
Size Matters: Space/Time Tradeoffs to Improve
GPGPU Applications Performance

Abdullah Gharaibeh, Matei Ripeanu

{abdullah, matei}@ece.ubc.ca

Abstract—GPUs offer drastically different performance
characteristics compared to traditional multicore
architectures. To explore the tradeoffs exposed by this
difference, we refactor MUMmer, a widely-used,
highly-engineered bioinformatics application which has both
CPU- and GPU-based implementations.

We synthesize our experience as three high-level guidelines
to design efficient GPU-based applications. First, minimizing
the communication overheads is as important as optimizing the
computation. Second, trading-off higher computational
complexity for a more compact in-memory representation is a
valuable technique to increase overall performance (by
enabling higher parallelism levels and reducing transfer
overheads). Finally, ensuring that the chosen solution entails
low pre- and post-processing overheads is essential to
maximize the overall performance gains.

Based on these insights, MUMmerGPU++, our GPU-based
design of the MUMmer sequence alignment tool, achieves, on
realistic workloads, up to 4x speedup compared to a previous,
highly optimized GPU port.

I. INTRODUCTION

High-performance computing (HPC) platforms are gradually
shifting towards hybrid architectures. Simply put, hybrid
architectures combine high-frequency processors with massively-
multicore, yet low-frequency, accelerators. This combination
makes perfect sense as applications typically have both sequential
parts, run by the fast, high-frequency processor, and parallel parts,
run by the accelerators. As argued by Hill et al. [1], compared to
homogeneous multicore systems, hybrid architectures offer a
better balance between performance and used resources (power
and processor area). Examples of such hybrid platforms include
IBM’s Cell Broadband Engine, AMD’s Fusion architecture,
Intel’s Larrabee chip, and commodity systems that host both
traditional CPUs and commodity graphics processing units
(GPUs).

Experience with hybrid platforms powered by general purpose
GPU (GPGPUs) includes reports of significant speedups
compared to current homogeneous multicore systems in the same
price range [2]. These reports ignited passionate debate on the
limits of GPU-supported acceleration for various classes of
applications [3, 4].

Indeed, designing applications to run efficiently on a hybrid,
GPU-based platform is a challenging task for multiple reasons:

 First, the GPU processing power is offered in a restricted form
of parallelism, known as single-instruction multiple-data
(SIMD), which allows for only one instruction to operate on
multiple data items at each point in time. Hence SIMD
provides lower execution flexibility and requires extracting
parallelism at the low-level.

 Second, splitting the computation between the CPU and the
GPU requires explicit data transfers between their address
spaces over a shared I/O bus. Hence efficiently scheduling data
transfers between the two processing units, and finding a low
coupling point that limits the volume of data transferred, are
required to achieve best performance results.

 Finally, and most relevant to this work, most of the past
experience on performance-efficient data structures needs to be
carefully reconsidered when porting applications to use GPUs.
The reason is that GPUs offer different computational
tradeoffs compared to traditional multicore systems. On the
one hand, GPUs offer one order of magnitude higher peak
memory access bandwidth, and one order of magnitude higher
peak computational power. On the other hand, current GPUs
have limited, often one order of magnitude lower, internal
memory space; moreover their computational model results in
extra overheads as it relies on transferring data back and forth
between the device and the host system’s main memory.

This paper advocates the need for a careful space/time tradeoff
analysis when designing applications for (or porting applications
to) GPU-based hybrid platforms. In particular, we analyze and
evaluate these tradeoffs in the context of a well-engineered,
widely-used bioinformatics application [5-7] which performs
‘read alignments’: a memory-intensive operation involving exact
string matching for a large number of strings. The tool has both
CPU- and GPU-based implementations named MUMmer [5-7]
and, MUMmerGPU [8, 9], respectively.

Using a GPU to accelerate the ‘read alignment’ operation is
appealing for two reasons. First, GPUs support higher peak
memory bandwidth than traditional systems. This is facilitated by
faster memory technology used by GPUs, named GDDR, and by
employing a wider memory bus. Second, parallelizing this
operation is straightforward since matches can be processed
independently and the problem space can be easily partitioned.
Therefore, it is not surprising that, after careful optimizations [9]
to efficiently use GPU’s texture memory and improve data access
locality, MUMmerGPU achieves significant speedups compared
to its CPU counterpart.

Profiling the latest version of MUMmerGPU, however, reveals
that only a relatively low share of the total application runtime is
spent computing. Figure 1 shows that more than 50% of the time
is spent on data transfers and post-processing.

Our hypothesis is that the culprit for this arguably low use of the
GPU is the core data structure (namely the suffix tree) used for
performance-efficient string matching by both the original, CPU-
based tool, MUMmer, and its GPU port. We contend that this data
structure is not a good match for GPU implementations: it offers
fast matching at the cost of a large memory footprint (which
translates to large data transfers and limited parallelism) and
relatively complex post-processing.

© 2010 IEEE Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

SC10 November 2010, New Orleans, Louisiana, USA 978-1-4244-7558-2/10/$26.00

Thus, the goal of this study is to: first, explore the feasibility of
using a different data structure that offers different space/time
tradeoffs and, second, to evaluate the effect of this choice on the
overall application performance. Note that, to highlight the effect
of the choice of the data structure, we focus on the high-level
application design, and, throughout our design and
implementation effort, we pay little attention to low-level
performance optimizations.

The contributions of this work are as follows:

 First, we demonstrate the importance of a careful choice of the
data structure used to support a GPGPU application. We show
that a data structure that matches well the space/time tradeoffs
specific to a GPU can lead to dramatic performance
improvements. The direct implication of this observation is
that, when porting applications to a hybrid, GPU-supported
platform, designers should not only focus on extracting the
application parallelism usable in a SIMD model; but, in order
to maximize the performance gains, they may need to
reconsider the choice of the data structures used.

