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Background

* Natural error resiliency of neural network (NN) [Bottou
& Bousquet, 2007].

— In the presence of statistical approximation and estimation

errors, high-precision computing is not necessary for DNN.

e Large scale systems specialized for DNN do not utilize
natural error resiliency, except for Asynchronous SGD.

* This paper shows a performance of NN and a prototype
hardware with 16-bit fixed point number.

— Fixed point compute units are faster, consume less resources
and power.

— A data is of smaller data size.



ldea of system

application mitigating impacts of error

low-precision fixed point
hardware arithmetic

* simpler component
* smaller memory



Limited Precision Arithmetic
fixed-point number type

bit-length for
part

<IL, FL>

bit-length for
part

This notation provides how long bit is assigned to
integer part and fraction part in a decimal number.
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Rounding Mode

If a calculated result is outside the range of <IL, FL>,
then we saturate it to upper or lower bound of <IL, FL>.

Convert (x, (IL,FL)) =

(_olL—1 if 3 < —9IL—1

l 9ll—1 _ 9—FL if 7 > oIL—1 _ 9-FL
| Round(x, (IL,FL)) otherwise

(1)




Multiply and accumulate (MACC) operation

Calculating ¢, = a*b by 2 steps.
—a, b : <IL, FL> fixed-point number d-dimension vector
— ¢, :(IL,IF)fixed-point number

1. Compute z = Z?Zl a;b;
—a b, : <2 1L, 2 FL> fixed-point
— 2z :ilog,d + 2 (IL + FL)} bit length fixed—point

2. Convert: c¢g = Convert(z, (IL, IF))



Multiply and accumulate (MACC) operation

e advantage of this 2-steps methodology
— easy to implement with FPGA
— one rounding per one multiplying operation
— easy to simulate in CPU/GPU, BLAS library



Evaluation

Going to evaluate error of network with 16-bit
fixed point arithmetic by comparing with 32-bit
floating point one.

* Network
— DNN
— Convolutional Neural Network(CNN)

e Data set
— MINIST
— CIFAR1O0



Evaluation

* Weights and Biases in network are to be
initialized randomly.

 HyperParameters (e.g. number of layer,
momentum, learning rate, ...) is the same

between baseline experiment and 16-bit fixed
point one.

* Fixed-point number is represented in 16 bits.



error in DNN for MINIST

MNIST
* 60,000 training images/ 10,000 test images

e 28 x 28 pixels in a image
* Each pixel in the images has a value in [0,1].
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error in DNN for MINIST

* Fully connected network

e Each weight is initialized randomly from N(O,
0.01). The bias vector |n|t|aI|zed to O.
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error in DNN for MINIST

Training DNN by minibatch SGD method.
* the minibatch size is 100



error in DNN for MINIST
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error in DNN for MINIST

Training error

Training error

Round to nearest, WL =16
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Training epoch

Stochastic rounding, WL =16
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error in CNN for MNIST

The network is similar to LeNet-5.
e 5%5 filter, 2*%2 non-overlapped pooling
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error in CNN for MNIST

¢ parameter
— learning rate = 0.1 * (0.95)# of completed epoch)
— momentum =0.9
— weight decay = 0.0005

e Output from layer is represented in <6,10> fixed-
point.

— If IL < 6, outputs from convolutional layers are higher
than a number the fixed-point can represent.



Training error
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error in CNN for MNIST
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error in CNN for CIFAR10

 The CIFAR-10 dataset consists of 60000 32x32
color images in 10 classes, with 6000 images per
class. There are 50000 training images and 10000

test images.

* The image RGB values
are scaled to [0,1] for
the evaluation.
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error in CNN for CIFAR10

* 64 5*5 filte

'S

e 3*3 pooling window using a stride of 2
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error in CNN for CIFAR10

e Parameter

— learning rate is 0.01 (at begin), 0.005(after 50 epoch),
0.0025(after 75 epoch), 0.00125(after 100 epoch).

* Outputs from layers are represented in the
<4,12> format.



Training error

error in CNN for CIFAR10

RtN scheme results
in divergence
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Hardware Prototyping

e FPGA-based hardware accelerator for matrix-
matrix multiplication

— FPGA contains DSP units that are well-suit to
implement fixed point arithmetic.

— FPGA has potential in performance and power
efficiency.



Components of the prototype

e Xilinx Kintex325T FPGA

— 840 DSP multiply-accumulate unit
— 2MB on-chip lock RAM

e cache of matrix data

 8GB DDR3

— to store matrix data

e PCle Bus between the FPGA and the Host

— The data bandwidth between the off-chip DDR3
memory and the FPGA is 6.4 (GB/s) .



Inside of the accelerator
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Figure 4. Block diagram of the FPGA-based fixed-point
matrix multiplier.
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calculation in the prototype
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calculation in the protot

move from the DDR3 to
the FPGA on-chip memory

B

np
(p is the largest that meets
constraint of the FPGA memory)
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calculation in the prototype

move from the DDR3 to )
the FPGA on-chip memory
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calculation in the prototype

move from the DDR3 to
the FPGA on-chip memory
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calculation in the prototype

move from the DDR3 to
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calculation in the prototype

move from the DDR3 to
the FPGA on-chip memory
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calculation in the prototype

move from the DDR3 to
the FPGA on-chip memory
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calculation in the prototype

move from the DDR3 to
the FPGA on-chip memory
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Systolic Array(SA) Architecture
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matrix multiplication in SA

stochastic rounding

1 MULT per cycle
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Evaluating the prototype

e 28x28 SA is implemented on the FPGA.
— The throughput is 260 G-ops/s.
— The power efficiency is 37 G-ops/s/W.

* The range of power efficiency of NVIDIA GT650m and
GTX780, the Intel i7-3720QM is 1~5 G-ops/s/W
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