unlike
traditional electromechanical hard disks, flash drives are based
on solid-state electronics and have quite a few advantages over
hard disks, such as high mechanical reliability, low power
consumption, high bandwidth, and low latency. Their latency
is about 2 orders of magnitude lower than that of spinning
disks. With these faster drives, we can bring user data much
closer to the CPU. Flash drives can be classified as MLC
(Multi-Level Cell) and SLC (Single-Level Cell) drives. We
chose SLC for longer lifetime, lower bit error rate, and lower
latency. In our prototype system DASH, we have 1 TB of flash
drives per supernode (4 TB in all). We will get more (8 TB per
supernode) in Gordon (256 TB in all).

Though flash drives are much faster than spinning disks, there
is still a big latency gap between DRAM memory and flash
drives (see Figure 1). DASH is equipped on each compute
node with 48GB of local DDR3 DRAM memory, that is, 6GB
per core. In contrast, most existing supercomputers have only
1 to 2GB per core. So DASH already has a better ratio of
DRAM to compute power – suitable for data intensive
computing. Furthermore, as the second layer of latency-gap
filler, we exploit vSMP software to aggregate distributed
memory into a single address space. That means every single
core in the supernode can access all 768GB of (local + remote)
memory possessed by (all 16 compute nodes of) one
supernode. With such a large shared memory, users can deal
with applications with large memory footprint but limited
parallelism, or just use all that memory as a RAM disk for fast
I/O. Users with less than ¾ of a TB of data can move their
data from spinning disks up to the shared memory in the
memory hierarchy, a full 3 orders of magnitude closer to the
CPU in terms of latency. Users with less than 1 TB of data can
still avoid spinning disk and operate 2 orders of magnitude
faster by loading their data on the flash of one supernode. And
if a user uses the whole machine he can gain access of up to 7
TB of DRAM + Flash (3TB + 4TB) for truly large data
analysis problems.

B. Cost efficiency

DASH is designed to provide cost-effective data-performance.
We have focused the architecture on providing cost-efficient
IOPS which should benefit all data-intensive applications. It
is interesting to compare the three lowest levels of data
hierarchy on DASH (the HDD, SSD, and virtually aggregated
DRAM layer) to each other and some commercial offerings.
Table 1 shows a cost efficiency comparison between DASH
data hierarchy levels and two popular commercial products
offered by 1) Fusion-I/O (ioDrive [16]) and 2) Sun
Microsystems/Oracle (F5100 configuration-1 [17]).

TABLE 1. COST EFFICIENCY COMPARISON BETWEEN DASH AND COMMERCIAL
PRODUCTS.

Generic
HDD
(SATA)

DASH-
I/O
node

DASH
Super
node

Fusion
–IO

Sun –
F5100

GB 2048 1024 768 160 480

MB/s/$ ~0.4 0.16 0.49 0.12 0.07

$/GB ~0.15 19.43 112.63 41.06 90.62

IOPS/$ 0.4-1.0 28 52 18 9

IOPS/GB 0.05-0.1 549 5853 725 828

The cost metrics in Table 1 are collated and averaged from
different sources including the technical specifications of each
product available from its vendor and reseller [16] [17] [18]
[19] [20] [21] [22]. The listed prices of these products were

observed on the first week of February, 2010. The second
column (Generic HDD) was chosen to represent that category
within a range of values (price, density, and speed varies by
vendor product). The cost of DASH I/O node includes the
flash drives, the controllers, and the Nehalem processor; the
cost of DASH supernode includes the cost of 16 dual socket
Nehalem nodes, their associated memory, and the IB
interconnect but not the I/O node (its performance was
measured with RAM drive). The comparison to commercial
products then gives an unfair cost disadvantage to DASH as
the vendor’s offerings are just storage subsystems and lack
any substantial compute power—nevertheless, it is useful as a
relative comparison. The third row (MB/s/$) can be seen as
saying that bandwidth per dollar is more favorable for
spinning disks and DRAM than for flash and DASH scores the
best by this metric at all levels. The forth row ($/GB) says
(common sense) that capacity per dollar is (in the order high to
low) HDD (spinning disk), SSD (flash), DRAM and that
DASH has the cheapest flash for the systems compared (the
vendor system’s don’t have any general-use DRAM just some
DRAM cache). The fifth row (IOPS/$) can be seen as saying
that IOPS per dollar is more favorable for DRAM and flash
than for spinning disk and DASH scores the best by this
metric again. As shown on row two (GB) DASH also has
more than twice as much flash capacity than either of the
vendors. Row six (IOPS/GB) shows that because of having
this more capacity the metric IOPS/GB looks better for the
vendors at the flash but that is in part because they have less
than ½ the flash (DASH still has the highest value in the row
six category not due to flash but due to its virtual DRAM
supernode layer). DASH then is a very high performing and
cost-effective system compared to commercial offerings in the
same space and since this paper describes how to build and
tune it from commodity parts, people in the market for such a
data-intensive system could consider simply building their
own DASH by this recipe.

C. Power efficiency

Power and cooling costs form a major part of large data
center’s operating cost. Power and cooling costs can even
exceed the server hardware acquisition costs over the lifetime
of a system. The power consumption of flash SSDs is low,
making them the right choice for DASH. Table 2 compares
power metrics between flash SSD, HDD, and DRAM.

TABLE 2. COMPARISON OF POWER METRICS BETWEEN SSD AND HDD.