 Second, we provide MUMmerGPU++, a fully compatible GPU
port of the widely used sequence alignment tool MUMmer.
Our evaluation, performed on one commodity and one high-
end GPU card using realistic workloads, which include large-
scale human genome sequencing data, demonstrates that
MUMmerGPU++ enables up to 4x speedup compared to
MUMmerGPU, the highly optimized GPU port of the original
MUMmer sequence alignment tool. As we argue in §V, data
analysis has become a major bottleneck in generating new
knowledge from genomic data [10]; thus, accelerating
sequence alignment, a major step in data analysis, has the
potential to alleviate this bottleneck.

 We contrast, in the context of the sequence alignment
application, energy consumption for traditional and hybrid
(GPU-enabled) systems. We show that, although the energy
consumption rate of a traditional system is lower, the total
energy consumption to complete a full sequence alignment
workload for the hybrid system is much lower due to its
superior performance. While, for our experimental setup, the
hybrid system requires only a small (13%) performance
improvement to become more energy efficient than a
traditional one, MUMmerGPU++ offers much higher speedups
thus making the hybrid system over one order of magnitude
more energy efficient.

How to read this paper. To make this paper self-contained we
present a fair amount of background material. If the reader is
familiar with the read alignment problem (§II.A), the data
structures to accelerate string matching and their space/time
tradeoffs (§II.B), and the GPGPU programming model (§II.C)
then he can skip directly to §III, which discusses in detail the
effect of space/time tradeoffs and our effort to offload read
alignment computation to the GPU. §IV presents a detailed
evaluation of our solution, MUMmerGPU++, and compares it
with the past approach. §V extends the performance evaluation

over multiple directions (e.g., energy consumption, ability to
harness high-end GPUs) and discusses a number of interrelated
design issues. §VI concludes this paper.

II. BACKGROUND

Genome sequencing is the biochemical process of determining the
order of nucleotides in a DNA molecule. This is an essential
process to gain important information needed for biological and
medical studies. New high-throughput sequencing technologies,
such as 454 life sciences [11] and Illumina [12], enabled dramatic
increase in sequencing rates, while significantly reducing the
overall sequencing costs. This advancement enables producing an
enormous volume of data (generated at the rate of terabytes per
day) which needs to be processed and analyzed, leading, as a
result, to insatiable demand for high-performance computing.

This paper focuses on sequence alignment: the operation on
genomic data which aims to find all occurrences of one sequence
in another sequence, where a sequence is a string composed of
some alphabet (e.g., the alphabet set {A,C,G,T} in case of
genome sequences). Sequence alignment [13] is widely used in
computational biology studies such as gene finding, comparative
genomics, phylogenetic analysis and genome assembly. In
particular, we focus on a specific, yet important, use case in
sequence alignment, called genome read alignment.

A. The Read Alignment Problem

In read alignment, a large number of short sequences, (called
‘reads’) and referred hereafter as the query set, are aligned to a
longer genome reference sequence. This process is an essential
time-intensive operation in comparative genome assembly [14].

1) Formal Problem Definition
The read alignment problem can be formally defined as follows:
For each query q in the query set Q, find all maximal matches of
minimum length l in the reference string S. A maximal match is
defined as a match of a suffix qi of query q starting at position i
(and referred hereafter as a subquery) to a suffix Sj of the
reference string S that is at position j. The match is assumed to be

Table 1: Sample ‘read alignment’ workloads. For experimental purposes, we use three different minimum-match length values
Workload / Species Reference

sequence length
of queries Sequencing technology

(read length)
Minimum-match length

HS1 - Homo sapiens chromosome 2 238,202,930 78,310,972 454 (~200) Config1: 25, Config2: 50, Config3: 100
HS2 - Homo sapiens chromosome 3 100,537,107 2,622,728 Sanger (~700) Config1: 50, Config2: 100, Config3: 200
MONO - L. monocytogenes 2,944,528 6,620,471 454 (~120) Config1: 20, Config2: 40, Config3: 80
SUIS - S. suis 2,007,491 26,592,500 Illumina (~36) Config1: 15, Config2: 20, Config3: 30

HS1 HS2 MONO SUIS
0

20

40

60

80

100

4.05h

1.89h

2.35h

16.5min

1.24min

8.05min

18sec

1.24min

34sec

9sec

1.38min

31sec

Matching
Post.Processing
Data.Structure.Construction
Data.Transfer.from.to.GPU

Workloads

P
er

ce
nt

ag
e

Figure 1: Percentage of time spent in each processing stage
using MUMmerGPU for the workloads presented in Table 1,
for config2 (discussed in §II.A.2).

as long as possible, and not contained in any suffix qk, with k < i.

For example, for a query string “ACACT” and a match length of
at least three, the following three subqueries must be searched in
the reference string: ACACT, CACT, and ACT. For each
subquery, all match occurrences that are at least three characters
long must be reported. Figure 2 shows a snapshot of a reference
sequence, query set and alignment result.

2) Workload Characteristics
Depending on the species, the length of the genome reference
sequence ranges from a few million nucleotides (e.g., for
Streptococcus suis), to a few billion nucleotides (e.g., for Homo
sapiens), to a maximum of hundreds of billions nucleotides (e.g.,
for Amoeba dubia). A nucleotide is represented as a character
from the alphabet set {A,C,G,T}.

The number of queries ranges from few thousand to hundreds of
millions, and the query length ranges from tens to several hundred
nucleotides depending on the sequencing technology used. In
particular, current high-throughput sequencing technologies, such
as Illumina and 454, produce significantly shorter queries (30–
200 nucleotides) compared to previous sequencing generations
such as sanger (~700 nucleotides).

