
Mimir: Memory-Efficient and Scalable MapReduce
for Large Supercomputing Systems

Tao Gao,a,d Yanfei Guo,b Boyu Zhang,a Pietro Cicotti,c Yutong Lu,e,f,d

Pavan Balaji,b and Michela Taufera

aUniversity of Delaware
bArgonne National Laboratory

cSan Diego Supercomputer Center

dNational University of Defense Technology
eNational Supercomputing Center in Guangzhou

fSun Yat-sen University

Abstract—In this paper we present Mimir, a new implementa-
tion of MapReduce over MPI. Mimir inherits the core principles
of existing MapReduce frameworks, such as MR-MPI, while
redesigning the execution model to incorporate a number of
sophisticated optimization techniques that achieve similar or
better performance with significant reduction in the amount of
memory used. Consequently, Mimir allows significantly larger
problems to be executed in memory, achieving large performance
gains. We evaluate Mimir with three benchmarks on two high-
end platforms to demonstrate its superiority compared with that
of other frameworks.

Keywords: High-performance computing; Data analytics; MapRe-

duce; Memory efficiency; Performance and scalability

I. INTRODUCTION

With the growth of simulation and scientific data, data

analytics and data-intensive workloads have become an in-

tegral part of large-scale scientific computing. Analyzing and

understanding large volumes of data are becoming increasingly

important in various scientific computing domains, often as a

way to find anomalies in data, although other uses are being

actively investigated as well. Big data analytics has recently

grown into a popular catch-all phrase that encompasses vari-

ous analytics models, methods, and tools applicable to large

volumes of data. MapReduce is a programming paradigm

within this broad domain that—loosely speaking—describes

one methodology for analyzing such large volumes of data.

We note that big data analytics and MapReduce are not

inventions of the scientific computing community, although

several ad hoc tools with similar characteristics have existed

for several decades in this community. These are generally

considered borrowed concepts from the broader data analytics

community [10] that has also been responsible for developing

some of the most popular implementations of MapReduce,

such as Hadoop [27] and Spark [30]. While these tools provide

an excellent platform for analyzing various forms of data, the

hardware/software architectures that they target (i.e., generally

Linux-based workstation clusters) are often different from

that which scientific computing applications target (i.e., large

supercomputing facilities).

While commodity clusters and supercomputing platforms

might seem similar, they have subtle differences that are

important to understand. First, most large supercomputer in-

stallations do not provide on-node persistent storage (although

this situation might change with chip-integrated NVRAM).

Instead, storage is decoupled into a separate globally acces-

sible parallel file system. Second, network architectures on

many of the fastest machines in the world are proprietary.

Thus, commodity-network-oriented protocols, such as TCP/IP

or RDMA over Ethernet, do not work well (or work at all)

on many of these networks. Third, system software stacks on

these platforms, including the operating system and compu-

tational libraries, are specialized for scientific computing. For

example, supercomputers such as the IBM Blue Gene/Q [3]

use specialized lightweight operating systems that do not

provide the same capabilities as what a traditional operating

system such as Linux or Windows might.

Researchers have attempted to bridge the gap between

the broader data analytics tools and scientific computing

in a number of ways. These attempts can be divided into

four categories: (1) deployment of popular big data process-

ing frameworks on high-performance computers [24], [17],

[26], [9]; (2) extension to the MPI [5] interface to support

〈key, value〉 communication [16]; (3) building of MapReduce-

like libraries to support in situ data processing on supercom-

puting systems [25]; and (4) building of an implementation

of MapReduce on top of MPI [21]. Of these, MapReduce

implementations over MPI—particularly MR-MPI [21]—have

gained the most traction for two reasons: they provide C/C++

interfaces that are more convenient to integrate with scientific

applications compared with Java, Scala, or Python interfaces,

which are often unsupported on some large supercomputers;

and they do not require any extensions to the MPI interface.

MR-MPI has taken a significant first step in bridging the gap

between data analytics and scientific computing. It embodies

the core principles of MapReduce, including scalability to

large systems, in-memory processing where possible, and

spillover to the I/O subsystem for handling large datasets; and

it does so while allowing scientific applications to easily and

efficiently take advantage of the MapReduce paradigm [31],

[22]. Yet despite its success, the original MR-MPI implemen-

tation still suffers from several shortcomings. One shortcoming

is its inability to handle system faults: we addressed this

shortcoming in our previous work [12]. Another significant

shortcoming is its simple memory management. Specifically,

2017 IEEE International Parallel and Distributed Processing Symposium

1530-2075/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPS.2017.31

1098

MR-MPI uses a model based on fixed-size “pages”: MR-MPI

pages are static memory buffers that are allocated at the start

of each MapReduce phase and used throughout this phase. As

long as the application dataset can fit in these pages, the data

processing is in memory. But as soon as the application dataset

is larger than what fits in these pages, MR-MPI spills over the

data into the I/O subsystem. While this model is functionally

correct, it leads to a tremendous loss in performance.

Figure 1 illustrates this point with the WordCount bench-

mark on a single compute node of the Comet cluster at the San

Diego Supercomputing Center (cluster details are presented

in Section IV). We note that while MR-MPI provides the

necessary functionality for this computation, it experiences

significant slowdown in performance for datasets larger than 4

GB, even though the node itself contains 128 GB of memory.

Consequently, increasing the dataset size from 4 GB to 64

GB results in nearly three orders of magnitude degradation in

performance.

Fig. 1: Single-node execution time of WordCount with MR-MPI on
Comet.

The goal of the work presented here is to overcome such in-

efficiencies and design a memory-efficient MapReduce library

for supercomputing systems. To this end, we present a new

MapReduce implementation over MPI, called Mimir. Mimir

inherits the core principles of MR-MPI while redesigning

the execution model to incorporate a number of sophisticated

optimization techniques that significantly reduce the amount of

memory used. Our experiments demonstrate that for problem

sizes where MR-MPI can execute in memory, Mimir achieves

equal or better performance than does MR-MPI. At the same

time, Mimir allows users to run significantly larger problems in

memory, compared with MR-MPI, thus achieving significantly

better performance for such problems.