 DRAM 7x2 GB
Dimms (14 GB)

Flash SSD
64GB

HDD
2TB

Active Power 70 W 2.4 W 11 W

Idle Power 35 W 0.1 W 7 W

IOPS per Watt 307 712 35

The numbers in Table 2 were averaged from technical

specifications of various products and independent hardware
evaluation tests [18] [23] [24]. The second and the third rows
are self-explanatory. The forth row compares the IOPS that
can be performed per watt. Since drives are partly active and
partly inactive during the course of an application’s execution
we can say that in general the time savings resulting from
flash come with an additional power savings over spinning
disk, IOPS/Watt may be as much as two-orders-of magnitude
better than spinning disk. The substantially higher IOPS of
DRAM (an order of magnitude higher than flash) comes at a
higher power cost. So if one wishes to optimize IOPS per Watt
(or IOPS for operating cost) then a system like DASH may be
considered.

Overall, it can be seen that our experimental system DASH is
a powerful, high capacity and fast system design even by
commercial standards, and offers cost-efficient, power-
efficient IOPS for data intensive computing.

III. I/O SYSTEM DESIGN AND TUNING

The DASH supernode (shared memory) results simply from
deploying vSMP software on what is otherwise a standard IB
connected system. Here we mainly focus on the design and
tuning process for the I/O node describing how we chose the
controller and tuned the RAID system.

To evaluate the performance of storage systems, bandwidth
and IOPS are both important metrics. Bandwidth measures
sequential performance while IOPS shows the throughput of
random accesses. This section presents the whole tuning
process of the DASH storage system. Since our target
applications are characterized as intensive random accesses,
we biased towards achieving high IOPS more than bandwidth
in the design. To pursue and measure the peak I/O
performance of the system, we adopted RAID 0 for this paper.

IOR [25] and XDD [26] are two of the most accurate, reliable,
and well-known I/O benchmarks in our experience. We used
both to verify each other and their results were always similar
in our tests. For each software and hardware configuration, we
ran four tests: sequential write, sequential read, random write
and random read respectively.

Figure 3 summarizes a series performance results obtained
relative to our starting baseline obtained by default settings,
about 46K IOPS with 4KB blocks. After basic tunings, we
obtained 88K IOPS (1.9x of the baseline) random read rate
with 4KB blocks out of one I/O node; this is only about 15%
of the theoretical upper bound of 560K IOPS (16x35K= 560K
IOPS since the manufacturer spec is 35K IOPS random read
per Intel® X25-E SSD and each I/O node has 16 drives). We
figured out that a bottleneck came from the low-frequency
processor embedded in our first RAID controllers
(RS2BL080) and switched to simpler HBAs (9211-4i) and
software RAID (using the fast Nehalem processor on each I/O
node as the I/O controller rather than the embedded
processor). This helped the system to scale linearly up to 8
drives, with obtained performance of about 255K IOPS (5.6x
of the baseline). To keep the linear scaling up to 16 drives

though we had to remove even the software RAID and handle
the separated drives directly, which gave us (a little more than)
theoretical upper-bound performance of 562K IOPS (12.4x of
the baseline). With help of the vSMP distributed shared
memory system, we were able to exploit the shared memory of
DASH as a single RAM drive and boost the performance
again up to 4.5 million random read IOPS, (98.8x of the
baseline using DRAM in place of flash). Details of how these
results were obtained are described in the following sections.

Since a single hard disk (HDD) can only do about 200 IOPS
per disk (random read 4KB blocks) depending on
manufacturer, it can be seen that DASH can provide two
orders of magnitude higher IOPS from its flash-equipped I/O
nodes and yet another two orders of magnitude from
aggregated DRAM as RAM disk. These options effectively fill
the latency gap.

Figure 3. Random read performance improvements with important tunings.

A. Single drive tuning

Before tuning the whole I/O system, we started with tuning a
single flash drive first. Table 3 shows some important tuning
parameters for flash drives. We also need to tune the software
components, such as I/O benchmarks and the operating
system, for single-drive tests, which will be discussed later.

TABLE 3. IMPORTANT TUNING PARAMETERS FOR FLASH DRIVES.

Parameters Descriptions DASH
setting

Write
Caching

Write through or write back in the
drive ram-cache

Write
back

Read Ahead Read the data into the drive ram-
cache before they are requested
according to the access pattern.

On

AHCI Advanced Host Controller Interface,
API for SATA host bus adapters.

On

1 1.9 5.6 12.4

98.8

0
20
40
60
80

100
120

N
or

m
al

ize
d

ra
nd

om
 re

ad
 IO

PS

Important tunings

Write caching and read ahead on other system levels might not
be helpful for an intensive random workload. However, the
situation is a little bit different on the flash drive level. Since
the internal structure of a flash drive is highly parallel and
logically continuous, pages are usually striped over the flash
memory array, prefetching multiple pages and background
write-back can be very efficient, while disabling these options,
especially write caching, could cause a dramatic performance
drop [11].

TABLE 4. I/O TEST RESULTS OF A SINGLE FLASH DRIVE.

Sequential
Write
(MB/s)

Sequential
Read
(MB/s)

Random
Write
(4KB
IOPS)

Random
Read
(4KB
IOPS)

Measured 203 261 10724 39756

Spec 170 250 3300 35000

Advanced Host Controller Interface (AHCI) is Intel®'s API
specification for SATA host-controllers. One of its advantages
is to enable Native Command Queuing (NCQ). In a traditional
spinning disk, NCQ is designed to hold (and also schedule) the
I/O requests not served by the disk fast enough. In flash
drives, the purpose is the opposite. It is used to stock I/O
requests in case the CPU is busy and cannot summit new
requests in time [27]. For backward compatibility, AHCI is
disabled by default in our system. After enabling the option,
we obtained more than 10x improvements on random read

IOPS. Table 4 shows the I/O test results with a single flash
drive. These performance numbers actually exceed the
published specs of the Intel® X25-E which are also listed in
the table.

