V7D 75RME

Kosha: A Peer-to-Peer Enhancement for the Network
File System

Ali R. Butt
- Troy A. Johnson - Yili Zheng - Y. Charlie Hu

Journal of Grid Computing (2006) 4: 323—341

Robert Gravina

Agenda

Introduction

Enabling technologies

File distribution across nodes
Design of Kosha
Implementation

Evaluation

Related Work

I Introduction

off-the-shell equipment

— Of 500 instructional machines at Purdue, 84%
have 40GB, 90% free space.

e Use of NFS Is common in these
environments

e Design goal: utilise this cheap storage to
create a distributed file system with NFS
semantics

I e Systems used in grid computing typically use

I Introduction

different disk capacities

e Design goal: Provide:
- Location transparency
- Mobility transparency
- Load balancing
- High availability (file replication and transparent
fault handing)

I e Peer nodes may fail over time or have

I Enabling Technologies

- Scalable, fault resilient, self-organising

- Each node has a nodeld randomly assigned
form a circular 128-bit identifier space

- Given message and a key, Pastry reliably routes
message to hode numerically closest to key

e Each node maintains a routing table
- Rows of other nodes nodelds, which share
increasingly longer prefixes with the current

nodes nodeld
 Node forwards message to a node that has the
longest prefix in common with the key.

I e Uses a DHT implementation called Pastry

I Enabling Technologies

- I nodes which are numerically closest to the
present nodes nodeld (//2 smaller and //2 larger)

- Leaf set ensures reliable message delivery and
used to store replicas of application objects

I e Each node maintains a leaf set

Distribution of File System

/home

/

fkosha_store

Figure 1 Virtual directory hierarchy: /kosha is the virtual
directory and is the union of /kosha_store on all the nodes.

fkosha_store

Node 2
/
/kosha
m /home

Mounted as /kosha

All files in a directory (but not

subdirectories) reside on the

same node

- helps to reduce the costs of

hashing/lookups for storage
node while maintaining
good load balance

Distribution of File System

e e.g. To locate a node for /dir/file1 Kosha performs the following

mapping:
- /kosha/dir1/file1

e DHT(hash(dir1)) : kosha store/dir1/file1

/

T~

usr var . . « Kkosha Hash

Function
(SHA-1)

alpha

ﬂ (beta)
beta

gamma
theta

Figure 2 Example of file distribution to multiple nodes.
The virtual mount point is /kosha. The directory name is
first hashed using a general hashing function such as SHA-1
to generate a unique key, which is then routed using Pastry

gamma
alpha

to a node whose nodeld is numerically closest to the key.
The selected Pastry node will provide the physical storage
for the directory. The actual file operations, however, are
performed via the NFS protocol (not shown).

I Optimisation

 On create file, redirect
- Concatinate random salt to filename, rehash,
find new node
- Special soft link created in parent directory with

same name as original file
e Target is new filename on new node

I * \What happens when a node is full?

_filey . . Lalpha

ﬁ]r.X “m
ﬁlez fileA
fileY sdirM ﬁl"B
fileM fileN

Figure 3 Example of subdirectory distribution to multiple
nodes. The files in the same directory are stored on the
same node as the parent directory. However, the subdi-
rectories are distributed to remote nodes. The distribution
level is set to 2, and A has limited capacity which causes

/alpha/sdir2/sdirM to be redirected to B. The example con-
tents of the special link are shown in the rectangle. Node

B is chosen for storing the redirected subdirectory because
DHT(hash(sdirM#)) = B.

I Kosha design

- Kosha determines node on which a file is stored
e Hash, lookup, maybe redirection

- NFS RPC is modified to occur on /kosha_store
on selected node, rather than /kosha on client
node

- Selected node performs operation and returns
results to Kosha

- Kosha returns control to the client

I When an operation on /kosha occurs

I NFS Operations Support

sent to the same storage node
- 1.e. Every user sees same instance of file

- In case of failure, Kosha can still provide access
to a file (unlike NFS)

* Virtual File Handles
- A handle to a file in Kosha
- Kosha keeps a mapping table client file handle
-> virtual file handle
- I.e. Location transparency

I e All accesses to a file are guaranteed to be

I Managing Replicas

neigbouring K nodes in the node identifier

space (not proximity!)

