
2017/10/03
Kazuaki Matsumura (M1)



q Scalable Training of Deep Learning Machines by 
Incremental Block Training with Intra-block Parallel 
Optimization and Blockwise Model-Update Filtering
(ICASSP-2016)

Ø Kai Chen *

Ø Qiang Huo *

(*) Microsoft



1. Introduction

2. Related Work

3. Proposed Algorithm

4. Experiments and Result

5. Conclusion





The	computation	of	neural	networks	is	conducted	as	propagations	of	activations



- Each	layer	has	weights

- Each	layer	computes
the	output	(called	activation)	
using	an	activation	from	its	
previous	layer

- The	final	layer	(output	layer)’s	
activation	becomes	a	result	of	the	
computation	of	the	neural	
network



(For	each	layer)

Input	:
𝐱 = 	𝑥%, … , 𝑥(	 )	

Weight	matrix	:

𝐖

Activation	function:

	𝑎

Output:
𝑎	 𝐖)	𝐱



In	order	to	get	appropriate	outputs, back	propagation	is	usually	
used	to	update	parameters	(weights	in	this	context)



Use	gradient	descent	to	minimize	a	loss	function	𝐿
(e.g.	square	error	of	result	and	training	data)	:

(For	each	layer)

Update	output	layer’s	parameter:
	

𝑣 = 	 ./
.0	1

	 (gradient)

𝐖	
𝒕3𝟏 =		𝐖	

𝒕 	− 	𝜏	𝑣	

(𝑡	:	time-step,		𝜏 :	learning	rate)This	can	be	calculated
using	the	previous	layer’s	result	
which	is	back	propagated



q Repeating propagation and back-propagation takes many 
hours until quite good results can be achieved from the 
network (this entire flow is called training)

q To reduce this cost while keeping the accuracy,
many models and methods have been proposed

Ø Distributed Training (TODAY’s TOPIC)

Ø SqueezeNet

Ø Binarized neural network

Ø Model distillation

Ø …



q SGD (Stochastic Gradient Descent method) :
An optimization method to train models
Ø Many methods are based on SGD

Ø In basic way, parameters 𝐖	
𝒕3𝟏 are updated after 

calculating gradients 𝑣 = 	 ./
.0	1

		for all training data

Ø In SGD, parameters are updated, after calculating 
gradients for dozens ~ hundreds training data
(this collection is called a mini-batch )

Ø If the training data are redundant,
this method effectively works to train faster



q SGD:
𝑣 = 	 ./

.0	1
	

𝐖	
𝒕3𝟏 =		𝐖	

𝒕 	− 	𝜏	𝑣	

q Momentum SGD: To stabilize the change, use momentum term 

𝑣8 = 𝜇	𝑣8:% +	 ./
.0	1

	

𝐖	
𝒕3𝟏 =		𝐖	

𝒕 	− 	𝜏	𝑣	

(𝑡	:	time-step,		𝜏 :	learning	rate,	𝜇 :	momentum)



q How parallelize training?
Ø Model parallel

o Split the model (network), then calculate in parallel
(e.g. AlexNet)

Split



q How parallelize training?
Ø Data parallel 

o Calculate gradients of a mini-batch in parallel

o This way is more scalable than model parallel

o But there is a bottleneck which is obstructing scale out:

Aggregating gradients from each worker

• Waiting other workers

• Broadcasting gradients





q DistBelief by Google can utilize computing clusters with ASGD

Ø Computing clusters with thousands of machines

Ø ASGD (asynchronous SGD) is another version of SGD which 
updates parameters without waiting other gradient calculations

Ø However there is no comparison with the standard mini-
batch SGD, therefore it is not clear yet whether “ASGD in 
DistBelief” incurs any loss of recognition accuracy

q [27] achieves a 3.2 times speedup on 4 GPUs than on 1 GPU 
without the degradation of recognition accuracy



1. Solve the learning problem independently on each 
worker using the portion of data stored on that worker

2. Average the independent local solutions to obtain a 
global solution
Ø The communication size is much smaller than single SGD

• Although almost linear speedup can be achieved in 
terms of the throughput of processing training data, 
this approach incurs recognition accuracy degradation 
compared with single-worker scheme, especially when 
the number of workers increases



q Compress gradients aggressively to reduce 
significantly data-exchange bandwidth

q Each gradient are represented in 1-bit form

q [23] achieves 6.9 times speedup with 20 GPUs than 
on a single GPU with little degradation of 
recognition accuracy





q An optimization method like a combination of
Ø Model averaging

Ø Momentum SGD

q This introduces learning rate and momentum
to model averaging

q This method can be applied to several types neural 
networks ( CNN, LSTM, … )