B. Basic RAID tuning

The tuning parameter space of the DASH storage system is
large. To achieve maximum performance, we have to
coordinate all the software and hardware components of the
system: I/O benchmarks, the operating system, and hardware
RAID. Table 5 summarizes the important tuning parameters of
these components.

Usually the operating system will try to cache the data from/to
disks for future uses. Our RAID controller also has its own
RAM cache for similar purposes. Unfortunately, cache doesn't
always help. For example it may not help large-scale random
I/Os (or even very large sequential I/Os) with low temporal
locality. Even worse, it will introduce extra overhead on the
data path. We enabled direct I/O to bypass the OS buffer
cache and turned off the RAID cache.

There are quite a few APIs (libraries) one can use for I/O
accesses. IOR supports four: POSIX, MPIIO, HDF5 and
netCDF while XDD only supports POSIX. Since POSIX is the
most common and typical in application code, we chose it for
our tests. MPIIO is also widely used in HPC community.
Unfortunately, it doesn't support direct I/O.

Chunk size is decided according to the test type and the stripe
size. For sequential tests, we are trying to measure the
maximum bandwidth across all the underlying flash drives and
the chunk size should be larger than the stripe size times the

TABLE 5. IMPORTANT TUNING PARAMETERS FOR THE DASH I/O SYSTEM.

Components Parameters Descriptions Final DASH setting

I/O
Benchmarks

Cache Policy Cached or direct I/O, use the OS buffer cache or not. Direct I/O

API I/O APIs to access drives such as POSIX, MPIIO, HDF5 and
netCDF.

POSIX

Chunk Size The data size of each request. I/O benchmarks usually generate
fixed-sized requests.

4MB for sequential tests,
4KB for random tests

Queue Depth The number of outstanding I/O requests. 1 for sequential tests and
128 for random tests

Operating
System

I/O Scheduler Schedule and optimize I/O accesses. There are 4 algorithms in the
2.6 Linux kernel: CFQ (default), Deadline, Anticipatory, and No-op.

No-op

Read Ahead Read the data into cache before they are requested according to the
previous access pattern.

Off

Hardware
RAID

Cache Policy Cached or direct I/O, use the RAID controller cache or not. Direct I/O

Write Policy Write through or write back. Write through

Read Ahead RAID-level read ahead. Off

Stripe Size The block size in which RAID spread data out to drives. 64KB

number of flash drives (16 in our case). We chose 4MB, which
is big enough for our stripe sizes. For random tests, we are
trying to evaluate how well the system deals with small
chunks of random access. Since the access unit (page size) of
our flash drives is 4KB, we believe that is a reasonable
(minimal) setting.

Queue depth also depends on the test type and the number of
underlying flash drives. For sequential tests, since each
request already covers all the underlying flash drives, we
chose a setting of 1 to guarantee a strict sequential access
pattern. As for random tests, to maximize the throughput, we
chose 128, which is large enough comparing with the number
of flash drives (16 in our case), and hopefully can make a full
use of each flash drive.

There are 3 goals for I/O scheduler: merging adjacent requests
together, re-ordering the requests to minimize seek cost
(elevator scheduling), and controlling the priorities of
requests. Since there is no drive head movement in flash
drives, elevator scheduling is not necessary. Also, we are not
running any time critical applications and don’t need
prioritization either. In our experiments, the simplest No-op
scheduler, which only proceeds request merging, always gave
us the best result.

We can set read ahead on 3 levels: operating system, RAID
controller, and flash drive. We discussed above the settings
per SSD on the drive level, but things are different on the
other two levels. Read ahead is good for sequential
performance, but it doesn’t help random accesses. Sometimes
it may even waste bandwidth with extra reads and hurt random
performance. Since direct I/O was adopted and read ahead
became irrelevant, we just turned it off.

Again, we already discussed write-back and write-through on
the drive level, but it is different on the RAID level. The
common wisdom is that write-back is always better. However,
it is only true for light workloads. In our case, with intensive
random accesses, the write-back cache is not helpful. Also, the
extra copy on the data path will hurt the performance. As a
result, we adopted write-through on the RAID level.

To decide the stripe size is a difficult optimization. Usually,
small stripe size will hurt sequential bandwidth because the
start-up overhead dominates. For flash drives, it is even worse
by causing serious fragmentation, which was proved to cause
dramatic performance downgrading [11]. However, larger is
not always better. After some threshold, large stripe size will
limit the parallelism of I/O accesses and then the RAID
system cannot exploit the bandwidth of all the underlying
flash drives. We tried different sizes from 8 KB to 1024 KB
and found that 64 KB and 128 KB are the best configurations
for our system and workload.

With the settings in Table 5, we obtained the performance
numbers for the stripe sizes of 64KB and 128KB shown in
Table 6. As we measured in Table 4, the random read
performance of a single flash drive is 39,756 4KB IOPS. That
means the upper bound for the whole IO node should be more

than 600K IOPS, which is much higher than we obtained at
this stage. In the next sub-section, we will continue our
adventure to figure out the problem.