The rest of this paper is organized as follows. We provide

a brief background of MapReduce and MR-MPI in Section II.

In Section III, we introduce the design of Mimir and present

experimental results demonstrating its performance in Sec-

tion IV. Other research related to our paper is presented in

Section V. We finally draw our conclusions in Section VI.

map

map

aggregate

aggregate

convert

convert

reduce

input

output

output

input KVs

KVs

KMVs

KMVs

Exchange KVs

Fig. 2: The map, shuffle, and reduce phases in MR-MPI.

II. BACKGROUND

In this section, we provide a high-level overview of the

MapReduce programming model and the MR-MPI implemen-

tation of MapReduce.

A. MapReduce Programming Model

MapReduce is a programming model intended for data-

intensive applications [10] that has proved to be suitable for

a wide variety of applications. A MapReduce job usually

involves three phases: map, shuffle, and reduce. The map phase

processes the input data using a user-defined map callback

function and generates intermediate 〈key, value〉 (KV) pairs.

The shuffle phase performs an all-to-all communication that

distributes the intermediate KV pairs across all processes. In

this phase KV pairs with the same key are also merged and

stored in 〈key, 〈value1, value2...〉〉 (KMV) lists. The reduce
phase processes the KMV lists with a user-defined reduce

callback function and generates the final output. A global

barrier between each phase ensures correctness. The user needs

to implement the map and reduce callback functions, while

the MapReduce runtime handles the parallel job execution,

communication, and data movement.

Several successful implementations of the MapReduce

model exist, such as Hadoop [1] and Spark [30]. These

frameworks seek to provide a holistic solution that includes

the MapReduce engine, job scheduler, and distributed file

system. However, large supercomputing facilities usually have

their own job scheduler and parallel file system, thus making

deployment of these existing MapReduce frameworks in such

facilities impractical.

B. MapReduce-MPI (MR-MPI)

MR-MPI is a MapReduce implementation on top of MPI

that supports the logical map-shuffle-reduce workflow in four

phases: map, aggregate, convert, and reduce. The

map and reduce phases are implemented by using user call-

back functions. The aggregate and convert phases are

fully implemented within MR-MPI but need to be explicitly

invoked by the user. Figure 2 shows the workflow of MR-

MPI. The aggregate phase handles the all-to-all movement

of data between processes. Within the aggregate phase,

MR-MPI calculates the data and buffer sizes and exchanges

the intermediate KV pairs using MPI_Alltoallv. After the

exchange, the convert phase merges all received KV pairs

based on their keys.

Similar to traditional MapReduce frameworks, MR-MPI

uses a global barrier to synchronize at the end of each phase.

1099

Because of this barrier, the job must hold all the intermediate

data either in memory or on the I/O subsystem until all

processes have finished the current stage. For large MapRe-

duce jobs, intermediate data can use considerable memory.

Especially for iterative MapReduce jobs, where the same

dataset is repeatedly processed, buffers for intermediate data

need to be repeatedly allocated and freed.

Frequent allocation and deallocation of memory buffers with

different sizes can result in memory fragmentation. Unfortu-

nately, some supercomputing systems, such as the IBM BG/Q,

use lightweight kernels with a simple memory manager that

does not handle such memory fragmentation [7]. In order

to avoid memory fragmentation, MR-MPI uses a fixed-size

buffer structure called page to store the intermediate data. An

MR-MPI page is simply a large memory buffer and has no

relationship to operating system pages. By default, the size

of a page is 64 MB, although it is configurable by the user.

Generally, a user needs to set a larger page size in order to

use the system memory more effectively. For each MapReduce

phase, MR-MPI tries to allocate all the pages it needs at once.

The minimum number of pages needed by the map, aggregate,

convert, and reduce phases is 1, 7, 4, and 3, respectively.

The coarse-grained memory allocation in MR-MPI leads to

an efficiency problem: not all the allocated pages are fully

utilized. For some MapReduce jobs, the size of intermediate

data decreases as the data passes through different phases. For

example, during the conversion from KVs to KMVs, the values

with the same key are grouped together, and the duplicate keys

are dropped. If all KVs fit in one page, the merged KMVs

will be smaller than the page size, and thus the buffer storing

the KMVs will be underutilized. While some pages still have

space, other pages may already be full. When a page is full,

MR-MPI writes the contents of the page to the I/O subsystem

(referred to as I/O spillover in MapReduce frameworks). MR-

MPI supports three out-of-core writing settings: (1) always

write intermediate data to disk; (2) write intermediate data

to disk only when the data is larger than a single page; and

(3) report an error and terminate execution if the intermediate

data is larger than a single page size. Because supercomputing

systems generally do not have local disks, the I/O subsystem

to which the page can be written is often the global parallel

file system. This makes the I/O spillover expensive.

Aside from the inefficient use of memory buffer space, MR-

MPI suffers from redundant memory buffers and unnecessary

memory copies. Figure 3 shows the seven pages used in

the aggregate phase. The first step in aggregate is to

partition the KVs using the hash function. MR-MPI determines

to which process each KV should be sent and the total size

of the data to be sent to each process. MR-MPI uses two

temporary buffers to store structures related to partitioning of

data. After partitioning, MR-MPI copies the KVs from map’s

output buffer to the send buffer and uses MPI_Alltoallv
to exchange the data with all processes. The received KVs are

then stored in the receive buffer. Because the partitioning of

KVs is not guaranteed to be fully balanced, some processes

may receive significantly more data than others. MR-MPI

KV before communication KV after communication

receive buffersend buffer

temporary buffer

temporary buffer

Fig. 3: Memory usage in aggregate phase.

allocates two pages for the receive buffer to prevent buffer

overflow due to partitioning skew. The aggregate phase

copies the received KVs to the input buffer of the succeeding

convert phase. Overall, the aggregate uses seven pages.

However, at least two of them—the map’s output buffer and

the convert’s input buffer—are redundant. They can be

avoided if the preceding map phase uses the send buffer as

the output buffer and the succeeding convert phase uses the

receive buffer as the input buffer. Inserting the output of the

preceding map directly into send buffer also can reduce the

use of temporary buffers by partitioning the KVs directly. A

more sophisticated workflow can also eliminate the possibility

of receive buffer overflow, thus reducing the size of the receive

buffer by half.