Table 1 presents a sample of read alignment workloads we fetched
from the National Center for Biotechnology Information (NCBI)
archive [15], and used to drive the experiments in this paper. The
workloads include sequencing data that cover a wide spectrum of
usage scenarios. For example, HS1 is a relatively large scale
workload for a Homo sapiens that aligns about 78M queries of
average length 200 to the genome sequence of the human
chromosome #2 which is about 238M nucleotide-long. MONO is
a smaller scale workload for a Listeria monocytogenes species
which aligns ~6M queries to a reference genome sequence ~2M
nucleotide-long.

Finally, the minimum match length is a user-specified parameter.
A short minimum-match length implies a relaxed assumption on
what is considered a match, and vice versa. On the one hand,
since all the suffixes of each query need to be aligned, a short
minimum-match length increases the number of subqueries to be
aligned per query, and, at the same time, increases the chance to
find matches; therefore the workload becomes larger, and requires
more processing time. On the other hand, a longer minimum-
match results in reducing the workload demands.

For each workload, we chose three minimum-match length values
that represent relaxed (config1), moderate (config2) and
conservative (config3) configurations with respect to typical

values used in practice [8, 9] (see Table 1).

B. Substring Matching

The core of the read alignment problem is a basic substring
matching operation: find a string of length m in another reference
string of length n, where n>>m. A naïve approach to this problem
is to exhaustively search the reference string. This approach has
linear space complexity, O(n); in fact, if a nucleotide is
represented using one Byte, the space requirement of this
approach is exactly n Bytes. However, the time complexity is
daunting: O(mn), especially when considering that matching
needs to be done on a large number of queries.

A more time-efficient approach to solve this problem is to
pre-process the long reference string into a data structure that
allows for efficient search. The rest of this section discusses the
two main data structures that have been proposed in the literature:
suffix trees [16] and suffix arrays [17].

1) Suffix Tree
A suffix tree (Figure 3) is a trie-like data structure that stores all
the suffixes of a given string S (the reference string in our case).
Each suffix has exactly one path from the root of the tree to a leaf.
The tree has n leaf nodes, corresponding to the n suffixes in S.
Further, each edge in the tree is labeled with a substring of S such
that the concatenation of the edge-labels from the root to a leaf
represents a suffix Sj of S.

Search procedure and its complexity. Searching the suffix tree is
done by navigating the tree starting from the root node, matching
the characters of the query string with the edge-labels. The search
complexity is O(m), where m is the length of the query string.
This is an attractive linear-time search solution which does not
depend on n, the length of the reference. Also, suffix trees can be
augmented with additional pointers, called suffix links (shown as
dashed arrows between internal nodes in Figure 3), which enable
time-efficient maximal-matching (discussed below). Conceptually,
a suffix link is an internal pointer from a node with path w (i.e.,
the concatenation of edge-labels from the root to the node) to
another node with path w, where is a single character and w is a
substring.

Processing the maximal-matches of a query q of length m requires
searching the suffix tree for all subqueries q0 to qm-l (where l is the
minimum-match length). This can be done by treating each
subquery as a separate query, and performing a separate search
operation for each one. However, this approach fails to take
advantage of the fact that we are searching for a group of related
suffixes. To this end, suffix links allow for exploiting this
opportunity: instead of traversing the suffix tree from the root

Figure 2: Genome read alignment example.

$

CAA TACACA$

0

5

CA$

2 4

CA$ $

3 1

$ CA$

Figure 3: The suffix tree for the string TACACA. Dashed
arrows represent suffix links.

Table 2: Suffix array for the string TACACA. The suffix and
index columns are shown for illustration only (i.e., they do not
present in the actual data structure). The LCP array represents
the longest common prefix between the suffixes in the current
and the previous array entry. The rank array represents the
reverse index of the suffix array and has the same role as the
suffix links in suffix trees: it is used to efficiently calculate
maximal matches as discussed in §III.C.

Index Suffix
Suffix
Array

LCP
Array

Rank Array
(Suffix Array -1)

0 (smallest) A 5 0 5
1 ACA 3 1 2
2 ACACA 1 3 4
3 CA 4 0 1
4 CACA 2 2 3

5 (largest) TACACA 0 0 0

node for each subquery, the matching can be resumed for
subquery qi by following the suffix link of the last matching node
of the previous subquery qi-1, hence saving i-1 comparisons for
each suffix, and rendering the complexity of matching all the
subqueries of a query to be O(m).

Space complexity. The time efficiency of the suffix tree comes at
the cost of additional computational and space overheads to build
and store the suffix tree. Although the space complexity grows
linearly with the reference sequence length as the tree requires
only O(n) nodes, in practice the constant factors are high and
suffix trees occupy a significant amount of space: between 22.4n
and 32.7n Bytes for DNA sequences [17-19], where n is the
sequence length. Storing the suffix links will require 4i additional
Bytes, where i is the number of internal nodes. As a result, efforts
have been made to reduce the space requirements of the tree,
which resulted in reducing the space requirement to 20n Bytes in
the worst case [19], without considering the suffix links.

Construction. The tree can be constructed in O(n) time [16],
which in practice becomes negligible when matching a large
number of queries. Further, suffix links are a by-product of suffix
tree construction, hence no extra pre-processing time is required
to produce them, yet they still consume additional space to store.

2) Suffix Array
To address the large space requirements of suffix trees Manber et
al. [17] proposed the suffix array, a data structure that enables
similar string matching operations yet consuming less space in
practice. A suffix array is a sorted array of all the suffixes of S in
lexicographical order [17] (presented in Table 2 for the same
reference string as in Figure 3). The data structure is represented
as an array of integers which correspond to the indices of the
suffixes in order (column labeled ‘suffix array’ in Table 2).