TABLE 6. I/O TEST RESULTS WITH 2 DIFFERENT STRIPE SIZES.

Stripe
Size
(KB)

Sequential
Write
(MB/s)

Sequential
Read
(MB/s)

Random
Write
(4KB
IOPS)

Random
Read
(4KB
IOPS)

64 1179 2199 3749 87563

128 1275 2056 3121 79639

C. Advanced tuning

As shown above, we achieved only about 15% of the
maximum performance after all those tunings. What’s the
problem? After some investigations, we suspected that the
bottleneck might be the RAID controller. To implement the
RAID function and other advanced features, also to reduce the
CPU loads, the controller is embedded with a low-frequency
processor (800MHz in our case). This small processor is
enough for spinning disk, but not fast enough to work with
flash drives. Are there any faster RAID controllers? To our
best knowledge, it is the state-of-the-art RAID controller
(Intel® RS2BL080) we can get that is compatible with our
drives. Another option is to use simple Host Bus Adapters
(HBA) without embedded processors and share the power
from the host CPU. Our motherboard happens to have an on-
board HBA similar to our RAID controllers but without
embedded processor or hardware RAID function. We
connected only 6 flash drives to compose a software RAID
and achieved 153,578 4KB IOPS, almost 2x of the hardware
RAID performance. This confirmed our speculation.

The on-board HBA has a corresponding external version,
which is rated higher than 150K 4KB IOPS by the vendor.
Each HBA can connect 4 flash drives. Our motherboard can
hold 4 HBAs. By this means, with the same number (16) of
flash drives, we can expect the random read performance of
about 600K 4KB IOPS, which is very close to the upper
bound.

With similar settings as the previous sub-section except
replacing the hardware RAID with the HBAs plus the Linux
software RAID, we repeated the tests. The random read
performance scaled almost linear as we expected at the
beginning. With 8 drives, we obtained about 250K IOPS,
almost 3x as before. However, the scaling stopped after that.
In Figure 4, we can see that there is a plateau from 8 to 16. Is
it the RAID problem again? To answer the question, we
removed the software RAID and performed our tests directly
on separate drives. This time we obtained almost linear scaling
from 1 up to 16 drives. The highest performance was 562,364
IOPS. We also removed the file system (XFS) and tested
directly on the raw block devices. The results were almost the

same. It seems we reached the upper bound.

Figure 4. Random read performance with and without RAID. The
configuration with RAID only scales up to 8 drives while the one without
RAID can scale linearly up to 16 drives. We also ran tests with raw block
devices.

In Table 7, we list all the I/O test results on 16 drives with and
without RAID. You can see that the configuration without
RAID is not only good for the random read test, but all the
other tests. However, the performance with software RAID in
fact is not too bad. By comparing with the results in Table 6,
you will find that it still beats the original hardware RAID on
almost all the tests. For the random tests, it achieved up to 5x
the original performance. Though we are still investigating the
RAID problem [28], it is safe to conclude that the software
RAID configuration delivers a good balance between high
performance and convenience. For the users who still need
higher performance and don’t care about the hassle to deal
with 16 separate drives, the configuration without RAID is
still an option and in fact there are some programming
libraries around like STXXL [29] that can help to ease the job
of managing the separate SSDs.

TABLE 7. I/O TEST RESULTS WITH AND WITHOUT RAID.

Sequential
Write
(MB/s)

Sequential
Read
(MB/s)

Random
Write
(4KB
IOPS)

Random
Read
(4KB
IOPS)

With
RAID 1395 2119 19784 254808

Without
RAID 2958 3225 143649 562365

D. RAM drive

With the flash drives, we obtained optimal results at the limit

of the existing hardware technologies. However, with the
special design of DASH, it is still possible for us to achieve
even higher performance. As mentioned above, DASH adopts
vSMP distributed shared memory software system to
aggregate separate physical memories into a single virtual
memory. Besides the part of the memory used by the vSMP
software and reserved for cache, a user has access to about
650GB visible memories from any processor in each
supernode. Such a big memory space can be used as a RAM
drive by mounting with the RAMFS file system. Since DRAM
accessed over IB is even faster than flash drives (by up to 3
orders of magnitude!), RAM drives are expected to achieve
much higher performance and the results in Table 8 show this.

TABLE 8. I/O TEST RESULTS OF THE RAM DRIVE.

Sequential
Write
(MB/s)

Sequential
Read
(MB/s)

Random
Write
(4KB IOPS)

Random
Read
(4KB IOPS)

11,264 42,139 2,719,635 4,495,592

IV. PERFORMANCE OF REAL-WORLD DATA-INTENSIVE

APPLICATIONS

The behavior of I/O benchmarks as described above may be
interesting and useful for comparison by simple metrics but
the question remains “what is the implication for real
applications”?

To partially answer this question we chose one application
core from predictive science and two full applications from
data mining. We present the performance results of 1) external
memory BFS, a common component in several predictive
science graph-based applications 2) Palomar Transient Factory
a database application used to discover time-variable
phenomena in astronomy data. 3) Biological pathway analysis
in an integrated data-mining of heterogeneous biological data
framework. All three applications generate intensive random
data accesses.