III. DESIGN OF MIMIR

The primary design goal of Mimir is to allow for a memory-

efficient MapReduce implementation over MPI. The idea is to

have Mimir achieve the same performance as MR-MPI for

problem sizes where MR-MPI can execute in memory, while

at the same time allowing users to run significantly larger

problems in memory, compared with MR-MPI, thus achieving

substantial improvement in performance for such problems.

Mimir’s execution model offers three classes of improve-

ments that allow it to achieve significant memory efficiency.

The first two classes (Sections III-A and III-B) are “core”

optimizations; that is, they are an essential part of the Mimir

design and are independent of the user application. The third

class (Section III-C) is “optional” optimizations; that is, the

application needs to explicitly ask for these optimizations

depending on the kind of dataset and the kind of processing

being done on the data.

Mimir inherits the concepts of KVs and KMVs from MR-

MPI. However, it introduces two new objects, called KV

containers (KVCs) and KMV containers (KMVCs), to help

manage KVs and KMVs. The KVC is an opaque object that

internally manages a collection of KVs in one or more buffer

pages based on the number and sizes of the KVs inserted. KVC

provides read/write interfaces that Mimir can use to access the

corresponding data buffer. The KVC tracks the use of each

data buffer and controls memory allocation and deallocation.

In order to avoid memory fragmentation, the data buffers are

always allocated in fixed-size units whose size is configurable

1100

Fig. 4: Workflow of map and aggregate phases in Mimir.

by the user. When KVs are inserted into the KVC, it gradually

allocates more memory to store the data. When the data is read

(consumed), the KVC frees buffers that are no longer needed.

KMVCs are functionally identical to KVCs but manage KMVs

instead of KVs.

A. Mimir Workflow Phases (Core Optimizations)

Like MR-MPI, Mimir’s MapReduce workflow consists of

four phases: map, aggregate, convert, and reduce. A

key difference from MR-MPI, however, is that in Mimir the

aggregate and convert phases are implicit; that is, the

user does not explicitly start these phases. This design offers

two advantages. First, it breaks the global synchronization

between the map and aggregate phases and between the

convert and reduce phases. Thus, Mimir has more flexi-

bility to determine when the intermediate data should be sent

and merged. It also has the flexibility to pipeline these phases

to minimize unnecessary memory usage. We still retain the

global synchronization between the map and reduce phases,

which is required by the MapReduce programming model.

Second, it enables and encourages buffer sharing between the

map and aggregate phases, which can help reduce memory

requirements.

Figure 4 shows the workflow within the map and

aggregate phases. Each MPI process has a send buffer

and a receive buffer. The send buffer of the MPI process is

divided into p equal-sized partitions, where p is the number of

processes in the MapReduce job. Each partition corresponds

to one process. The execution of the map phase starts with the

computation stage. In this stage, the input data is transformed

into KVs by the user-defined map function executed by each

process. The new KVs are inserted into one of the send buffer

partitions by using a hash function based on the key. The aim

is to ensure that KVs with the same key are sent to the same

process. Users can provide alternative hash functions that suit

their needs, but the workflow stays the same.

If a partition in the send buffer is full, we temporarily

suspend the map phase and switch to the aggregate phase.

In this phase, all processes exchange their accumulated inter-

mediate KVs using MPI_Alltoallv: each process sends the

data in its send buffer partitions to the corresponding destina-

tion processes and receives data from all other processes into

its receive buffer partitions. Once the KVs are in the receive

Fig. 5: Workflow of convert and reduce phases in Mimir.

buffer, each process moves the KVs into a KVC. The KVC

serves as an intermediate holding area between the map and

reduce phases. After the data has been moved to this KVC, the

aggregate phase completes, and the suspended map phase

resumes. In this way, the map and aggregate phases are

interleaved, allowing them to process large volumes of input

data without correspondingly increasing the memory usage.

In the core design of Mimir, two user-defined callback func-

tions must be implemented by the application: the map and

reduce callback functions. In Section III-C we will introduce

additional optional callback functions that user applications

can implement for additional performance improvements.

Mimir supports three different types of input data sources:

files from disk, KVs from previous MapReduce operations for

multistage jobs or iterative MapReduce jobs, and sources other

than MapReduce jobs (e.g., in situ analytics workflows).

Figure 5 shows the workflow of the convert and reduce
phases in Mimir. In the convert phase, the input KVs are

stored in a KVC that is generated by the aggregate phase.

The convert phase converts these KVs into KMVs and

stores them in a KMVC. We adopt a two-pass algorithm to

perform the KV-KMV conversion. In the first pass, the size of

the KVs for each unique key is gathered in a hash bucket and

used to calculate the position of each KMV in the KMVC.

In the second pass, the KVs are converted into KMVs by

inserting them into the corresponding position in the KMVC.

When all the KVs are converted to KMVs, the convert
phase is complete. We then switch to the reduce phase and

call the user-defined reduce callback function on the KMVs.

We note that unlike the map and aggregate phases, the

convert and reduce phases cannot be interleaved.

B. Memory Management in Mimir (Core Optimizations)

Mimir uses two types of memory buffers: data buffers

for storing intermediate KVs and KMVs, and communication

buffers. Unlike MR-MPI, which statically allocates two large

data buffers for the KVs and KMVs, Mimir allows data buffers

to be dynamically allocated as the sizes of KVs and KMVs

grow. We create KVCs and KMVCs to manage the data

buffers.

Mimir creates two communication buffers: a send buffer and

a receive buffer. These buffers are statically allocated with the

same size. The size is configurable by the user and does not

need to be equal to the size of a data buffer. As mentioned in

Section III-A, the send buffer is equally partitioned for each

process, and the user-defined map function inserts partitioned

KVs directly into the send buffer: there is no additional data

copying from a map buffer to a send buffer. Thus, unlike MR-

1101

MPI, we no longer need a temporary buffer to function as

a staging area for partitioning the KVs. An unexpected side

benefit of this design is that it ensures that the size of received

data is never larger than the send buffer, even when the KV

partitioning is highly unbalanced. As a result, Mimir never

needs to allocate a receive buffer that is larger than the send

buffer.