Search procedure and its complexity. A naïve search in the suffix
array takes O(mlog n) time when supported by a classic binary
search: O(log n) string comparisons demanded by the binary
search, and each string-comparison requires O(m) character
comparisons. In practice, however, a smart implementation of the
binary search that takes advantage of the fact that we are searching
related suffixes significantly improves the search time. Manber et
al. proved that the worst case time complexity can be improved to
O(m + log n) [17] at the expense of increased space usage by
associating the suffix array with an extra array of information,
namely the longest common prefix (LCP) array: an array that
stores the length of the longest common prefix between the suffix
stored in the current entry and that stored in the previous array

entry. Using the LCP array allows ‘priming’ the binary search:
that is, the search does not start from scratch for each string-
comparison. In a nutshell, the results of earlier string-comparison
iterations along with the LCP information are used to skip
unnecessary comparisons in subsequent iterations.

Space complexity. The suffix array has O(n) entries, the same
asymptotic space complexity as the suffix tree; in practice,
however, it consumes three to five times less space than suffix
trees [17, 18]. In particular, if we assume an integer is represented
on four Bytes, the array requires exactly 4n Bytes. The LCP and
the rank array (discussed in §III.C) add another 8n Bytes.

Construction. The suffix array can be constructed in linear time
[20-22]. As with the suffix tree, construction overheads are
amortized even for a relatively small number of queries.

C. GPGPU Programming

At the high-level, offloading computation to the GPU is an
iterative process of three stages: (i) transfer the input data to the
GPU’s internal memory, (ii) launch the processing ‘kernel’, a
function that, when called, is executed on the GPU, and (iii)
transfer the output from the GPU’s internal memory back to the
host’s main memory.

This processing model is imposed by the fact that the GPU has no
direct access to the host’s memory nor to its I/O devices (e.g.,
disk). Rather, the internal GPU processors can only access the
memory module hosted by the GPU card, itself. Consequently, the
application has to allocate buffers on the GPU’s local memory for
both input and output data, and to transfer the data to/from these
buffers from/to the host’s main memory.

The GPU architecture and programming model have been
discussed extensively in several previous publications; hence we
refer the reader to [23] for a detailed presentation on this subject.

III. OFFLOADING READ ALIGNMENT

This section discusses the challenges to offload read alignment to
the GPU (§III.A), presents MUMmerGPU’s approach to read
alignment based on suffix trees (§III.B), discusses our design of a
suffix array-based tool (§III.C), and the opportunities it enables to
gain extra speedups by significantly reducing the data transfers
and post-processing overheads (§III.D).

A. Challenges

The efficient use of GPUs to speedup read alignment faces two
main challenges:

 Limited onboard GPU memory. Current GPU models have one
order of magnitude less memory compared to the host’s main
memory. This limitation may constrain applications to partition
the problem space and perform computations in several
rounds, hence adding significant data transfer overheads
especially for data-intensive applications.

The space requirement of the read alignment problem is fairly
large, especially when considering long sequences such as
those of mammalian genomes [24]. For example, the human
reference genome spans more than 3 billion DNA nucleotides
(i.e., more than 3GB string) which, when processed into a
suffix tree or suffix array, would require significantly more
space (20x more, i.e., 60GB when using a suffix tree).
Moreover, current sequencing projects typically produce more
than 10x oversampling of the genome (i.e., the total length of

all queries is 10x the length of the reference sequence) which
needs to be aligned against the entire reference genome [25].
As a result, the space requirements of the problem are at least
one order of magnitude larger than the size of the onboard
memory in current and near-future GPU models (for example,
Nvidia has recently announced its new commodity GPU
model, GeForce GTX 480, which has 1.5GB of onboard
memory; current high-end GPU models like the Quadro FX
5900 have up to 6GB of onboard memory).

 Limited access to other I/O devices (e.g., disk). As mentioned
before, the GPU has access only to its onboard memory; hence
results have to be stored internally then transferred to the
host’s main memory. As a result, GPU applications with a
large output size need to divide the limited onboard memory
efficiently between the input and output buffers. This becomes
a challenge when the result size cannot be determined in
advance for a specific input size, or the maximum result size is
too large to be allocated. Addressing this limitation requires a
compressed, deterministic representation of the results, which
needs to be decompressed on the CPU (or possibly by another
round on the GPU), consequently introducing extra overheads.

In the case of read alignment problem, the output size cannot
be determined in advance as the number of alignments for each
subquery is not known beforehand. Moreover, the maximum
result size is O(mn|Q|), which is infeasible to allocate.

B. A Previous Effort: MUMmerGPU

Delcher et al. [5, 6] implemented MUMmer, a widely used tool
that performs read alignments on the CPU using suffix trees. The
tool has also been significantly improved in terms of performance
and space efficiency by Kurtz et al. [7]. Schatz et al. developed
[8] then optimized [9] a GPU version of the program, called
MUMmerGPU, which also uses suffix trees. To address the space
challenges of the problem (i.e., the long reference sequence, the
large number of queries, the unpredictable result size, and the
limited onboard GPU memory), MUMmerGPU divides the
computation into smaller-sized sub-computations that fit on the
GPU onboard memory. This is done by (i) dividing the long
reference string into shorter overlapping segments, (ii) dividing
the query set into smaller sized subsets, and (iii) reporting a
“compressed” representation of the results to the host’s memory.
Figure 4 presents the high-level GPU offloading algorithm
employed by MUMmerGPU.

MUMmerGPU constructs a suffix tree for each segment (a
partition of the reference string), and aligns each query subset to
all trees in rounds. Conceptually, a “round” is a four-stage process
(for a more detailed discussion, we refer the reader to [8, 9]):

 Copy in. The query subset and the suffix tree of the segment
are transferred to the GPU.