A. External memory BFS

Data in several domains such as chemistry, biology,
neuroscience, linguistics, and social science, are implicitly
graph structured or graphs may be induced upon them. For
example, semantic tagged information is encoded as a graph
where nodes represent concepts and labeled edges are
relationships. Search engines model the World Wide Web as a
graph, with web-pages as nodes and hyperlinks as edges.
Researchers in linguistics use graphs to represent semantics
expressed in sentences. Networks of roads, pipelines, neurons
etc. can all be viewed as graphs. Moreover, due to
technological advancements, scientists are increasingly
harvesting massive graphs in their respective fields. For
example, human interaction networks as large as 400 million
edges in size are already extant [30]. Information repository

0
100000
200000
300000
400000
500000
600000

0 5 10 15 20

4K
B

IO
PS

Number of drives

RAW Without RAID With RAID

such as NIH’s Neuroscience Information Framework (NIF)
[31] is projected to have more than a billion edges. Web-
graphs which are studied by social scientist, mathematicians,
and linguistics can be on the order of tens of billions nodes. As
semantic web gains prominence and natural language
processing improves, we shall see an exponential growth in
graph structured data sets.

A basic type of computation over graphs that appears
frequently in all such domains is that of graph traversal.
Although the nature and characteristics of a graph exploration
varies across domains and even across problems within a
domain, they are commonly modeled after breadth-first-search
(BFS). Further, other domain specific problems such as
finding complexes in protein-interaction network, clustering of
web-graphs, computing distance-distribution in graph models
etc. utilize BFS operation. Since the total size of the graph and
the content associated with every nodes and edges can run up
to the order of several tera-bytes, scalable and efficient BFS
computation when graphs reside in external memory would
help advanced research across all these domains. This problem
in literature has been referred to as external memory BFS or
EM-BFS.

We used the external memory package 0.39 implemented by
Deepak Ajwani et al. [32] in our experiments. Table 9 shows
the results of one of the algorithms, MR-BFS. We ran a range
of tests on a dataset size of 200 GB and compared the
performance of three different storage media (RAM drive,
flash drives, and spinning disks) with similar and comparable
configurations. The results showed that RAM drive is on
average about 2.2x faster than flash drives, and flash drives
are about 2.4x faster than spinning disks for an overall
speedup of 5.2x. The speedup is substantial but not as good as
expected, which could be explained by the mix of bandwidth
and latency bound (sparse and dense) accesses in traversing
the test graph. As previous works [14] observed, write-
intensive nature of an application might also be the cause.

TABLE 9. AVERAGE MR-BFS RESULTS ON THE DASH SUPERNODE FROM
DIFFERENT STORAGE MEDIA

 RAM
Drive

Flash
Drives

Spinning
Disks

Total I/O Time (sec) 854 (5.2x) 1862 (2.4x) 4444

Total Run Time (sec) 1917 (3.0x) 3130 (1.8x) 5752

B. Palomar Transient Factory

Astrophysics is transforming from a data-starved to a data-
swamped discipline, fundamentally changing the nature of
scientific inquiry and discovery. New technologies are
enabling the detection, transmission, and storage of data of
hitherto unimaginable quantity and quality across the
electromagnetic, gravity and particle spectra. These data
volumes are rapidly overtaking the cyber infrastructure

resources required to make sense of the data within the current
frameworks for analysis and study. Time-variable
(“transient’’) phenomena, which in many cases are driving
new observational efforts, add additional complexity and
urgency to knowledge extraction: to maximize science returns,
additional follow-up resources must be selectively brought to
bear after transients are discovered while the events are still
ongoing.

Current transient surveys such as the Palomar Transient
Factory (PTF) [33] and the La Silla Supernova Search [34]
(100GB/night each) are paving the way for future surveys such
as the Large Synoptic Survey Telescope (LSST) [35]
(15TB/night producing petabytes of data each year). The future
sky surveys assess their effectiveness and scalability on current
surveys such as PTF, in order to maximize the scientific
potential of the next generation of astrophysics experiments.
Two of the major bottlenecks currently confronting PTF are I/O
issues related to image processing (convolution of a reference
image with a new one followed by image subtraction) and
performing large, random queries across multiple databases in
order to best classify a newly discovered transient. PTF
typically identifies on the order of 100 new transients every
minute it is on-sky (along with 1000 spurious detections related
to image artifacts, marginal subtractions, etc.). These objects
must be vetted and preliminarily classified in order to assign
the appropriate follow-up resources to them in less than 24
hours, if not in real-time. This often requires performing more
than 100 queries every minute through 8 different and very
large (~100GB - 1 TB) databases. The response times of these
queries are crucial for PTF. The forward query and the
backward query are two most significant queries used
repeatedly by PTF. The average times to run these queries on
DASH and the existing production infrastructure used by PTF
(with same cache-size, indexes) are provided in Table 10. The
difference in query response times can be attributed to the
random IOPS provided by SSDs which allow faster index
scans of the database rather than sequential table scans. The
two-order-of-magnitude improvement in response times makes
it possible for PTF to keep up with real-time demands.

TABLE 10. COMPARISON OF PTF QUERY RESPONSE TIMES ON DASH AND PTF
PRODUCTION DATABASE WITH SPINNING DISKS.

Query type Forward Query Backward Query

DASH-IO (SDSC) 11ms (124x) 100s (78x)

Existing DB 1361ms 7785s

C. Biological pathways analysis

Systems level investigation of genomic information requires
the development of truly integrated databases dealing with
heterogeneous data, which can be queried for simple
properties of genes as well as for complex biological-network

level properties. BiologicalNetworks [36] is a Systems
Biology software platform for analysis and visualization of
biological pathways, gene regulation and protein interaction
networks. This web-based software platform is equipped with
filtering and visualization tools for high quality scientific
presentation of pathway analysis results.