C. Mimir Workflow Hints (Optional Optimizations)

This section describes the “optional” optimizations in

Mimir. That is, these optimizations are not automatic and need

to be explicitly requested for by the application. The reason

that these optimizations cannot be automatically enabled is

that they assume certain characteristics in the dataset and

the computation. If the dataset and computation do not have

those characteristics, the result of the computation can be

invalid or undefined. Therefore, we provide these capabilities

in Mimir but ask that the user explicitly enable them after

(manually) verifying that the dataset and computation follow

these requirements. These optimizations can be classified into

two categories.

The first category is for “advanced functionality.” As men-

tioned in Section III-A, Mimir requires two mandatory user-

defined callback functions to be implemented by the user

application: the map and reduce callback functions. In this

first category of optimizations, the user application can im-

plement additional callbacks that give the user more fine-

grained control of the data processing and movement. The

“partial reduction” (Section III-C1) and “KV compression”

(Section III-C2) optimizations come under this category.

The second category is for “hints,” where the user essen-

tially just gives a hint to the Mimir runtime with respect to

certain properties of the dataset being processed. There is no

change to either the dataset or the computation on the dataset

by the application—the application is simply telling Mimir

whether the dataset has certain properties or not. The “KV-

hint” (Section III-C3) optimization comes under this category.

1) Partial-Reduction: As mentioned in Section III-A, the

basic Mimir workflow performs the convert and reduce
phases in a noninterleaved manner. This requires potentially a

large amount of memory to hold all the intermediate KMVs in

the convert phase before reduce starts to consume them.

While this model ensures correctness for reduce functions, it

is conservative. For some jobs, this model leaves unexploited

some properties in the dataset, such as “partial-reduce invari-

ance,” which is essentially a combination of commutativity and

associativity in the reduction operations. With partial-reduce

invariance, merging the reduce output in multiple steps, each

step processing a partial block of intermediate data, does not

affect the overall correctness of the results. An example of

such a job is WordCount. For these types of MapReduce jobs,

the reduce can start as soon as some of the intermediate KVs

are available, without waiting for the KVs to be converted

to KMVs. This design allows us to perform reductions even

when the available memory is less than that required to store

all KMVs.

hash bucket
unique KV

Fig. 6: Design of partial-reduction in Mimir.

Mimir introduces data partial-reduction as an optimization

method for such cases, as shown in Figure 6. The optimization

is exposed as an additional user callback function that the

user can set, if desired. This callback function would then

replace the convert and reduce phases. The semantics of

the partial-reduction callback function are as follows. Mimir

scans the KVs and hashes them to buckets based on the key.

When it encounters a KV with a key that is already present

in the bucket, the partial-reduction callback is called, which

reduces these two KVs into a single KV. The existing KV

in the hash bucket then is replaced with the reduced version.

We note that the partial-reduction callback is called multiple

times; in fact, it is called as many times as there are KVs with

duplicate keys that need to be reduced.

2) KV Compression: KV compression is a common op-

timization used by many MapReduce frameworks, including

MR-MPI. It is conceptually similar to the partial-reduction

optimization. Like the partial-reduction optimization, this opti-

mization is exposed as an additional user callback function that

the user can set, if desired. The difference between KV com-

pression and partial reduction, however, is that the KV com-

pression callback function is called before the aggregate
phase, instead of during the reduce phase.

The general working model of KV compression is similar

to that of the partial-reduction optimization. When the map
callback function inserts a KV, it is inserted into a hash bucket

instead of the aggregate buffer. If a KV with an identical

key is found, the KV compression callback function is called,

which takes the two KVs and reduces them to a single KV.

The existing KV in the hash bucket then is replaced with the

reduced version.

The goal of the KV compression optimization is to reduce

the size of the KVs before the aggregate phase. As a result,

the data that is sent over the network in the aggregate phase

is greatly reduced. Since KV compression is used during the

map phase rather than the reduce phase, it can be applied

to a broader range of jobs, including map-only jobs.

We note, however, that KV compression has some down-

sides. First, KV compression uses extra buffers to store

the hash buckets. Thus, it reduces memory usage only if

the compression ratio reaches a certain threshold. Second,

it introduces extra computational overhead. Third, in Mimir

when KV compression is enabled, the aggregate phase is

delayed until all KVs are compressed to maximize the benefit

1102

Fig. 7: KV size of WordCount with Wikipedia dataset.

of compression. This third shortcoming is an implementation

issue and not a fundamental shortcoming of KV compression

itself, and we hope to improve it in a future version of

Mimir. While we implemented KV compression in Mimir for

completeness and compatibility with MR-MPI, based on these

shortcomings we caution users from trying to overexploit this

functionality.

3) KV-hint: The key and value in a KV are conventionally

represented as byte sequences of variable lengths, for gener-

ality. As a result, in Mimir we add an eight-byte header (two

integers), containing the lengths of the key and value, before

the actual data of the KV. For some datasets, however, these

keys and values are fixed-length types; for example, in some

graph processing applications, vertices and edges are always

64-bit and 128-bit integers, respectively. In this case, storing

the lengths for every key and value is highly redundant and

unnecessary. Mimir introduces an optimization called KV-hint

that allows users to tell Mimir that the length of the key and

value are constant for all keys. We implemented the KV-hint

optimization in the KVC so that the KVCs used by different

MapReduce functions can have their own setting of key and

value lengths.

Mimir provides interfaces for the user to indicate whether

the key or value has a fixed length throughout the entire

job. For example, the key in the WordCount application is

usually a string with variable length, but the value is always

a 64-bit integer. In this case, the user can provide a hint to

Mimir that the length of the value will always be 8 bytes.

We reserve a special value of -1 to indicate that the key or

value is a string with a null-character termination. While the

length of the string is variable in this case, it can be internally

computed by using the strlen function and thus does not

need to be explicitly stored. Figure 7 shows the memory usage

of the WordCount application while processing the Wikipedia

dataset [8]. The KV-hint optimization can save close to 26%

memory for the KVs. As an unexpected side benefit, this

optimization also reduces the amount of data that needs to

be communicated during the aggregate phase, thus improving

performance.