 Matching. The queries of a query subset are aligned to the tree
in parallel on the GPU. All subqueries of a query are processed
by a single GPU thread in order to take advantage of suffix
links. To make the result size predictable, the match kernel
does not report all the matches of each subquery (as discussed
previously, a subquery could have one or more matches;
however, the number of matches is not known in advance).
Instead, the match kernel reports only the longest match of
each subquery (node “Q” in Figure 5). This is done by
matching the characters of the subquery string with the edge-
labels until a mismatch or the end of the subquery is reached.

 Copy out. The results are transferred back to main memory.

 Post-processing. The results of the match kernel are
“decompressed” to find the other matches of each subquery.
This is done as follows (Figure 5 presents an example). First,
starting from node Q that corresponds to the longest match for
a subquey, the algorithm traverses back to the node at which
the match length equals the minimum-match length l (labeled P
in Figure 5). Intuitively, P is the lowest common ancestor of
the leaves that represent all subquery matches. Second, the
algorithm performs a depth-first traversal to report all the
leaves of the subtree rooted at P as the final result (i.e., the
indices in the reference string where the subquery occurs).

C. MUMmerGPU++

Schatz and his group report that MUMmerGPU achieves
significant speedups compared to the original CPU-based
MUMmer program [8]. A closer look at the match between suffix
tree-based search and the GPU characteristics prompted us to
investigate whether a suffix array implementation can enable
better utilization of the GPU. This section presents the suffix
array-based algorithms used by MUMmerGPU++ while the

structs = PreprocessReference(reference)
subsets = DivideQuerys(queries)

foreach subset in subsets do {
 results = NULL
 CopyIn(subset)

 foreach struct in structs do {
 CopyIn(struct)
 LaunchMatchKernel(subset, struct)
 CopyOut(results) /* append result */
 }

 Postprocess(results)
}

Figure 4: High-level GPU offloading algorithm

$

CA
A

P

TACACA$

0

5

CA$

2 4

CA$ $

Q

3 1

$ CA$
Matching stage

traversal

Post-processing
stage traversal

Figure 5: Alignment of query ACACT to reference
TACACA for a minimum-match length of one. The figure
demonstrates the alignment for only the first subquery
(i.e., the string ACACT, itself). The dotted path is
traversed in the matching stage. Node Q, and the
corresponding maximum match length of 4, are reported
as the result of the traversal in the matching stage. The
post-processing stage produces the final output through a
depth-first traversal starting from node P. The output
includes three alignments: at position 5 with length 1, at
position 3 with length 3 and at position 1 with length 4.

following section estimates analytically the potential performance
gains brought by this data structure.

At the high level, MUMmerGPU++ follows the same structure as
MUMmerGPU (described in Figure 4). However, the core of
MUMerGPU++ is significantly different as we replace the core
data structure, the suffix tree, with a suffix array. This change
entails completely different matching and post-processing
algorithms, which we describe in the rest of this section.

Matching. Similar to MUMmerGPU, queries are searched in the
suffix array in parallel, and all subqueries of a query are processed
sequentially by a single GPU thread. For each subquery, the
match kernel reports the index in the suffix array corresponding to
the longest match in the reference.

The matching algorithm processes a query q as follows: the first
subquery q0 is matched via a binary search on the suffix array,
which, as discussed in §II.B.2), has O(m + log n) worst case
complexity, where m is the query length and n is the reference
string length. To process the next subquery and avoid processing
the characters already processed by the previous subquery, we use
a two-phase procedure (pseudo-code presented in Figure 6):

 The first phase uses the result of the previous subquery to
reduce the search space in the suffix array. This is done by

combining the suffix array with another one called the rank
array: the reverse index of the suffix array (see Table 2).

For example, let Sj be the reference suffix that matched x
characters of subquery qi, where x >= l, also let k be the rank of
Sj in the suffix array (i.e., SuffixArray[k] = j and Rank[j] = k);
then the subquery qi+1 matches x - 1 characters of the reference
suffix Sj+1, and Rank[Sj+1] is the corresponding suffix array
index. Conceptually, the Rank array has the same role as the
suffix links in suffix trees.

 The second phase searches for the longest match by
sequentially comparing the subquery with the suffixes adjacent
to the one produced by the first phase. The LCP array is used
to avoid comparing a character more than once.

Note that if a subquery does not have a match in the reference
string, the search for the next subquery falls back to the binary
search procedure. Hence, the efficiency of this approach is related
to the characteristics of the workload: the larger the number of
matching subqueries, the lower the number of times the algorithm
searches the whole array.

We anticipate that this approach is efficient for the read alignment
problem since generally the queries are aligned to a reference
genome of the same species; hence the percentage of positive
matches is relatively high.

Post-processing. The result reported by the match stage represents
the longest match occurrence for each subquery. Since the suffix
array is ordered lexicographically, the other occurrences are
adjacent: above and under the result reported by the match phase.
Getting the other occurrences, and their maximum match length,
is done via a simple sequential scan on the LCP array. The
algorithm is presented in Figure 7.

D. Evaluating the Opportunity: A Detailed Analysis of
Space/Time Tradeoffs

This section uses simple complexity analysis to shed light on the
effect of using suffix arrays instead of suffix trees on the running
time of each of the matching, data transfer, and post-processing
stages. In brief this section argues that even though suffix arrays
will not enable a faster matching stage, they will enable
significantly lower data transfer volumes and faster post-

/* Assumes SA, LCP and l global variables */
procedure Match(q, qlen) {
 i = 0
 while i qlen – l do {
 (si, ml) = BinarySearch(qi)
 RecordResult(qi, si, ml)
 i = i + 1
 while si != NULL and i qlen – l do {
 /* phase 1: cut the search space */
 i = i + 1
 s = ml – 1
 si = Rank[SA[si] + 1]
 j = SA[si] + s
 (r, ml) = Comp(Sj, qi+s)
 /* phase 2: find the longest */
 if r > 0 then {
 (si, ml) = ScanUp(s+ml, qi)
 } else {
 (si, ml) = ScanDown(s+ml, si, qi)
 }
 RecordResult(qi, si, ml)
 i = i + 1
 }
 }
}
procedure ScanUp(s, si, qi) {
 r = 1
 while LCP[si] > s and r > 0 do {
 si = si – 1
 j = SA[si] + s
 (r, ml) = Comp(Sj, qi+s)
 s = s + ml
 }
 return (si, s)
}

