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1. Introduction



§1 Introduction
- DNNSs in distributed systems

A common architecture for DNN systems takes advantage of data-
parallelism which a set of workers train model replicas.

* By using parameter servers, model replicas are kept synchronised.

* DNN systems employing parameter server must balance the use of
compute and network resources to achieve fastest model.

= However, an optimal resource allocation depends on many factors, and users
must decide it empirically, by trial-and-error approach.



§1 Introduction

- Described system

* Goal is to design a DNN system that always utilises the full CPU
resources and network bandwidth of a cluster.

* Paper describe Ako, a decentralised DNN system.
" Homogeneous workers train model replicas without parameter server.
= Synchronise directly with each other in a peer-to-peer fashion.



Index

2. Resource Allocation in DNN Systems



§2 Resource Allocation in DNN Systems

- DNN systems with parameter servers

* A scalable approach for training DNNs is to use parameter server
1. The training data is split across worker.

2. Each worker calculate the gradient over its data partition.
3. Worker sends the local gradient g to parameter servers.
4. Parameter servers aggregate the gradients and update the global model V.
5. And return the new model W to the workers.
Parameter Parameter
server ceo server
() hidl
G, o5
“. 9 93,1
For more detail about parameter server Daltha © QL) %21
architecture, read [24, 2, 19, 26, 49]. Wi1Ws,2 W1|[W2.2 W31[Ws3.2

Worker1 Worker2 Worker3



§2 Resource Allocation in DNN Systems

- DNN systems with parameter servers

* To reach fastest time-to-convergence, DNN systems must achieve:
1. High hardware efficiency,

* Which is time to complete a single iteration.

2. High statistical efficiency,
* Which is the improvement in the model per iteration.

* There is a trade-off between these two aspects.

" |n practice, modern distributed DNN systems require such decision on
resource allocation.



§2 Resource Allocation in DNN Systems

- Resource allocation problem

* The best allocation should result in fastest time-to-convergence.

= However, the best allocation depends on many factors which make prediction
difficult.

* This difficulty can be checked through some experiments.

= Deployed a DNN system with parameter servers on 64-machines, training a
model for ImageNet benchmark (explained later).



§2 Resource Allocation in DNN Systems

- Resource allocation problem
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Figure 3: Effect of system and workload changes on best resource allocation

= Accuracy with different (a) cluster size, (b) hardware, and (c) workloads.

" In (b), comparing “m4.xlarge” and “c4.2xlarge” VMS on a 64-machine Amazon
EC2 deployment.

= In (c), low-resolution is 100x100 pixels, and high-resolution is 200x200 pixels.
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§2 Resource Allocation in DNN Systems

- Resource allocation problem
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= Accuracy with different worker and parameter server allocation (left), and

memory allocation in co-located parameter server (right).
* Both are accuracy after one hour training.

" |In co-located [44], worker and parameter server are located on same node.
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§3 Partial Gradient Exchange

- Adopting decentralised synchronisation scheme

* Instead of using parameter server, the author adopts a decentralised
synchronisation scheme.

= which workers communicate directly with each other, without intermediate
nodes.

e Some decentralised solutions are...
= All-to-All communication
= Relaying updates

* However, these are not “good” as parameter server.



§3 Partial Gradient Exchange

- Partial gradient exchange algorithm

* A new decentralised synchronisation approach called partial gradient
exchange.
* In this approach, worker sends only one partition to each other worker.

* For each worker, there are three steps which refer as synchronisation
round.
 Calculating & accumulating local gradient
 Partitioning local gradient
* Sending local gradient



§3 Partial Gradient Exchange

- Partitioning gradients at synchronization round t

(t) g

$
() g

J

$

t t
(( )gj, ( )g],

Creates the local gradients from (a part of) data points in mini-batch.

Accumulates the gradient with previous-unsent local gradients.

To do so, worker needs to store previous local gradients some how.

(t>g;'f
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Partitions the accumulated gradient into p disjoint gradient
partitions.




§3 Partial Gradient Exchange

- Sending gradients at synchronization round t

(t+1) (t+1) . (t+1) (t-l-p 1) (t+p 1) .. (t+P—1)g’f

7N SN e S

Sending to other workers

e Sends each gradient partitions to other workers in round-robin

fashion.
* [t takes p synchronization rounds to send complete gradient which
calculated at synchronization round t.



§3 Partial Gradient Exchange

- Accumulating gradients

* According to the previous slide, only last p gradients are needed to be

accumulated.
" Thus, the relational expression will be:
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o (Thgr 4 (Mg, if 2<t<p
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= Subtracting “""'g; is needed to avoid sending already-sent gradient partitions.
= This improves the training quality when compared with no accumulation.



§3 Partial Gradient Exchange

- Receiving gradients

Gradients that are calculated from 1/6
data points of one mini-batch at t.