The BiologicalNetworks platform includes a general-purpose
scalable warehouse of biological information, which integrates
over 20 curated and publicly contributed data sources
including experimental data and PubMed data for eight
representative genomes such as S.cerevisiae and
D.melanogaster. BiologicalNetworks identifies relationships
among genes, proteins, small molecules and other cellular
objects. The software platform performs a large number of
long-running and short queries to the database on postgres.
These queries are a bottleneck for researchers on this domain
when they have to work on the pathways using the visual
interface. In our performance tests, we ran some popular
queries of BiologicalNetworks on three different media on
SDSC DASH including hard disks, SSDs and memory (using
vSMP).

TABLE 11: QUERY RESPONSE TIMES OF POPULAR QUERIES IN BIOLOGICAL
NETWORKS ON DIFFERENT STORAGE MEDIA (HARD DISK, SSD AND MEMORY)
AND THEIR SPEED-UP IN COMPARISON TO HARD DISK.

Query Q2C Q3D Q5F Q6G Q7H

RAMFS
(vSMP)

11338ms
(1.42x)

62850ms
(3.60x)

3ms
(186x)

17957ms
(1.54x)

211ms
(5.64x)

SSD 11120ms
(1.45x)

176873ms
(1.28x)

11ms
(50.73x)

24879ms
(1.11x)

495ms
(2.41s)

HDD 16090ms 226023ms 558ms 27661ms 1191ms

Again, as observed in the PTF queries (Table 10), the queries
of the Biological Networks also show improvement in their
response times. But, speedup is not linear or constant across
all the queries as each query uses a different query plan
producing different quantity of results (or the number of rows
scanned and selected from the relational database). Heavily
random access patterns speedup by as much as two orders-of-
magnitude while long sequential accesses run just a bit faster.

In summary some real applications speed up between 5x and
nearly 200x on DASH depending on the I/O access patterns
and how much the application can benefit from the random
IOPS offered by DASH.

V. MORE DISCUSSIONS ON FLASH DRIVES

A. Performance downgrading

Performance downgrading is one of the concerns about
replacing spinning disks with flash drives. There are mainly
two causes for the problem. First, fragmentation has proved to
be very harmful to the performance [11]. Fortunately, with our

high-end SLC flash drives, most of the performance
downgrading is still acceptable, especially the random read
performance. Furthermore, some test conditions in the above
paper are extreme and not common in normal uses.

Also, filling up a new drive will also hurt the performance. A
new drive out of factory might be marked as free. However,
since there is no abstraction of free blocks in flash drives [12],
the drive will be full permanently after each block is written at
least once. This will keep the full cleaning pressure and
downgrade the performance. To solve the problem, the
operating system and the drive firmware have to support the
TRIM instruction [37] to inform the drive when the content of
a block is deleted. Linux has already supported this since the
version 2.6.28. Intel® already released a firmware update with
TRIM for its similar product X25-M [38] and the result is
promising [39]. Hopefully, the X25-E drives will be supported
in a near future.

B. Reliability and lifetime

By system reliability, we are concerned about both functional
failures and bit errors. Mean Time Between Failures (MTBF)
is a widely-used metric for functional failure rate. Without
movable mechanical parts, flash drives are more robust and
easier to protect. The X25-E drives used in DASH have an
MTBF of 2,000,000 hours [18]. As for bit errors, the raw Bit
Error Rate (BER) of SLC NAND flash is about 10-9~10-11,
commercial products usually apply Error Correction Code
(ECC) with different strengths to lower the rate. The final
error rate after ECC correction is called Uncorrectable Bit
Error Rate (UBER) [13]. The UBER of X25-E is 10-15 [18].
That means you will get one bit flip in about 6 days if you
keep reading with the sustained speed of 250 MB/s. For
practical workloads, the time will be much longer. Moreover,
some products such as those from Fusion-IO or Pliant claim
UBERs several orders of magnitude lower.

The lifetime of a flash drive is related to its reliability,
especially BER. BER increases while a block ages because of
writes, i.e. Program/Erase (P/E) cycles. After some point, the
flash controller will disable the block. The typical expected
lifetime for SLC is 100,000 P/E cycles [15]. Manufacturers
usually apply wear-leveling to distribute writes evenly across
all the blocks. Our calculations indicate that under extreme use
(constant write random access patterns at peak rate) the drives
will not exhaust their write endurance for over 1 year. Real
usage patterns will result in longer lives. To protect the
system, people can adopt traditional methods such as RAID.
Furthermore, flash lifetime can be predicted quite accurately
with enhanced SMART (Self Monitoring, Analysis and
Reporting Technology) including P/E cycle information.

C. Flash-oriented hardware and software

Flash-based SSD is a promising technology to replace
traditional spinning disk. Its low latency and high throughput
are going to improve the performance of storage systems
dramatically. For example, in database systems, capacity is
often traded for throughput. With flash drives’ high

throughput, it is possible to replace hundreds of small spinning
disks with just a few large flash drives [12]. To release the full
potential of flash drives, the related hardware and software,
such as host peripheral chipset, interconnect, RAID, and
operating system, have to be modified or even re-designed.
Especially, we found that RAID (hardware or software) is a
limiting factor during our tuning process, and we are not the
first one to observe the phenomenon [12]. As referred above,
operating systems and drive firmware need to support TRIM
instruction to avoid dramatic performance downgrading. With
flash drives becoming widely accepted, we believe these
related technologies will be stimulated to improve soon.