IV. EVALUATION

In this section, we evaluate Mimir with respect to memory

usage and performance and compare it with MR-MPI.

A. Platforms, Benchmarks, and Settings

Our experiments were performed on two different platforms:

the XSEDE cluster Comet [2] and the IBM BG/Q supercom-

puter Mira [4]. Comet is an NSF Track2 system located at the

San Diego Supercomputer Center. Each compute node has two

Intel Xeon E5-2680v3 CPUs (12 cores each, 24 cores total)

running at 2.5 GHz. Each node has 128 GB of memory and

320 GB of flash SSDs. The nodes are connected with Mellanox

FDR InfiniBand, and the parallel file system is Lustre. Mira

is an IBM BG/Q supercomputer located at Argonne National

Laboratory. It has 786,432 compute nodes. Each node has 16

1.6 GHz IBM PowerPC A2 cores and 16 GB of DRAM. The

nodes are connected with a 5D torus proprietary network, and

the parallel file system is GPFS. Mira uses I/O forwarding

nodes, with a compute-to-I/O ratio of 1:128; that is, each I/O

forwarding node is shared by 128 compute nodes. We used

MPICH 3.2 [6] for the experiments.

For our evaluation, we used three benchmarks: WordCount
(WC), octree clustering (OC), and breadth-first search (BFS).

WC is a single-pass MapReduce application. It counts the

number of occurrences of each unique word in a given input

file. We tested WC with two datasets: (1) a uniform dataset of

words (Uniform), which is a synthetic dataset whose words are

randomly generated following a uniform distribution, and (2)

the Wikipedia dataset (Wikipedia) from the PUMA dataset [8],

which is highly heterogeneous in terms of type and length of

words.

OC is an iterative MapReduce application with multiple

MapReduce stages. As the application name suggests, OC

is essentially a clustering algorithm for points in a three-

dimensional space. We use the MapReduce algorithm de-

scribed by Estrada et al. [11] for classifying points represent-

ing ligand metadata from protein-ligand docking simulations.

The original application was written in MR-MPI. We ported

it to Mimir for our experiments. The dataset is open source

and described by Zhang et al. in [31]. In the dataset, the

position of the points follows a normal distribution with a

0.5 standard deviation and a 1% density, meaning that the

MapReduce library searches for and finds regions that have

more than 1% of the total points.

BFS is an iterative map-only application. It is a graph

traversal algorithm that generates a tree rooted at a source

vertex. BFS is one of the three kernels of the Graph500

benchmark [20] and is a popular benchmark for evaluating

supercomputer performance for data-intensive applications.

We used the graph generator of the Graph500 benchmark

to generate the BFS data. The graphs that are generated are

scale free (i.e., the distribution of the edges follows a power

law) with an average degree of 32 (i.e., the ratio of edges to

vertices).

Of the optimizations presented in Section III-C, the KV-hint

and KV compression optimizations were applied to all three

benchmarks, while the partial-reduction optimization could be

applied only to WC and OC. In this section, we use hint, pr,

and cps when referring to the KV-hint, partial-reduction, and

KV compression optimizations, respectively. While Mimir can

1103

potentially set the page size to a small number in order to

maximize page use, we set the size to 64 MB for all tests to

ensure a fair comparison with MR-MPI, which uses 64 MB as

the default page size. We also set the communication buffer

to 64 MB to be consistent with the send buffer in MR-MPI.
Our metrics of success in this evaluation are peak memory

usage and execution time. Peak memory usage is the maximum

memory usage at any point in time during the application

execution. Execution time is the time from reading input data

to getting the final results of a benchmark. The input data is

stored in the parallel file system of our experimental platforms.

When comparing Mimir with MR-MPI, times were measured

for the two frameworks when the tests were performed in

memory (i.e., no process spills data to the I/O subsystem).

When performance metrics are missing in our results, the

reason is that the associated test ran out of memory and

spilled over to the I/O subsystem, thus causing substantial

performance degradation (which can be measured in orders

of magnitude of performance degradation).

B. Baseline Comparison with MR-MPI
In this section, we evaluate the core functionality and

optimizations present in Mimir (Sections III-A and III-B),

not including the optional optimizations from Section III-C.

We consider this the “baseline” implementation of Mimir and

compare it with MR-MPI in terms of peak memory usage and

execution time (on a single node) and weak scalability (on

multiple nodes). The page size of MR-MPI was set to 64 MB

and 512 MB on Comet and to 64 MB and 128 MB on Mira.

The default page size for MR-MPI is 64 MB; 512 MB and

128 MB are the maximum sizes possible for MR-MPI pages on

Comet and Mira, so that MR-MPI can use all of the memory

on these platforms, respectively.
Figure 8 shows the memory usage and job execution times

for all three benchmarks running on a single node of Comet.

For WC with a uniform dataset, when both frameworks can

run in memory, Mimir always uses less memory than MR-MPI

does (e.g., at least 25% less memory compared with MR-

MPI (64 MB)). For datasets larger than 512 MB, MR-MPI

(64 MB) runs out of memory; and for datasets larger than

4 GB, MR-MPI (512 MB) runs out of memory. Mimir, on the

other hand, supports in-memory computation for up to 16 GB

datasets (i.e., 4-fold larger than the best case of MR-MPI).

This improvement is due solely to Mimir’s workflow, which

uses memory more efficiently. Similar results are observed for

WC with the Wikipedia dataset. For OC and BFS, Mimir still

uses less memory (i.e., at least 34% and 64% less than MR-

MPI (64 MB) does) for small datasets and allows execution

of larger datasets (i.e., 4-fold larger for OC and 8-fold larger

for BFS) compared with MR-MPI. As long as the dataset

can be computed in memory, the execution times of the two

frameworks are comparable. Once the dataset can no longer be

computed in memory, we observe a substantial degradation of

the performance for the impacted framework (data not shown

in the figure).
Figure 9 shows the memory usage and job execution times

of the three benchmarks running on a single node of Mira.