- Randomly assigned, so dispersed for godo fault
tolerance

e For each file, there is a primary replica
— 1.e. DHT(hash(dir1)) : kosha_store/dir1/file1 (from earlier)
- All accesses to the file are sent to the primary
replica
e |t is responsible for mataining the K replicas of
the file on K neighbouring nodes

I e Kosha maintains K replicas of a file on the

I Node Addition and Failure

 |f a node fails, any files with primary replicas
I there will have a new primary replica chosen
from one of the K replicas
e Pastry handles nodes leaving/joining and
notifies a Kosha node, N, when any nodes in

N's leaf set are affected.
- Kosha then adjusts where it stores its files
accordingly

I Node Addition and Failure

adjacent nodes
- Node with nodeld numerically closest to the file
key will be responsible for the file
 \When a node is added, only its immediate

two neighbours need to be modified
- Because file keys on the neighbous nodes may
be numerically closer to the new node
- Kosha examines files stored on N and N's |eaf
set to determine which files need to be moved
e This migration of files ensures a new node

has the files for which it is the primary node

I » Pastry evenly divdes key space between

I Node Addition and Failure

fails or a new node is added via a callback

function
- The local Kosha then creates a copy of files it is
the primary replica and sends the copy to the
newly added node which now serves as one of
the K replicas.

e All Kosha data on a revived node is purged

- Wil have a new key, so old files no longer stored
here

I Pastry informs Kosha when a replica node

I Transparent Fault Handling

- Kosha detects an RPC error

- Removes mapping in virtual handle table

- Does a lookup on the requested file thus finding
a replica to become the primary node

I WWhen a primary node fails:

I Load Redistribution

- but it is possible that a node will be close to full
while neighbouring nodes store little data

e S0, we perioidically redistribute files
- Proactive load balancing

- When a node is a pre-specified percent full
e Contacts its left and right neighbours and if they have
space, moves some files there
- Only one node can transfer files to another at a
time
e To prevent multiple nodes dumping files on the same
node

I e DHT provides good load balancing

Software Architecture

Figure 4 Kosha
architecture: 1 application
makes an I/O system call,
2 kernel makes an RPC
call, 3a local port request
to peer substrate or b
handle substituted and
RPC forwarded, 4a
overlay locates node
storing file or b file /O
occurs, 5a local port reply
from peer substrate or b
I/O result returned, 6
RPC returns with virtual
handle or result, 7 system
call returns control to
application.

Remote

User—space

Kernel-space

_p2p
‘Network}

. p2p Node
Application/ C Mb nfsd nfsd nfsd
" = P _..r'_'_,.r'"' _..r._._,.-""
user /kosha loopback —
SErver
@ i'irt:ual handle<—> | | [T T2 °C L - - ____-__C
real path & handle : NFS protocol | 1 file redirection !
S N @_ S A , handler !'! manager :
_____ P N —
— D || pzp comm. 1 s roctory |
OS NFS Client p2p comm. &) sub directory |
) module ', distribution |
file descriptor <—>virtual handle _____Z ,' | manager |
nfsd replication | =T T T T T T T
| manager :lmpback server

I Evaluation

NFSv3

e 16-nodes

- 4-nodes of 2GHz P4, 512MB RAM, 40 GB

- 12-nodes of 3GHz Xeon, 2GB RAM, 146GB

— Distribution level 1 (no subdirs distrubted) to
remove effect of subdir distribution

— Replication level 1

- 35 GB space alloced (i.e. More than enough so
redirection doesn't occur)

e NFS tests used two nodes (client, server)

I e Compared modified Andrew benchmark to

Under 6% overhead for 16
Performs better than nodes. Only 4.5%

NFS with one node - additional overhead going
because Eva I U atl on form 2 to 16 nodes.
communications are
local to the node

Table 1 Performance of a modified Andrew benchmark on Kosha with increasing number of nodes.