Calculated by worker 1

92,2 923 Calculated in local

Calculated by worker 3

Calculated by worker 4

Calculated by worker 5

Calculated by worker 6

Gradients that are calculated from all
data points of one mini-batch at t.

Worker 2

Gradients from other workers
are received asynchronously.
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§3 Partial Gradient Exchange

- Receiving gradients (cont.)

911 Calculated by worker 1
95,1 gE,z 93,3 Calculated in local

Calculated by worker 3

943 Calculated by worker 4

Calculated by worker 5

Je o Calculated by worker 6

synchronization round : t Worker 2
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§3 Partial Gradient Exchange

- Receiving gradients (cont.)

911 912 Calculated by worker 1
95,1 gE,z 93,3 Calculated in local
932 Calculated by worker 3
943 Calculated by worker 4
g[i-‘,,l Calculated by worker 5
96,2 96,3 Calculated by worker 6
synchronizationround : t + 1 Worker 2
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§3 Partial Gradient Exchange

- Receiving gradients (cont.)

911 912 @i Calculated by worker 1
95,1 gE,z 93,3 Calculated in local

93,2 g3 3 Calculated by worker 3

92,1 gZ,z 92,3 Calculated by worker 4

951 Calculated by worker 5

Je1 Je o Je s Calculated by worker 6
synchronization round : t + 2 Worker 2
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§3 Partial Gradient Exchange

- Receiving gradients (cont.)

* Since the communication is asynchronous, accumulated gradient
partitions may not be received in their expected synchronisation
rounds.

= Expected to be received in p synchronisation rounds.

= Although this introduce staleness in the local model, it does not compromise
convergence (mentioned later).



§3 Partial Gradient Exchange

- Algorithm
Algorithm 1: Partial gradient exchange
1 function generateGradients(j, d, t, n, 1)
° Each Worker executes tWO funct|0ns input : worker index j, mini-batch data points d,
. ¢ gradient computation timestamp ¢, learning
generateGradients and rate 1], staleness bound t
. 2 while -converged do
UPdatePartlalMOdel; 3 if cj < min(s;1,...,8;,)+p+7 then
L e di o d
asynChronOUSIV. 4 (tg+J]) comp;uteGra tlent(wj, )
. 5 Wi < w; +1N- 8
" ¢j,Sji,and T are used for bounding ¢ ot e gr g, (P,
. r % T %k I t *
staleness (mentioned later). 7 (8j.1:---+ 8jp) « partitionGrad (g;, p)
. ) ] 8 for i=1...nin parallel do
" The updatePartialModel functionis 9 L k « imod p
executed when an gradient partition is 10 sendGradient (i,'gj )
received by a worker. mol | Legeagtl
12 function updatePartialModel (j, i, g; », 1)
input : receiver worker index j, origin worker index i,
gradient partition g; ,, learning rate 1)
13 Wip € Wj,p+n'gj,p
14| Sji < Sj + 1




§3 Partial Gradient Exchange

- Deciding the number of gradient partitions (p)

* The number of gradient partitions p impacts the statistical efficiency.
= Workers can use cost model to select p when training begins:

ym(n — 1)
B

p:

= Where, m is the local model size, n is the number of the workers, y is the rate
which workers compute new gradient partitions’, and B is the given available
full-bisection bandwidth.




§3 Partial Gradient Exchange

- Deciding the number of gradient partitions (p) (cont.)

* The reason of this cost model
* The amount of data to send the full gradient is m(n — 1) per worker.
= With partial gradient exchange, itism(n — 1) /p.
= And only y of the whole workers need to communicate, thus ym(n — 1) /p.

= And this ym(n — 1) /p is the required bandwidth usage of partial gradient
exchange.

= This means,

B — ym(n — 1) Assuming system has a mxm
B D network with bandwidth B.

» Therefore, integer p will be represented as:

| ym(n—1)
= |2




§3 Partial Gradient Exchange

- Bounding staleness

* The gradients computed by each worker may use weights from
previous mini-batch, which introduces staleness.

* To guarantee convergence, Ako imposes a staleness bound 7.

= Limits the generation of new local gradients when a worker has advanced in
the computation further than T compared to all other workers.
" To do so, each worker j maintain,
* Staleness clock s; ; for each other worker L.
* Local staleness clock c;.
" As p synchronisation rounds are necessary to fully propagate model, staleness
boundisp + T.



§3 Partial Gradient Exchange

- Bounding staleness (cont.)

Algorithm 1: Partial gradient exchange

Local staleness bound
is incremented after
one synchronisation
round ended.