Full	training	set	:	𝐃	 = 𝐃=				 	j = 1,2,⋯ ,𝑀}

𝐃= = 𝐃=,D	 	j = 1,2,⋯ ,𝑁}	

partition configuration as N ×M 

for	∀j, k, l, m							𝐃=,D ∩ 𝐃=,D= ∅



1. Broadcast a global model 𝐖O	(𝑡	 − 1) to 𝑁 workers
(e.g., GPU cards in a GPU cluster)

2. Select randomly a block of unprocessed data donated as 𝐃𝒕

3. Distribute 𝑁 splits of this block to 𝑁 workers

4. Each worker run in parallel to optimize local models
with its portion of data

5. Obtain aggregated model donated as 𝐖R 	 𝑡 by averaging 𝑁
optimized local models 

• The intra-block optimization can be conducted with different 
parallel algorithms. (In this paper, 1-sweep mini-batch SGD 
with classical momentum trick)



After intra-block parallel optimization is completed, global model 
need be updated

• This is treated as a block-level stochastic optimization process

• To stabilize the learning process, 
Blockwise Model-Update Filtering (BMUF) will be introduced



1. Calculate 																																															𝐆	 𝑡 = 𝐖R 	 𝑡 	−𝐖𝐠	 𝑡 − 1

2. Calculate                                Δ 𝑡 = 𝜂8Δ 𝑡	 − 1 + 𝜁8𝐆	 𝑡

3. Update a temporal model 											𝐖	 𝑡 = 𝐖	 𝑡 − 1 + Δ 𝑡

4. Update the global model:
With a classical momentum scheme : 𝐖O	 𝑡 = 𝐖	 𝑡

With a Nesterov momentum scheme: 𝐖O	 𝑡 = 𝐖	 𝑡 +	𝜂83%Δ 𝑡

(momentum with acceleration)
Hereinafter referred to CBM, NBM, respectively

(			𝜂8 :  block momentum,   𝜁8 :  block learning rate  )

• When 𝜂8 = 0 and 𝜁8 = 1, this procedure becomes Model averaging.



1. alculate 																																															𝐆	 𝑡 = 𝐖R 	 𝑡 	−𝐖𝐠	 𝑡 − 1

2. Calculate                                Δ 𝑡 = 𝜂8Δ 𝑡	 − 1 + 𝜁8𝐆	 𝑡

3. pdate a temporal model 											𝐖	 𝑡 = 𝐖	 𝑡 − 1 + Δ 𝑡

4. pdate the global model:
With a classical momentum scheme : 𝐖O	 𝑡 = 𝐖	 𝑡

With a momentum scheme: 𝐖O	 𝑡 = 𝐖	 𝑡 +	𝜂83%Δ 𝑡

(momentum with acceleration)
Hereinafter referred to CBM, NBM, respectively

(			𝜂8 :  block momentum,   𝜁8 :  block learning rate  )

• When 𝜂8 = 0 and 𝜁8 = 1, this procedure becomes Model averaging.

If	𝐆	 𝑡 is	small,	it	is	canceled	by	Δ 𝑡	 − 1
(so	called	Filtering)



Assume	the	initial	parameter	and	the	final	parameter	of	mini-batch	SGD	

optimized	model	is	𝑾l,	𝐖m, respectively.

The contribution of the 𝑖	𝑡ℎ	mini-batch to 𝚫m = 𝐖m −𝐖l is

𝛿m
u = 𝛾m𝑔m

u 	1 + 𝜖m + 𝜖my + ⋯ ≈	
𝛾m

1	 − 𝜖m
	𝑔m

u

(	𝛾m :		learning	rate,			𝜖m :		momentum,			𝑔m
(u): gradient	of	𝑖	th	mini-batch	)



• 𝜏 is always set to be a relatively small value to avoid 
divergence of local model

• the 𝑖	th	mini-batch have not direct influence in 
successive training

𝛿|
u =

1
𝑁 𝛾|𝑔|

u 	1 + 𝜖| + 𝜖|y +⋯+ 𝜖|}:u

(	𝜏 :		size	of	mini-batch	
		𝛾| :		learning	rate,			𝜖| :		momentum,			𝑔|

(u): gradient	of	𝑖	th	mini-batch	)

≈
1
𝑁 ⋅

𝛾|	(1	 − 𝜖|}:u3%)
1	 − 𝜖|

	𝑔|
u



• Set the values of 𝜂8 and 𝜁8, where	 𝐶 = 	
�

�	(%	:�)
is a 

constant slightly larger than 1 to keep noisy 
component’s influence in successive training

𝛿�
u ≈

1
𝑁 ⋅

𝛾�	 1	 − 𝜖�}:u3%

1	 − 𝜖�
	𝑔�

u 	𝜁(1 + 𝜂 + 𝜂y +⋯)

(	𝜏 :		size	of	mini-batch			𝜂8 :		block	momentum,			𝜁8 :		block	learning	rate,
	𝛾� :		learning	rate,			𝜖� :		momentum,			𝑔�

(u): gradient	of	𝑖	th	mini-batch	)

≈
𝜁

𝑁	(1	 − 𝜂) ⋅
𝛾�	 1	 − 𝜖�}:u3%

1	 − 𝜖�
	𝑔�

u





q Implemented on an HPC GPU cluster with multiple computing 
nodes, each equipped with 2-8 Nvidia Tesla K40xm GPUs