Figure 6: Pseudo-code of the core matching algorithm of
MUMmerGPU++. The procedure “Match” is executed for
each query by a dedicated GPU thread. The following is a
summary of the variables names used: i=subquery index,
l=minimum match length, ml=match length, s=skip
(processed characters), si=suffix index. The procedure
“Comp” evaluates which string is greater lexicographically
and returns the maximum match length. Finally, the
procedure “ScanDown” is similar to “ScanUP” but
examines the entries in the other direction by incrementing
the suffix index si.

/* Assumes SA, LCP and l global variables */
procedure PrintSubQueryAlignments(i, si, ml){
 /* print the longest one */
 PRINT(SA[si], i, ml)
 /* Scan up */
 v = si
 m = ml
 while v > 0 and m l do {
 /* the lcp could be longer than the
 match length, hence the minimum */
 m = MIN(m, LCP[v])
 v = v - 1
 PRINT(SA[v], i, m)
 }
 /* Scan down */
 v = si + 1
 m = MIN(ml, LCP[v])
 while v < reflen and m l do {
 PRINT(SA[si], i, ml)
 v = v + 1
 m = MIN(m, LCP[si])
 }
}

Figure 7: Pseudo-code of the core post-processing procedure.
This procedure is invoked for each subquery in each query
to decompress the result of the matching stage.

processing. These gains can be significant as these two stages
consume a large share of MUMmerGPU processing time (between
50% and 93% depending on the workload as seen in Figure 1).
The evaluation using real workloads presented in §IV supports
these conclusions.

1) The Matching Stage
Suffix trees and suffix arrays provide different trade-offs in search
and space complexity which can be summarized as follows: on the
one hand, suffix trees support O(m) search complexity, while
suffix arrays support O(m + log n) to align a string of length m to
a reference string of length n; on the other hand, although their
asymptotic space complexity is similar, in practice suffix arrays
are 3-5x more space efficient than suffix trees.

As mentioned before, tackling the constraints imposed by limited
memory requires dividing the large query set into smaller subsets,
and the long reference sequence into shorter segments.

To compare the time complexity of the matching stage for suffix
trees and suffix arrays we use the following notations: let k be the
number of query subsets and cd be the number of segments the
reference is divided into when using data structure d. Also, let td
be the time complexity of matching a single query on the GPU.
Finally, let be the ratio between the number of queries in a
query subset and the number of SIMD processors in the GPU.
Note that, by assuming that does not depend on the data
structure used, we implicitly assume that the size of a query subset
is the same for both the array- and tree- based solutions, and that
the space savings achieved in the suffix array-based solution will
be used to increase the segment size (i.e., reduce the number of
segments cd).

Since processing all queries requires matching all query subsets to
all reference segments, the time complexity of matching all
queries using data structure d can be expressed as:

αddd tkcT =

Suffix tree-based tool. As discussed in §II.B.1), suffix links
enable O(m) search time for all subqueries (suffixes) of a single
query. As a result, the time complexity to search a query on the
GPU using suffix trees can be expressed as:)(mOttree = . Thus,

the time to process the query on all segments using suffix trees
can be expressed as:

)(mOkcT treetree α=

Suffix array-based tool. In the case of suffix arrays,

)/))/log(((arrayarrayarray rcnmOt += , where rarray is the

efficiency of calculating the subqueries of a query. Note that rarray
is less than or equal to one: the value is close to one for workloads
with high similarity with the reference, and lower values for
workloads with lower similarity. Therefore, the overall time
complexity when using suffix arrays:

)/))/log(((arrayarrayarrayarray rcnmOkcT += α

Speedup. The speedup for the matching stage is:

)/))/log(((

)(

arrayarrayarray

tree

array

tree

rcnmO

mO

c

c

T

T
Speedup

+

×==

Since the search procedures for both suffix array and suffix tree
exhibit similar behavior: excessive memory access and byte-to-
byte comparisons, we assume that the constants in the asymptotic

bound of the search complexity for the suffix array and the suffix
tree are close, hence the speedup ratio becomes:

)/log(array
array

array

tree

cnm

m
r

c

c
Speedup

+

××=

We analyze the three terms that influence the speedup in the
formula above. First, from a practical view point, the query length
m ranges from 35 to 700 depending on the sequencing technology
used; while a reference segment length is up to hundreds of
millions of nucleotides (leading to sizes in the order of gigabytes
limited by the available memory on the GPU), hence the term

)/log(arraycn ranges from 20 to up to 30. As a result, the ratio

)/log(arraycnm

m

+

 is practically between ½, for short queries

(small values of m), and one, for long queries. Second, suffix
arrays are more space efficient than suffix trees, with a space ratio
ctree/carray greater than one, typically three. Finally, as mentioned
before, the value rarray is less than one, and depends on the
workload characteristics.

Summary. The main factors that affect the speedup ratio are: (i)
the space ratio, which is typically three (ii) the query to segment
length ratio, which is typically between ½ and 1, and (iii) the
efficiency of calculating maximal matches in suffix arrays, which
depends on the workload. In conclusion, a value of rarray larger
than 50% makes the running time of the matching phase of a
suffix array-based tool comparable with that of a suffix tree-based
one, which we anticipate to be the case in realistic workloads as
the query-set is aligned to a related reference sequence.

2) The Post-processing Stage
The post-processing stage decompresses the result of the matching
stage, and writes the final results to the output file.

