
ソフトウェア界面

Kosha: A Peer-to-Peer Enhancement for the Network
File System

Ali R. Butt
· Troy A. Johnson · Yili Zheng · Y. Charlie Hu

Journal of Grid Computing (2006) 4: 323–341

Robert Gravina

Agenda

● Introduction
● Enabling technologies
● File distribution across nodes
● Design of Kosha
● Implementation
● Evaluation
● Related Work

Introduction

● Systems used in grid computing typically use
off-the-shell equipment
– Of 500 instructional machines at Purdue, 84%

have 40GB, 90% free space.
● Use of NFS is common in these

environments
● Design goal: utilise this cheap storage to

create a distributed file system with NFS
semantics

Introduction

● Peer nodes may fail over time or have
different disk capacities

● Design goal: Provide:
– Location transparency
– Mobility transparency
– Load balancing
– High availability (file replication and transparent

fault handing)

Enabling Technologies

● Uses a DHT implementation called Pastry
– Scalable, fault resilient, self-organising
– Each node has a nodeId randomly assigned

form a circular 128-bit identifier space
– Given message and a key, Pastry reliably routes

message to node numerically closest to key
● Each node maintains a routing table

– Rows of other nodes nodeIds, which share
increasingly longer prefixes with the current
nodes nodeId

● Node forwards message to a node that has the
longest prefix in common with the key.

Enabling Technologies

● Each node maintains a leaf set
– l nodes which are numerically closest to the

present nodes nodeId (l/2 smaller and l/2 larger)
– Leaf set ensures reliable message delivery and

used to store replicas of application objects

Distribution of File System

● Mounted as /kosha
● All files in a directory (but not

subdirectories) reside on the
same node
– helps to reduce the costs of

hashing/lookups for storage
node while maintaining
good load balance

Distribution of File System

● e.g. To locate a node for /dir/file1 Kosha performs the following
mapping:
– /kosha/dir1/file1

● DHT(hash(dir1)) : kosha_store/dir1/file1

Optimisation

● What happens when a node is full?
● On create file, redirect

– Concatinate random salt to filename, rehash,
find new node

– Special soft link created in parent directory with
same name as original file

● Target is new filename on new node

Optimisation

Kosha design

● When an operation on /kosha occurs
– Kosha determines node on which a file is stored

● Hash, lookup, maybe redirection
– NFS RPC is modified to occur on /kosha_store

on selected node, rather than /kosha on client
node

– Selected node performs operation and returns
results to Kosha

– Kosha returns control to the client

NFS Operations Support

● All accesses to a file are guaranteed to be
sent to the same storage node
– i.e. Every user sees same instance of file
– In case of failure, Kosha can still provide access

to a file (unlike NFS)
● Virtual File Handles

– A handle to a file in Kosha
– Kosha keeps a mapping table client file handle

-> virtual file handle
– i.e. Location transparency

Managing Replicas

● Kosha maintains K replicas of a file on the
neigbouring K nodes in the node identifier
space (not proximity!)
– Randomly assigned, so dispersed for godo fault

tolerance
● For each file, there is a primary replica

– i.e. DHT(hash(dir1)) : kosha_store/dir1/file1 (from earlier)
– All accesses to the file are sent to the primary

replica
● It is responsible for mataining the K replicas of

the file on K neighbouring nodes

Node Addition and Failure

● If a node fails, any files with primary replicas
there will have a new primary replica chosen
from one of the K replicas

● Pastry handles nodes leaving/joining and
notifies a Kosha node, N, when any nodes in
N's leaf set are affected.
– Kosha then adjusts where it stores its files

accordingly

Node Addition and Failure

● Pastry evenly divdes key space between
adjacent nodes
– Node with nodeId numerically closest to the file

key will be responsible for the file
● When a node is added, only its immediate

two neighbours need to be modified
– Because file keys on the neighbous nodes may

be numerically closer to the new node
– Kosha examines files stored on N and N's leaf

set to determine which files need to be moved
● This migration of files ensures a new node

has the files for which it is the primary node

Node Addition and Failure

● Pastry informs Kosha when a replica node
fails or a new node is added via a callback
function
– The local Kosha then creates a copy of files it is

the primary replica and sends the copy to the
newly added node which now serves as one of
the K replicas.

● All Kosha data on a revived node is purged
– Will have a new key, so old files no longer stored

here

Transparent Fault Handling

● When a primary node fails:
– Kosha detects an RPC error
– Removes mapping in virtual handle table
– Does a lookup on the requested file thus finding

a replica to become the primary node

Load Redistribution

● DHT provides good load balancing
– but it is possible that a node will be close to full

while neighbouring nodes store little data
● So, we perioidically redistribute files

– Proactive load balancing
– When a node is a pre-specified percent full

● Contacts its left and right neighbours and if they have
space, moves some files there

– Only one node can transfer files to another at a
time

● To prevent multiple nodes dumping files on the same
node

Software Architecture

Evaluation

● Compared modified Andrew benchmark to
NFSv3

● 16-nodes
– 4-nodes of 2GHz P4, 512MB RAM, 40 GB
– 12-nodes of 3GHz Xeon, 2GB RAM, 146GB
– Distribution level 1 (no subdirs distrubted) to

remove effect of subdir distribution
– Replication level 1
– 35 GB space alloced (i.e. More than enough so

redirection doesn't occur)
● NFS tests used two nodes (client, server)

Evaluation
Performs better than
NFS with one node
because
communications are
local to the node

Under 6% overhead for 16
nodes. Only 4.5%
additional overhead going
form 2 to 16 nodes.

Evaluation
Overhead in subdirectory
distribution for levels
relative to level 1:

- level 2 4.8%
- level 3 6.3%
- level 4 6.8%

i.e. Having a large
distribution level is OK

Evaluation

● File replication overhead
– Used replica of NFS file setup from department

server on a five-node Kosha server
– Failed one node

● Took 37 mins to copy 12.2 GB of data
● Since mean time to failure should be days in expected

usage, this is small

Fault Tolerance
Used an availability trace (up
or failed, recorded hourly) of
51,633 machines in a large
corporation over a
consecutive 35-day (840h)
period.

Simulated Kosha for 51,663
machine cluster and used this
data to introduce failures.

Kosha-0 (i.e. No replicas)
shows system performance is
affected when large number
of failures occur.

Kosha-1 increases availibility
significantly.

Kosha-3 gives 99.991%
availibility! (since new replicas
are created when old ones
become unavilable)

Related Work

● Gnutella, Freenet, Kazaa
– Basic P2P large-scale data sharing

● Oceanstore, CFS, PAST
– Strong persistence and reliability

● Ivy, Farsite, Pangaea
– Wide-area file systems with reliability
– Kosha instead extends NFS (i.e. LAN)

● NFSv4 provides system replication (static
only) and migration
– Kosha utilises unused space on cluster nodes

and desktops.
– Kosha could make use of NFSv4 in a later

version.