1 function generateGradients (j, d, t, 1, 7)
input : worker index j, mini-batch data points d,

gradient computation timestamp ¢, learning
rate 7, staleness bound 7

while -converged do

ifc; < min(s;q,...,5;,)+p+7 then
[gj « computeGradient (twj,d)

(r+1) t t
w; < WJ'+T]° 8j

t—1 t t—
Nty 1g, o)y,

(tgjf,la---,tg;p) « partitionGrad (tg’;,p)

r %k
8 <

fori=1...nin parallel do
k « imod p
sendGradient (i,tg;‘,k)

12

13
14

L

Dlci < ci+1

function updatePartialModel (j, i, gj . M)

input : receiver worker index j, origin worker index i,

gradient partition g; ,, learning rate 1)

Wip < Wip+T1-8ip

Sji

Staleness bound for
worker i is incremented
when partial gradient is
received.

« Sj,i+1
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§4 Ako Architecture

- Implementation of the Ako architecture

e The Ako architecture follows a stateful et flow

distributed dataflow model.

 Execution is broken into a series of
short tasks.

-» state access

'/
Local
model
4

read | write
A 1

= Compute tasks have one work
* Gradient computation g_‘i,

training

= Network tasks have four works data
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Figure 7: Architecture of an Ako worker
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§4 Ako Architecture

- Implementation of the Ako architecture (cont.)

* Gradient computation
" Local computation is in parallel and each task has exclusive access to a

partition of the local model.
= When the gradient computation is at the end of the mini-batch, the
computed (local) gradients are aggregated and updates the (local) model.
= Update occurs concurrently with other compute task reading the (local)

model.

* Gradient accumulation
=" The computed gradients at the end of a mini-batch are accumulated by a pool
of network task.



§4 Ako Architecture

- Implementation of the Ako architecture (cont.)

* Gradient partitioning
* Before sending the gradients, it is partitioned using range-partitioning.

* Gradient sending
» Send the gradient partitions, tagged by the partitioning range, to other

workers in round-robin.
* After p rounds, complete gradients have been sent to all workers.

* Gradient receiving
* Concurrently, workers receive gradient partitions from other worker.
* Network task apply the gradients immediately without locking.



§4 Ako Architecture

- Fault tolerance

* Ako uses checkpointing for fault tolerance.
= Fach worker saves their local models and the staleness counter.
= Similar to SEEP [14] and TensorFlow [1].

m SEEP’s master node notifies the other workers and let them remove the
staleness counter.
e Counters are re-added when worker recover.
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§5 Evaluation
- Setting-up datasets and DNNs

* Datasets
= MNIST
= [mageNet

* DNNs

= 3 convolutional (with max-pooling) and 2 fully-connected layers.

e For MNIST, 10/20/100 convolutional kernels (filters) with 200 neurons
* For ImageNet 32/64/256 convolutional kernels (filters) with 800 neurons.

* Prior to training
= Datasets are partitioned evenly across the workers.
®" The model parameters are initialized using warm-start.




§5 Evaluation

- Setting-up systems

e Ako vs. PS[w+p] (parameter server) vs. Al-to-All

= All are implemented on top of the SEEP stateful distributed data platform
with the same optimizations.

* Ako vs. TF (TensorFlow) vs. SG (Singa)

" For TF and SG, asynchronous Downpour algorithm architecture is used to
train DNNs.

 Staleness bound 7
= Decided according to the used data set and DNN models.
= As a heuristic, T is increased proportionally to the # of used workers.



§5 Evaluation
- Short intro of MNIST and ImageNet

* MNIST
= Dataset of handwritten digits (O to 9).
= 60,000 training sets, and 10,000 test sets.
= Each image has 28x28 pixels which have 0 to 255 value.
= http://yann.lecun.com/exdb/mnist/

* [mageNet
= Dataset of images that illustrate synonym set (synset) nouns.
= More than 14,000,000 images that have been indexed.
= http://image-net.org/

10/21/16
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§5 Evaluation
- Short intro to SEEP and Downpour SGD

e SEEP [14] (http://Isds.doc.ic.ac.uk/projects/SEEP)
= An experimental parallel data processing system developed by LSDS.

= Handles large scale stream data processing in cloud architectures with stateful
operator.

* Downpour SGD [12]
= Asynchronous SGD algorithm on parameter server deployment.
= Using AdaGrad learning rate.
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§5 Evaluation

- Performance metrics & cluster hardware

* Validation of the DNN models
= Based on top-1 accuracy with the validation data, not the top-5.