Suffix tree-based tool. In the MUMmerGPU case, the matching
stage produces a single match for each subquery. Decompressing
this into the final result is done via a depth-first traversal for each
subquery as discussed in §III.B. This is an expensive pointer
chasing procedure, especially when considering typical workloads
with millions of queries.

To accelerate this stage, MUMmerGPU performs the
decompression on the GPU using a second kernel. Therefore, the
post-processing stage is executed as a three-stage GPU offloading
process itself: (i) copy-in the information required to facilitate
post-processing, (ii) launch the post-processing kernel which
determines the matches for each subquery in parallel and (iii)
copy-out the final results from the GPU. Note that, due to the
same reasons related to GPU memory limitations and the massive
output size, offloading the post-processing stage is also done in
rounds on the GPU. Finally, once transferred to main memory
from the GPU, the results are written to the output file.

Two issues related to the above described GPU offloading process
are worth mentioning. First, as mentioned before, it is essential to
know the result size of a GPU kernel launch. Hence, in this case,
the algorithm needs to know the number of matches for each
subquery. MUMmerGPU addresses this is by storing additional
information in the suffix tree: each node in the tree stores the
number of leaves of the subtree rooted at that node. The post-
processing stage is then performed in two phases: the first phase is
processed on the CPU wherein, for each subquery, the algorithm
traverses back to the node at which the match length equals the

minimum-match length (labeled node P in Figure 5). The number
of leaves stored in node P is in fact the number of matches for that
subquery, and is used to allocate the required result space on the
GPU. The second phase is performed on the GPU where the
algorithm determines the matches through a depth-first traversal
for each subqeury.

Second, MUMmerGPU designers adopted a stackless depth-first
traversal algorithm as, on the GPU, a stackless tree traversal has
been shown to be significantly more efficient than an approach
that maintains a stack [26]. However, this improvement comes at
the cost of, again, storing additional information in the tree: each
node in the tree has to store a pointer to its parent node to
facilitate this approach.

MUMmerGPU implementers report that offloading the post-
processing stage to the GPU enabled a 4x speedup of this stage
compared to performing it on the CPU [9]. However, as
demonstrated in Figure 1, this stage is still time consuming: it
occupies more than 20% of the total processing time. Note that
this percentage represents only the post-processing GPU kernel
time (i.e., copy-in and copy-out are considered as part of the data
transfer overhead discussed in the next section) and writing the
final result to the output file.

Suffix array-based tool. MUMmerGPU++ design places the
entire post-processing stage on the CPU. As described in §III.C,
the matching stage produces a suffix array entry index for each
matching subquery. The LCP array is then used to determine all
other alignments by directly scanning (practically just writing the
results to the output file) the entries above and below the reported
index with a minimum longest common prefix of l.

Summary. On the one hand, a suffix tree-based alignment tool
requires costly additional traversal steps in the post-processing
stage. MUMmerGPU offloads this stage to the GPU as a second
processing round which, by itself, requires a post-processing
phase that writes the final results to the output file. On the other
hand, a suffix array based tool requires only a simple sequential
scan to post-process the results. Hence, we expect the later
approach to enable significant time savings for the post-
processing stage.

3) The Data Transfer Stage
The GPU is connected to the host via an I/O bus. For a data-
intensive application, data transfers represent a significant
overhead. As Figure 1 shows, in the case of MUMmerGPU, this
stage can take more than 20% of the total execution time.

The main advantage of suffix arrays over suffix trees is space
efficiency. A suffix array typically enables three times better space
efficiency compared to its suffix tree counterpart. As discussed
previously, this space saving enables a suffix array-based
alignment tool to divide the long reference sequence into a smaller
number of segments, thus reducing the number of GPU execution
rounds and the data transfer overhead associated with moving the
query set to the GPU.

Additionally, we note that offloading the post-processing stage to
the GPU in the suffix tree-based approach entails extra data
transfers, which we anticipate to be relatively significant
especially when the number of positive matches is large.

IV. EVALUATION

This section presents MUMmerGPU++ performance evaluation: it
discusses the experimental setup (§IV.A), presents an evaluation

of the speedup delivered by MUMmerGPU++ compared to the
most recent version of MUMmerGPU (§IV.B), and investigates
the factors that influence the observed performance and the effect
of each processing stage on the total execution time (§IV.C).

A. Experimental Setup

The machine used to conduct the experiments has the following
characteristics: Intel Core 2 Quad CPU (Q6700) clocked at 2.66
GHz per core, 8GB of host memory, an NVIDIA GeForce
9800GX2 GPU: a dual-GPU card with 128 cores clocked at
1500MHz for each GPU, 1GB of memory. The card is connected
to the host via a PCI Express 2.0 x16 bus. (Note that we use only
one of the two GPUs on the card). Both MUMmerGPU and
MUMmerGPU++ are implemented using CUDA.

The evaluation was done under the real sequencing workloads
introduced in Table 1. Unless otherwise mentioned, config2 (see
Table 1) is used as the default configuration for the minimum-
match length in the experiments.

It is important to note that our implementation focuses on
achieving a good match between the core data structure used and
the GPU characteristics. To this end, our implementation is a
‘common sense’ one that does not aggressively optimize for
caching, optimal use of shared memories, or coalesced data access
– to enumerate only a few of the optimizations often used.