(a) WC (Uniform) (b) WC (Wikipedia)

(c) OC (d) BFS

Fig. 8: Peak memory usage and execution times on one Comet node.

(a) WC (Uniform) (b) WC (Wikipedia)

(c) OC (d) BFS

Fig. 9: Peak memory usage and execution times on one Mira node.

We see the same trend on Mira as on Comet in terms of

more efficient use of memory (i.e., with a minimum gain of

40% across all tests), increased dataset sizes (i.e., 4-fold larger

for all benchmarks), and similar performance for in-memory

executions. Tests with 128 MB page sizes for MR-MPI were

not performed for OC and BFS because MR-MPI runs out of

memory.

We also studied the weak scalability of the three bench-

marks on Comet and Mira. We show in Figure 10 the results

for the WC benchmarks. In Figures 10a and 10b, we keep the

input data size per node to 512 MB because it is the largest

dataset that MR-MPI (64 MB) configurations can run on the

24 processes of Comet. In Figures 10c and 10d, we keep the

input data size per node to 256 MB because it is the largest

1104

(a) WC (Uniform, Comet) (b) WC (Wikipedia, Comet)

(c) WC (Uniform, Mira) (d) WC (Wikipedia, Mira)

Fig. 10: Weak scalability of MR-MPI and Mimir.

dataset that MR-MPI (64 MB) configurations can run on the

16 processes of Mira. On Comet, Mimir can easily scale up

to 64 nodes.1 On the other hand, MR-MPI (64 MB) can scale

up only to 32 nodes for WC (Uniform) and cannot scale up

to even 2 nodes for the highly imbalanced dataset in WC

(Wikipedia). When the page size increases from 64 MB to

512 MB, MR-MPI still scales up only to 16 nodes for WC

(Wikipedia). The loss in scalability for MR-MPI is due to data

imbalance: some processes have more intermediate data, thus

exceeding the page size and spilling to the I/O subsystem.

For a fair comparison between Mimir and MR-MPI across

platforms, we also ran the scalability study on up to 64 nodes

on Mira. We see similar trends in scalability on Mira as on

Comet: Mimir exhibits good scalability on Mira, while MR-

MPI with both 64 MB and 128 MB page sizes scales poorly

for imbalanced datasets.

Scalability studies of OC and BFS on Comet and Mira (not

shown in the paper) confirm the conclusions observed for WC.

C. Performance of KV Compression
In this section and in Section IV-D, we evaluate the optional

optimizations that we presented in Section III-C. Of the three

optimizations presented, only KV compression is available

in MR-MPI. Thus, for fairness, we compared Mimir with

MR-MPI only with this optimization enabled. The other two

optimizations (i.e., partial reduction and KV-hints) are not

enabled here. In Section IV-D we showcase the capabilities

of all three optional optimizations in Mimir.

We compared the impact of the KV compression optimiza-

tion on the memory usage of the three benchmarks when using

a single node on Comet and Mira. We used the maximum

page size from the previous comparisons for MR-MPI (i.e.,

on Comet we used 512 MB for all benchmarks; on Mira we

used 128 MB for WC (Uniform) and WC (Wikipedia) and

64 MB for OC and BFS), because the increased page size

1We note that 64 is the maximum number of nodes available to XSEDE
users on Comet.

(a) WC (Uniform) (b) WC (Wikipedia)

(c) OC (d) BFS

Fig. 11: Performance of KV compression on one Comet node.

allows MR-MPI to support larger datasets. For Mimir, we set

the page size and buffers to 64 MB.

Results for peak memory usage and execution time on a

single Comet node are shown in Figure 11. The KV compres-

sion implementation of Mimir reduces the peak memory usage

and allows processing more data in memory compared with the

baseline Mimir as well as with MR-MPI (with and without KV

compression) for WC (Uniform), WC (Wikipedia), and OC.

The reason is that the buffers in Mimir are carefully managed:

when KV compression reduces the size of the intermediate

data, the empty buffers are freed to reclaim the memory. For

BFS, Mimir has the same memory usage with and without

compression because the compression reduces the size of data

only during the graph traversal phase of the benchmark, while

the peak memory usage occurs in the graph partitioning phase,

which remains unaffected. Still, Mimir has a smaller, more

efficient memory usage than does MR-MPI. For both WC

(Uniform) and WC (Wikipedia) the figure shows datasets of

up to 64 GB; we note, however, that with KV compression

Mimir can support even larger datasets. KV compression

in Mimir improves the performance of WC (Uniform), WC

(Wikipedia), and OC but not that of BFS because of the

additional computational cost in KV compression, as described

in Section III-C2. With MR-MPI we do not observe any impact

on peak memory usage because, despite the compression, the

framework uses a fixed number of pages. In other words, the

compression just reduces the shuffled data but does not impact

the memory usage. Therefore, MR-MPI cannot support larger

datasets as Mimir can.

The single-node results on Mira are shown in Figure 12. The

peak memory usage and execution time patterns are similar

to those on Comet with Mimir, while processing up to 16-

fold larger datasets compared with MR-MPI when using KV

compression.

1105

(a) WC (Uniform) (b) WC (Wikipedia)

(c) OC (d) BFS

Fig. 12: Performance of KV compression on one Mira node.

D. Impact of Optional Optimizations in Mimir

As mentioned earlier, MR-MPI does not provide the

partial-reduction and KV-hint optimizations described in Sec-

tion III-C). Thus we focus here on understanding the limits of

Mimir alone, with respect to memory usage, execution time,

and scalability. We measured the peak memory usage and

execution time on a single node of Mira, as well as weak

scalability on up to 1,024 nodes of this supercomputer. The

page size and buffers used on Mimir were set to 64 MB.

Single-node results on Mira are shown in Figure 13. We see

that starting with the baseline implementation of Mimir and

by adding the KV-hint, partial-reduction, and KV compression

optimizations, one at a time, the peak memory usage reduces

accordingly for the WC (Uniform), WC (Wikipedia), and the

OC benchmarks. The BFS algorithm used by Mimir does

not support the partial-reduction optimization. BFS has a

reduction in memory usage with KV-hint but no improvement

with KV compression, as outlined in Section IV-C. The three

optimizations not only increase the amount of data that can

be processed on a single node of Mira—4-fold larger for WC

(Uniform), WC (Wikipedia), and OC and 2-fold larger for BFS

compared with the baseline implementation—but also improve

the performance of WC (Uniform), WC (Wikipedia), and OC.