VI. RELATED WORK

A. ccNUMA machines

ccNUMA means Cache Coherent Non-Uniform Memory
Access. It is a hybrid architecture combining the merits of
SMP (Symmetric Multi-Processing) and cluster. With SMP,
people can program in the same way as on their PCs. It is the
most desired architecture for parallel programmers. However,
such architecture is not scalable and usually limited by 32
processors/cores. To scale up, people usually group a bunch of
SMP nodes together into a larger cluster. By this way,
programmers might need to apply shared-memory
programming model intra-node and message-passing model
inter-nodes for optimal performance. ccNUMA machines try
to turn the distributed memory on these SMP nodes into a
single shared memory space by special hardware. There are a
few commercial products around like the SGI Altix 4000
series, HP Superdome, and Bull NovaScale 5000 series [40].
With these machines, people can program across all the nodes
in shared-memory model. However, these products usually
adopt proprietary technology based on customized hardware,
and need a long development period, which makes their ratios
of performance to price pretty low. As we will discuss in the
next sub-section, vSMP is a software implementation of
ccNUMA and is much more cost efficient.

B. Distributed Shared Memory (DSM)

Since ccNUMA is an expensive solution, people try to achieve
the same function with a software implementation called
Distributed Shared Memory (DSM). The idea was first
proposed and implemented in IVY [41]. During the late 1980s
and early 1990s, there were a lot of projects, such as
TreadMarks [42], Shrimp [43], and Linda [44], inspired by the
idea and trying to improve in different ways. Though the idea
is very attractive, these systems didn’t get widely adopted.
However, there appeared several commercial and academic
DSM systems again recently [10] [45] [46]. We believe it is
the right time to revisit the problem for several reasons. First,
most of those old systems were developed in late 1980s and
early 1990s and mainly worked with Ethernet. The high
network latency limited their performance. With the low-
latency inter-connect like Infiniband [47] today, the limitation
is largely eliminated. Second, the workloads today are
changing. Data intensive applications are becoming dominant,

and the requirement for large shared memory is becoming
stronger. Last but not least, most of the new systems exploit
the virtual machine technology and implement the DSM layer
under the operating system and right above the hardware. This
might bring more opportunities to optimize. Also, it provides a
single system image to the operating system and eases the
management burden.

VII. CONCLUSIONS AND FUTURE WORKS

We are entering the HPC era of data intensive applications.
Existing supercomputers are not suitable for this kind of
workloads. There is a 5-orders-of-magnititude gap in the
current storage hierarchy. We designed and built a new
prototype system called DASH, exploiting flash drives and
remote memory to fill the gap. Targeting at random workloads,
we tuned the system and achieved ~560K 4KB IOPS with 16
flash drives and ~4.5M 4KB IOPS with 650GB RAM drive.
With 3 real applications from graph theory, biology, and
astronomy, we attained up to two-orders-of-magnitude
speedup with RAM drives compared with traditional spinning
disks. As for cost efficiency, flash is cheaper than DRAM but
more expensive than disk yet the cost of operation (power) of
flash is less than spinning disk.

DASH is a prototype system of the even larger machine called
Gordon, which has much more flash drives and memory. To
achieve good performance with such a huge system, we need
to figure out how to scale up the storage system and the DSM
system.

New storage media like flash and PCRAM is a hot research
direction. How to integrate flash into the storage hierarchy is
one of the difficult topics. It can be used as disk replacement,
memory extension, disk cache, and more. We will investigate
what is the best way to use flash in our systems.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Gordon team
members including Michael Norman, Eva Hocks, Larry
Diegel, Mahidhar Tatineni, Thomas Hutton, Steven Swanson,
Lonnie Heidtke and Wayne Pfeiffer. We would like to credit
our science collaborators Peter Nugent and Janet Jacobsen of
the Berkeley Lab for the description about PTF presented in
section IVB, and also thank them for sharing with us the PTF
data and its existing runtimes. We would also like to thank our
science collaborators Maya Sedova and Mihail Baitaliuc of
BiologicalNetworks for sharing us their bio-informatics data
and its common queries.

This work was sponsored in part by National Science
Foundation under NSF OCI #0951583 entitled “I/O Modeling
EAGER” and by NSF OCI #0910847 entitled “Gordon: A
Data Intensive Supercomputer”.

REFERENCES

[1] F.S. Collins, M. Morgan, and A Patrinos, "The Human Genome Project:
Lessons from Large Scale Biology," Science, vol. 300, no. 5617, pp.
286 – 290, April 2003.

[2] D.G. York, "The Sloan Digital Sky Survey," Astronomical Journal,
2000.

[3] A. Snavely, R. Pennington, and R. Loft, Eds., Workshop Report:
Petascale Computing in the Geosciences.: http://www.sdsc.edu/~allans.

[4] A. Snavely, G. Jacobs, and D. A. Bader, Eds., Workshop Report:
Petascale Computing in the Biological Sciences.:
http://www.sdsc.edu/~allans.

[5] P. Kogge, Ed., ExaScale Computing Study: Technology Challenges in
Achieving Exascale System.: http://www.sdsc.edu/~allans.

[6] A. Snavely et al., "Performance Modeling of HPC Applications," in
ParCo, 2003.

[7] A. Szalay and J. Gray, "Science in an exponential world," Nature, vol.
440, pp. 413 414, March 2006.

[8] A. Funk, V. Basili, L. Hochstein, and J. Kepner, "Analysis of Parallel
Software Development using the Relative Development Time
Productivity Metric," CT Watch, vol. 2, p. 4A, November 2006.