Benchmark NFS \ Kosha
exec. time v
1 Node 2 Node 4 Nodes 8 Nodes 16 Nodes
exec. time exec. time exec. time exec. time exec. time
(overhead) (overhead) (overhead) (overhead) (overhead)
mkdir 2.242 2.241 2.243 2.259 2.261 2.304
(1.000) (1.000) (1.008) (1.008) (1.028)
copy 17.503 16.496 17.401 17.601 17.791 18.207
(0.942) (0.994) (1.006) (1.016) (1.040)
stat 1.531 1.513 1.533 1.534 1.537 1.595
(0.988) (1.001) (1.002) (1.004) (1.042)
grep 3.709 3.235 4.026 4.030 4.092 4.181
(0.872) (1.085) (1.087) (1.103) (1.127)
compile 21.897 22.933 23.231 23.560 23.860 24.254
(1.047) (1.061) (1.076) (1.090) (1.108)
Total 46.882 46.418 48.434 48.984 49.541 50.541
(0.990) (1.033) (1.045) (1.057) (1.078)

The table shows average execution times for each phase and the respective overhead of Kosha compared to NFS. The
distribution level for Kosha was fixed at 1 for these measurements. All times are in seconds.

Table 2 Performance of a
modified Andrew
benchmark on Kosha as
the distribution level is
increased. For these
measurements, the
number of nodes was
fixed at 8. All times are in
seconds.

Overhead in subdirectory
distribution for levels

Eva I u ati O n relative to level 1:

-level 2 4.8%
-level 3 6.3%
-level4 6.8%

i.e. Having a large
distribution level is OK

Benchmark Dist-levell Dist-level2 Dist-level3 Dist-level 4
exec. time exec. time exec. time exec. time
(overhead) (overhead) (overhead)
mkdir 2.261 2.483 2.623 2.692
(1.098) (1.160) (1.191)
copy 17.791 19.231 19.286 19.301
(1.081) (1.084) (1.085)
stat 1.537 1.752 1.786 1.801
(1.140) (1.162) (1.172)
grep 4.092 4.297 4.331 4.352
(1.050) (1.058) (1.064)
compile 23.860 24.147 24.623 24.770
(1.012) (1.032) (1.038)
Total 49.541 51.910 52.649 52.916

(1.048) (1.063) (1.068)

I Evaluation

- Used replica of NFS file setup from department
server on a five-node Kosha server

- Failed one node
e Took 37 mins to copy 12.2 GB of data
e Since mean time to failure should be days in expected
usage, this is small

I * File replication overhead

Figure 7 Percentage

of total files that are
available over a period
of 840 h. The distribution
level was fixed at 3 for
these results. The larpest
number of failures

(4, 890) occurred at hour
615, where over 12% files
became unavailable for
Kosha-0 compared to
only (L16% for Kosha-3.

Percentage of files available

Percentage of files available

Percentage of files available

100
89
98

a7 r

96
895

100
]

98

g7
96
895

100

98

96

94 |

892

80

BE

Fault Tolerance

i i i i i [fHosha 3 L
4] 100 200 300 400 500 600 Foo 00
Mumber of hours
: ; : A A [Kosha 1
4] 100 200 300 400 500 G600 F00 HOO

Mumber of hours

L#irli“}é!%i* ",‘1%%1' ’e’iﬁ‘ﬁ' rl'& ﬂ"’{{ i‘.*!“ jTi i, r"
?"L~ airt Th 4ﬂ
1 '| ! [
: ; ; ; : [_Kaosha .
0 100 200 300 400 00 G600 F00 B00

Mumber of hours

Used an availability trace (up
or failed, recorded hourly) of
51,633 machines in a large
corporation over a
consecutive 35-day (840h)
period.

Simulated Kosha for 51,663
machine cluster and used this
data to introduce failures.

Kosha-0 (i.e. No replicas)
shows system performance is
affected when large number
of failures occur.

Kosha-1 increases availibility
significantly.

Kosha-3 gives 99.991%
avalilibility! (since new replicas
are created when old ones
become unavilable)

I Related Work

- Basic P2P large-scale data sharing

e Oceanstore, CFS, PAST
- Strong persistence and reliability

* lvy, Farsite, Pangaea

- Wide-area file systems with reliability
- Kosha instead extends NFS (i.e. LAN)

e NFSv4 provides system replication (static

only) and migration

- Kosha utilises unused space on cluster nodes
and desktops.

- Kosha could make use of NFSv4 in a later
version.

I e Gnutella, Freenet, Kazaa