 Hardware environment

1. For MNIST, 16-machine cluster with 4-core Intel Xeon E3-1220 3.1GHz CPUs
with 8GB RAM and 1Gbps Ethernet

2. For ImageNet, 64-machine Amazon EC2 cluster with “m4.xlarge” Intel Xeon
instances, each with 4 vCPU cores at 2.4GHz and 16GB RAM



§5 Evaluation

- Results of convergence and scalability (MNIST)

S . . S
< |CJAko >
& 99 EPS* _ @ 99}
5 |EAiI-to-Al 3
: :
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© T PS [6+2]
o 2 ---All-to-All
g S 97
> 97 5 4 8 >0 01 02 0.3 0.4
Cluster size Time (Hour)
(a) Accuracy after 10 minutes of training (b) Convergence with 8 machines

= Fig. (a) shows that Ako achieves similar convergence as PS*.
e PS*[1+3] for 4 machines and PS*[7+1] for 8 machines.

= Fig. (b) shows that Ako achieves similar convergence as PS* and converges
faster than All-to-All.

* All-to-All is not “too bad” since the data that need to communicate is not too large.
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§5 Evaluation

- Results of convergence and scalability (MNIST)

L .
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S Dataset =~ Accuracy TensorFlow All-to-All Ako

0 -+~ Ako

c 98| = TF[7+1] MNIST 99% > 20 min 14min 7 min
= TF [6+2]

kS| ---8G*[7+1] ImageNet 30% 33h >4h 15h
T v/ ) . -SG [6+2]

> 970 0.1 0.2 0.3 0.4 Table 1: Time to reach target validation accuracy

Time (Hour)

(c) Comparison with TensorFlow and Singa

= Fig. (c) shows that Ako converges faster than both TF and SG.
= From table 1, it takes Ako 7 minutes and TF* more than 20 minutes to achieve

validation accuracy of 99%.
* Author speculates this difference is caused from synchonisation under downpour SGD.
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§5 Evaluation

- Results of convergence and scalability (ImageNet)
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(a) Accuracy after 2-hours of training (b) Convergence with 64 machines

= Fig. (a) shows that Ako achieves a higher validation accuracy than PS*, and
with more machines, Ako and PS* convergence improves.
* Any Ako worker can be used for validation, as difference between them are negligible.

= Fig. (b) shows that Ako requires less training time than PS*.
* As Ako has more worker nodes than PS has.
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§5 Evaluation

- Results of convergence and scalability (ImageNet)

= Fig. (c) shows that Ako scales gracefully.
* Ako keeps the communication cost constant with p.
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(a) Comparison with TensorFlow

= Fig. (a) shows that Ako achieves higher accuracy from the begging of training.
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§5 Evaluation

- Results of statistical efficiency

200

o |*Ako
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E sof
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Accuracy goal (%)

(b) Epoch number for given accuracy goal

= Number of epochs to achieve 5, 10, 15, 20% accuracy in ImageNet.

= Fig. shows that the PS approach requires the fewest passes.
* Ako requires extra epochs, which is less statistically efficient than PS.
* Workers receive incomplete gradients but with low latency.
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§5 Evaluation

- Results of hardware efficiency

200f [ Compute gradient

[CJSynchronise model

Time (Sec

Ako PS*  Co-located All-to-All
Strategies

(c) Break-down of epoch time

= Collected time per epoch with two aspects.
= Fig. shows that Ako has shorter epoch time than PS.
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§5 Evaluation

- Results of resource utilisation

* Average CPU resource utilisations on 16-machines were
= Worker of Ako: 87%
= Worker of PS*[12+4]: 84%, parameter server of PS*[12+4]: 17%
= Worker of All-to-All: 85%



§5 Evaluation

- Results of resource utilisation
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Figure 11: Average network usage with 16 machines (ImageNet)

= Fig. shows the accumulated network usage utilisation in MBs.
* For Ako, usage is high while still achieving a low synchronisation delay.
* For PS*, worker-worker networks are unused.
* All-to-All also saturates the network, but suffers from a high delay.
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§5 Evaluation

- Effectiveness of gradient partitions and accumulation
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Figure 12: Effect of gradient partitions

" Fig. (a) shows how partition number effects accuracy in Ako.
" Fig. (b) shows how partition number effects bandwidth usage in Ako.

= Right fig. shows how accumulation of gradient effects accuracy in Ako.

* Without accumulation, workers do not receive complete gradients, make the statistical
efficiency low.
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§6 Related Work

- DNN systems with parameter servers

e DistBelief [12]

e TensorFlow [1]

* Project Adam [5]
e Singa [27, 42, 43]
e Poseidon [48]

e SparkNet [25]

* BOsen [44]

* Yan et al. [47]



§6 Related Work

- DNN systems without parameter servers

* Wang et al. [41]
* MALT [23]

* CNTK [32, 33]
 Mariana [50]

* Deep Image [45]
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§7 Conclusions

* To achieve the best performance, distributed DNN systems must fully
utilise the system resources.

* This paper described Ako, a decentralised DNN system that does not
use parameter servers.

* In the experiment of Ako implementation on a fixed-size cluster, it
achieved better performance than one with parameter servers.