The KV-hint optimization also improves the performance of

BFS.

We studied the weak scalability of Mimir on up to 1,024

nodes (i.e., 16,384 cores) of Mira. We used 2 GB/node

for the two WC settings, 227 points/node for OC, and 222

vertices/node for BFS as the dataset size per node; these

represent the maximum dataset sizes that the Mimir base-

line implementation can process on each node. Because the

maximum Wikipedia data that we can download from the

PUMA dataset is small (≈400 GB), we can test the weak

scalability of WC (Wikipedia) on up to 128 nodes only. As

shown in Figure 14, some versions of Mimir cannot scale to

(a) WC (Uniform) (b) WC (Wikipedia)

(c) OC (d) BFS

Fig. 13: Performance of different optimizations on one Mira node.

1,024 nodes because of the load imbalance of the data across

MPI processes: load imbalances cause some processes to run

out of memory. For example, the baseline implementation

can scale up to only 2 nodes (32 MPI processes) for WC

(Uniform), WC (Wikipedia), and OC before running out of

memory. The baseline implementation of BFS scales up to

256 nodes (4,096 MPI processes). After applying the KV-hint

optimization, WC (Uniform) and BFS scale up to 1,024 nodes;

WC (Wikipedia) and OC scale up to only 4 nodes. The latter

two benchmarks exhibit a much more severe load imbalance

for the datasets that we are using in our tests. By adding

the partial-reduction optimization, WC (Wikipedia) and OC

scale up to 8 nodes. Only after applying the KV compression

optimization does WC (Wikipedia) scale up to 128 nodes

and OC up to 1,024 nodes. In general, the optimizations

improve the overall execution times for WC (Uniform), WC

(Wikipedia), and OC. A few exceptions exist: for example,

when applied to WC (Uniform) and BFS, the KV compression

optimization does not improve performance because of the

extra compression overhead.

V. RELATED WORK

Apart from MR-MPI, other implementations of MapReduce

over MPI exist. K-MapReduce is a MapReduce framework

developed and optimized for the K supercomputer [18].

Contrary to K-MapReduce, Mimir was designed keeping in

mind a broader range of scientific computing platforms and

applications.

Smart [25] is a MapReduce-like system for in situ data pro-

cessing on supercomputing systems. Smart does not provide

the complete MapReduce semantics and its programming in-

terfaces, however, thus departing from the traditional MapRe-

duce model to serve the needs of in situ data processing. While

Smart certainly has a role to play in its target domain, it is

1106

(a) WC (Uniform, 2 GB/node) (b) WC (Wikipedia, 2 GB/node)

(c) OC (227 points/node) (d) BFS (222 vertices/node)

Fig. 14: Weak scalability of different optimizations on Mira.

not a valid replacement for applications relying on the full

semantics of MapReduce. Mimir, on the other hand, rigorously

supports the MapReduce model while still enabling efficient

in situ data analytics on supercomputing systems.
DataMPI [16] is a proposal to extend MPI to support

MapReduce-like communication. The proposal is a work in

progress, although it is unlikely to be integrated into the MPI

standard mainly because it does not articulate the need to

integrate such functionality into the MPI standard as opposed

to implementing it as a high-level library above MPI. That is,

the key question as to whether one can do MapReduce more

portably or efficiently by integrating DataMPI into the MPI

standard has not been answered by the researchers. In contrast

to DataMPI, Mimir implements the MapReduce model as a

lightweight portable framework on top of MPI.
Hoefler et al. [14] discuss using advanced MPI features to

optimize MapReduce implementations. Mohamed et al. [19]

discuss overlapping map and reduce functions in MapReduce

over MPI. These optimizations focus on improving the perfor-

mance of the shuffle communication. While such performance

optimizations are important for any MapReduce framework,

they are orthogonal to the memory efficiency improvements

that Mimir targets.
Efforts targeting cloud-based MapReduce frameworks on

supercomputing systems include adaptations of Hadoop [28]

and Spark [26], [28], acceleration of communication by us-

ing RDMA [17], and tuning scalability [9] in cloud-based

MapReduce frameworks. These projects, while working on

the underlying implementation of Hadoop and Spark, provide

unmodified Java/Python programming interfaces. Mimir’s pro-

gramming interface supports bindings for C and C++, which

are often more suitable for scientific computing applications.
Other research has focused on implementing the MapRe-

duce model on shared-memory systems. Phoenix [29], [23]

targets thread-based parallel programming on shared-memory

systems; Mars [13] is a MapReduce implementation on GPUs;

and Mrphi [15] is a MapReduce implementation optimized for

the Intel Xeon Phi. Different from these systems, Mimir works

on large-scale distributed-memory systems.

VI. CONCLUSIONS

In this paper, we present Mimir, a memory-efficient and

scalable MapReduce framework for supercomputing systems.

Compared with other MPI-based MapReduce frameworks,

such as MR-MPI, Mimir reduces memory usage significantly.

The improved memory usage comes with better performance,

ability to process larger datasets in memory (e.g., at least

16-fold larger for WordCount), and better scalability. Mimir’s

advanced optimizations improve performance and scalability

on supercomputers such as Mira (an IBM BG/Q supercom-

puter). Overall, our results for three benchmarks, four datasets,

and two different supercomputing systems show that Mimir

significantly advances the state of the art with respect to effi-

cient MapReduce frameworks for data-intensive applications.

Mimir is an open-source software, and the source code can be

accessed at https://github.com/TauferLab/Mimir.git.

ACKNOWLEDGMENT

Yanfei Guo and Pavan Balaji were supported by the

U.S. Department of Energy, Office of Science, under con-

tract number DE-AC02-06CH11357. Boyu Zhang, Pietro Ci-

cotti, Tao Gao, and Michela Taufer were supported by NSF

grants #1318445 and #1318417. Tao Gao was also supported

by China Scholarship Council. Yutong Lu was supported by

National Key R&D Project in China 2016YFB1000302. Part

of the research in this paper used resources of the Argonne

Leadership Computing Facility, which is a DOE Office of Sci-

ence User Facility. XSEDE resources, supported by NSF grant

ACI-1053575, were used to obtain some other performance

data.