Ø A 56 Gbps private InfiniBand network is configured to connect 
all GPU nodes

Ø The GPU cluster is connected to a shared storage with Hadoop 
Distributed File System (HDFS) via several spine switches

Ø The total throughput of the spine switches

o to HDFS: 8 Tbps

o to HPC GPU cluster : 320 Gbps



q MPI-base HPC machine learning platform is used to 
coordinate parallel job scheduling and collective 
communication

Ø It implements a master-slave model among computing nodes

Ø The master is responsible for

o job scheduling

o load balancing

o BMUF

o global model update

Ø The peer to peer and collective communications among master 
and slaves are very efficient through MPI



q To reduce the overhead of job scheduling

Ø Each worker is sent its subset of training data before training

Ø During Training, on each worker, next split will be loaded to 
memory when the current split is being processed to hide data-
loading cost

Ø In practice, the data size is the size of mini-batch which is 
processed by each worker.



q Two LVSCR benchmark

1. Switchboard-I conversational telephone speech transcription task

Ø Contains about 309 hours of training speech

Ø referred to as “SWB task”

o Train DBLSTM as acoustic model

o 5 hidden layers

o Each containing 512 memory blocks 

o 512 memory blocks (256 for forward and 256 for backward states), 
and 9,304 HMM tied-states as output classes, resulting to about 11 
million free parameters.



q Two LVSCR benchmark

1. Switchboard-I conversational telephone speech transcription task

o Train DBLSTM as acoustic model

o Both epoch-wise BPTT and context-sensitive-chunk (CSC) BPTT are 
used to train. 

o “In CSC-BPTT training, each utterance is partitioned into CSCs of 64 
frames long with 21 past and 21 future frames appended as 
context, which is denoted as “21-64+21”, while a 32-frame overlap is 
used in decoding.”



q Two LVSCR benchmark

2. Switchboard-I corpus and Fisher English corpus (part1 and part2)

Ø Contains about 1,860-hour training speech data

Ø referred to as “SWB+Fisher task”

o Train DNN (fully-connected feed-forward) as acoustic model

o Has 11 consecutive frams of feature vectors as input

o 7 hidden layers with 2,048 ReLUs per layer

o 18,002 HMM tied-states as output classes

o Resulting to about 63 million free paramters

o L2 constraint is used for regularization



q Eval200 about 2 hours of speeches, and RT03S about 6.3 hours of 
speeches are used as testing sets

q Word error rate (WER) is used as performance metric

q For both task, 30 hours of speech are selected as validation set

Ø In DBLSTM training, validation set is evaluated every sweep of data

Ø In DNN training, it is evaluated every 600 hours of data



q Learning rates are carefully tuned for all training configurations

q The one leading to the best validation set performance is chosen to 
decode testing sets

q In order to make fair comparison, all methods start from the same 
initial model and process the training set for the same number of 
sweeps

Ø For DBLSTM, initial model is obtained by 1-sweep SGD with respective 
algorithms and the training set is processed for 6 sweeps

Ø For DNN, initial model is obtained by 1-sweep SGD of 309 hours of data 
and the training set is processed for 5 sweeps

q BM 𝜂8 is set as 0.9, 0.94, 0.97 and 0.986 in 8-, 16-, 32-, 64-GPU 

experiments respectively and BLR 𝜁8 is always set as 1.0



q The partition configurations are “8 x 104” and “16 x 512”

Ø About 22.5 minutes of speech per split

q The number of GPUs equal to the split number per block (8, 16)

q MA and BMUF achieve linear speed up in terms of the throughput 
of processing data

q NBM performs better than CBM



q Data set is partitioned at frame level

q The partition configurations are “8 x 620”, “16 x 310”, “32 x 
155” and “64 x 78” (about 22.5 minutes per split)

q The number of GPUs equal to the split number per block
(8, 16, 32, 64)



q Data set is partitioned at frame level

q The partition configurations are “8 x 620”, “16 x 310”, “32 x 155” 
and “64 x 78” (about 22.5 minutes per split)



q NBM learns faster, but converges to better solutions than CBM

Ø NPB experiments with 8-32 GPUS converge to almost the same FER
(Frame Error Rate)



q BMUF approaches achieve about 5.0% and 5.3% relative WER 
reductions from MA on Eval2000 and RT03S, respectively

q NBM performs better than CBM

q And BMUF achieved a linear speedup.





q The proposed BMUF approach can indeed scale out deep learning 
on a GPU cluster with almost linear speed up and improved or no-
degradation of recognition accuracy compared with mini-batch SGD 
on single GPU

q In addition to the verified cases for DBLSTM and DNN training on 
LVCSR tasks, we have also verified its effectiveness up to 16 GPUs 
for CTC-training of DBLSTM on a handwriting OCR task using about 
one million training text line images.

q Future work

Ø Convolutional neural networks

Ø More GPUs

Ø More better approach