[9] D.A. Bader, Ed., Petascale Computing: Algorithms and Applications.:
Chapman & Hall/CRC Press.

[10] ScaleMP inc., http://www.scalemp.com/.
[11] F. Chen, D. Koufaty, and X. Zhang, "Understanding intrinsic

characteristics and system implications of flash memory based solid
state drives," in SIGMETRICS/Performance, 2009, pp. 181-192.

[12] N. Agrawal et al., "Design Tradeoffs for SSD Performance," in USENIX
Annual Technical Conference, 2008, pp. 57-70.

[13] N. Mielke et al., "Bit error rate in NAND Flash memories," in IEEE
International Reliability Physics Symposium, 2008, pp. 9-19.

[14] S. Park and K. Shen, "A Performance Evaluation of Scientific I/O
Workloads on Flash-Based SSDs," in Workshop on Interfaces and
Architectures for Scientific Data Storage (IASDS'09), 2009.

[15] L. Grupp et al., "Characterizing Flash Memory: Anomalies,
Observations, and Applications," in MICRO, 2009.

[16] Fusionio Technical Specification of 160 GB SLC PCIe ioDrive,
http://www.fusionio.com/products/iodrive/?tab=specs.

[17] Sun F5100 Technical Specification and price information,
http://www.sun.com/storage/disk_systems/sss/f5100/specs.xml.

[18] Intel X25-E datasheet and technical documents,
http://download.intel.com/design/flash/nand/extreme/extreme-sata-ssd-
datasheet.pdf and
http://www.intel.com/design/flash/nand/extreme/technicaldocuments.ht
m.

[19] Amazon Marketplace (retrieved on 02/10/2010),
http://www.amazon.com/gp/product/B002MD05SA.

[20] Hardware Canucks Review, Western Digital 2TB HDD (retrieved on
02/10/2010), http://www.hardwarecanucks.com/forum/hardware-
canucks-reviews/24310-western-digital-caviar-black-2tb-hard-drive-
review-7.html.

[21] Amazon.com Marketplace, Intel X25-E 64GB (retrieved on
02/10/2010), http://www.amazon.com/X25-E-64GB-Slc-Sata-
SSDSA2SH064G101/dp/B001W7E4K2.

[22] Dell Accessories (retrieved on 02/10/2010),
http://accessories.us.dell.com/sna/productdetail.aspx?sku=A2595172&c
s=04&c=us&l=en&dgc=SS&cid=27722&lid=628335.

[23] iXBT Labs, HDD Power Consumption and Heat Dissipation of
Enterprise Hard Disk Drives,
http://ixbtlabs.com/articles2/storage/hddpower-pro.html.

[24] Tom’s Hardware, Intel's X25-M Solid State Drive Reviewed,
http://www.tomshardware.com/reviews/Intel-x25-m-SSD,2012-13.html.

[25] IOR benchmark, http://sourceforge.net/projects/ior-sio/.
[26] XDD benchmark, http://www.ioperformance.com/.
[27] NCQ page at Wikipedia,

http://en.wikipedia.org/wiki/Native_Command_Queuing.
[28] J. He, J. Bennett, and A. Snavely, "DASH-IO: an Empirical Study of

Flash-based IO for HPC," in The 5th annual TeraGrid Conference,
Pittsburgh, 2010.

[29] STXXL, http://stxxl.sourceforge.net/.
[30] Facebook, http://www.facebook.com.
[31] Neuroscience Information Framework (NIF), http://nif.nih.gov/.
[32] External memory BFS, http://www.madalgo.au.dk/~ajwani/em_bfs/.
[33] Palomar Transient Factory (PTF) website,

http://www.astro.caltech.edu/ptf/.
[34] La Silla Observatory website, http://www.eso.org/sci/facilities/lasilla/.
[35] Large Synoptic Survey Telescope (LSST),

http://www.lsst.org/lsst/about.
[36] Biological Networks website, http://biologicalnetworks.net/.
[37] TRIM page at Wikepedia, http://en.wikipedia.org/wiki/TRIM.
[38] Intel SSD firmware update, http://www.intel.com/go/ssdfirmware.
[39] The SSD Improv: Intel & Indilinx get TRIM, Kingston Brings Intel

Down to $115,
http://www.anandtech.com/storage/showdoc.aspx?i=3667&p=1.

[40] Overview of recent supercomputers 2009,
http://www.nwo.nl/nwohome.nsf/pages/NWOA_7X8HXB_Eng.

[41] K. Li, "IVY: A Shared Virtual Memory System for Parallel Computing,"
in International Conference on Parallel Processing, 1988, pp. 94-101.

[42] C. Amza et al., "TreadMarks: Shared memory computing on networks
of workstations," IEEE Computer, vol. 29, pp. 18–28, Feb 1996.

[43] M. Blumrich et al., "Virtual memory mapped network interface for the
SHRIMP multicomputer," in International symposium on Computer
architecture, 1994, pp. 142-153.

[44] S. Ahuja, N. Carriero, and D. Gelernter, "Linda and friends," IEEE
Computer, vol. 19, no. 8, pp. 26-34, Aug. 1986.

[45] 3Lear system, http://www.3leafsystems.com/.
[46] M. Chapman and G. Heiser, "vNUMA: A virtual shared-memory

multiprocessor," in USENIX Annual Technical Conference, 2009.
[47] Infiniband page at Wikipedia, http://en.wikipedia.org/wiki/InfiniBand.