REFERENCES

[1] Apahce Hadoop. http://hadoop.apache.org/.
[2] Comet Cluster. http://www.sdsc.edu/support/user guides/comet.html.
[3] IBM BG/Q Architecture. https://www.alcf.anl.gov/files/IBM BGQ

Architecture 0.pdf.
[4] Mira Supercomputer. https://www.alcf.anl.gov/mira.
[5] MPI: A Message-Passing Interface Standard. http://www.mpi-forum.

org/docs/mpi-3.1/mpi31-report.pdf.
[6] MPICH Library. http://www.mpich.org.
[7] Turing: Memory Fragmentation Problem. http://www.idris.fr/eng/turing/

turing-fragmentation memoire-eng.html.
[8] F. Ahmad, S. Lee, M. Thottethodi, and T. N. Vijaykumar. PUMA:

Purdue MapReduce Benchmarks Suite. 2012.
[9] N. Chaimov, A. Malony, S. Canon, C. Iancu, K. Z. Ibrahim, and

J. Srinivasan. Scaling Spark on HPC Systems. In Proceedings of the
International Symposium on High-Performance Parallel and Distributed
Computing (HPDC), pages 97–110, 2016.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Communications of the ACM, 51(1):107–113, 2008.

[11] T. Estrada, B. Zhang, P. Cicotti, R. S. Armen, and M. Taufer. A
Scalable and Accurate Method for Classifying Protein–ligand Binding
Geometries Using a MapReduce Approach. Computers in Biology and
Medicine, 42(7):758–771, 2012.

[12] Y. Guo, W. Bland, P. Balaji, and X. Zhou. Fault Tolerant Mapreduce-
MPI for HPC Clusters. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC), 2015.

1107

[13] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars:
A MapReduce Framework on Graphics Processors. In Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, pages 260–269, 2008.

[14] T. Hoefler, A. Lumsdaine, and J. Dongarra. Towards Efficient Mapre-
duce Using MPI. In Proceedings of the European Parallel Virtual
Machine/Message Passing Interface Users Group Meeting, pages 240–
249. Springer, 2009.

[15] M. Lu, Y. Liang, H. P. Huynh, Z. Ong, B. He, and R. S. M. Goh. Mrphi:
An Optimized MapReduce Framework on Intel Xeon Phi Coprocessors.
IEEE Transactions on Parallel and Distributed Systems, 26(11):3066–
3078, 2015.

[16] X. Lu, F. Liang, B. Wang, L. Zha, and Z. Xu. DataMPI: Extending MPI
to Hadoop-like Big Data Computing. In Proceedings of the 28th IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2014.

[17] X. Lu, M. W. U. Rahman, N. Islam, D. Shankar, and D. K. Panda. Accel-
erating Spark with RDMA for Big Data Processing: Early Experiences.
In Proceedings of the 22nd Annual Symposium on High-Performance
Interconnects, pages 9–16, 2014.

[18] M. Matsuda, N. Maruyama, and S. Takizawa. K MapReduce: A
Scalable Tool for Data-Processing and Search/Ensemble Applications on
Large-Scale Supercomputers. In Proceedings of the Cluster Computing
Conference (CLUSTER), 2013.

[19] H. Mohamed and S. Marchand-Maillet. MRO-MPI: MapReduce Over-
lapping Using MPI and an Optimized Data Exchange Policy. Parallel
Computing, 39(12):851–866, 2013.

[20] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang. Introducing
the Graph 500. Cray Users Group (CUG), 2010.

[21] S. J Plimpton and K. D. Devine. MapReduce in MPI for Large-Scale
Graph Algorithms. Parallel Computing, 37(9):610–632, 2011.

[22] S.-J. Sul and A. Tovchigrechko. Parallelizing BLAST and SOM
Algorithms with MapReduce-MPI Library. In Proceedings of the
25th International Symposium on Parallel and Distributed Processing

Workshops and Phd Forum (IPDPSW), pages 481–489, 2011.
[23] J. Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++: Modular MapRe-

duce for Shared-memory Systems. In Proceedings of the 2nd Interna-
tional Workshop on MapReduce and Its Applications, pages 9–16, 2011.

[24] M. Wasi ur Rahman, X. Lu, N. Sh. Islam, R. Rajachandrasekar, and
D. K. Panda. High-Performance Design of YARN MapReduce on
Modern HPC Clusters with Lustre and RDMA. In Proceedings of the
29th IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2015.

[25] Y. Wang, G. Agrawal, T. Bicer, and W. Jiang. Smart: A MapReduce-
like Framework for in-situ Scientific Analytics. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2015.

[26] Y. Wang, R. Goldstone, W. Yu, and T. Wang. Characterization and
Optimization of Memory-Resident MapReduce on HPC Systems. In
Proceedings of the 28th International Parallel and Distributed Process-
ing Symposium (IPDPS), pages 799–808, 2014.

[27] T. White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.
[28] X. Yang, N. Liu, B. Feng, X.-H. Sun, and S. Zhou. PortHadoop:

Support Direct HPC Data Processing in Hadoop. In Proceedings of
the International Conference on Big Data (Big Data), pages 223–232,
2015.

[29] R. M. Yoo, A. Romano, and C. Kozyrakis. Phoenix Rebirth: Scalable
MapReduce on a Large-Scale Shared-Memory System. In Proceedings
of the International Symposium on Workload Characterization, pages
198–207, 2009.

[30] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster computing with working sets. HotCloud,
10(10-10):95, 2010.

[31] B. Zhang, T. Estrada, P. Cicotti, and M. Taufer. On Efficiently Capturing
Scientific Properties in Distributed Big Data without Moving the Data:
A Case Study in Distributed Structural Biology Using MapReduce. In
Proceedings of the 16th International Conference on Computational
Science and Engineering (CSE), pages 117–124, 2013.

1108