As a baseline for comparison we use an optimized, recent version
(v2.0) of the suffix tree-based MUMmerGPU. This version allows
for seven data layout alternatives which determine: first, on which
GPU memory type (i.e., global, texture, and constant memory)
different parts of the input data (i.e., the reference string, suffix
tree, and queries) are placed; and, second, how the suffix tree is
stored in memory to enable maximum data access locality to
improve cache hit rate when placed in texture memory. For
MUMmerGPU (v2.0), these choices resulted in a total of 128
different configuration combinations which affect the performance
of the matching and post-processing stages. In their extensive
analysis, Trapnell et al. [9] illustrated that the performance of
different configuration combinations is sensitive to the workload.
However, they concluded that a single configuration provides
reasonably good performance across all workloads. This
configuration uses “a reordered one-dimensional texture for the
suffix tree, global linear memory for the queries and reference”,
and we use it to configure MUMmerGPU in all our experiments.
For a detailed discussion on these configurations, we refer the
reader to [9].

As discussed before, due to the limited GPU onboard memory
space, the workload is divided into smaller chunks by dividing the
reference string into segments, and the query set into subsets
processed in rounds. This raises the question on how to divide the
onboard memory space between the queries and the reference in
each round. Both MUMmerGPU and MUMmerGPU++ follow the
same policy: maximize the segment size, while leaving space to
accommodate enough queries to feed all cores on the device and
extract maximum parallelism. Maximizing the segment size
results in reducing the number of segments; this proportionally
reduces the matching time as each query is processed fewer times.

For all experiments we exclude the time spent reading queries
from the disk as this overhead is the same regardless of the used
data structure and lies outside our optimization space. We note
that the disk I/O overhead represents 10% to 15% of the total
MUMmerGPU execution time for the workloads we used.

Each experiment was run several times, and the execution time
was stable in all experiments; hence, we plot only averages (the
variations in performance were too small to be visible on the
graphs as 95% confidence intervals). Finally, we validated the
correctness of our implementation by comparing its output with
the one produced by MUMmerGPU over a large number of input
sets.

B. Overall Speedup

Figure 8 presents the speedup achieved by MUMmerGPU++
compared to MUMmerGPU for all configurations and workloads
presented in Table 1.

While the speedup varies with the workload, MUMmerGPU++
performs better for all workloads: it delivers between 1.25x and
3.83x speedup compared to MUMmerGPU. This significant
performance gain is achieved by a better match between the data
structure used and the GPU’s characteristics. MUMmerGPU++
achieves between 1.52x to 3.43x speedup for what we estimate is
the most frequently used configuration (config2). The speedup is
lower (between 1.25x and 2.21x) for configurations with a longer
minimum-match length (config3). This is because increasing the
minimum-match length decreases the probability of finding
matches, hence, as discussed previously, decreases the efficiency
of subquery processing when using suffix arrays (represented by
rarray in §III.D.1), and hurts the performance of the matching stage
in MUMmerGPU++. Finally, as expected for a short minimum-
match length (config1), MUMmerGPU++ offers the best speedup:
from 1.7x up to 3.83x.

C. Dissecting the Overheads

To validate our analysis in §III.D, better understand the source of
the performance gains observed, and explore the opportunity for
further performance tuning, this section explores the absolute and
relative time spent in each processing stage.

Figure 9 compares the absolute time spent in each of the
processing stages by both MUMmerGPU++ and MUMmerGPU
for the largest workload: HS1. We note the following:

First, as discussed in §III.D.1), although the suffix tree-based tool,
MUMmerGPU, has better asymptotic time complexity per query;
MUMmerGPU++, the suffix array-based tool, achieves almost
equal overall performance because it is more memory efficient
and, as a result, requires a fewer matching rounds on the GPU
when all queries are considered.

Second, although the post-processing stage in MUMmerGPU is
performed on the GPU, the time spent in this stage is reduced by
more than a factor of three by MUMmerGPU++, where it is

performed on a single CPU core. This translates to 17% overall
speedup improvement, hence supporting our argument in
§III.D.2).

Third, the experiment validates our insight in §III.D.3) that a
suffix array-based tool, like MUMmerGPU++, significantly
reduces the data transfer effort from/to the GPU: the total time
spent transferring data is reduced by a factor of seven or more,
which translates to more than 31% overall speedup improvement.

Finally, for both tools, the time spent in the construction stage is
almost negligible compared to other stages.

Figure 10 demonstrates the proportion of total processing time
that corresponds to each processing stage for MUMmerGPU++
for all workloads. Compared to Figure 1, which presents similar
data for MUMmerGPU, MUMmerGPU++ significantly changes
the distribution of processing effort across stages. It significantly
reduces the share of post-processing and data-transfer stages, and
increases the share of the matching stage.

This is important from two perspectives. First, we expect that the
tools will be executed on multi-GPU systems. From this
perspective, the intense data-transfers employed by
MUMmerGPU make the PCI bus a bottleneck and limit the
feasibility of using multiple GPUs on the same host.
MUMmerGPU++ reduces the I/O overhead (by a factor of 6x-12x
in our experiments) and thus eliminates the shared communication
(PCI bus) as a potential scalability bottleneck. Second, from a
performance optimization perspective, the fact that the compute
(matching) stage now takes 75%-80% of the time for the large
workloads, including the human genome, allow focusing the
performance optimizations on this stage only.

HS1 HS2 MONO SUIS
0

20

40

60

80

100

4.05h

37.5min

23min

16.2min

1.1min

1.3min

46sec

10sec

2.6sec

16sec

17sec

1.3sec

Matching
Post.Processing
Data.Structure.Construction
Data.Transfer.from.to.GPU

Workloads

P
er

ce
nt

ag
e

Figure 10: Percentage of total execution time spent in each
processing stage for MUMmerGPU++. The numbers on the
bars show the absolute time spent in each stage.

MUMmerGPU++ MUMmerGPU
0

2

4

6

8
Matching
Post.Processing
Data.Structure.Construction
Data.Transfer.from.to.GPU

Tool

H
ou

rs

Figure 9: Absolute time spent in each processing stage for
workload HS1 for both MUMmerGPU++ and MUMmerGPU
(for the default configuration config2).

HS1 HS2 MONO SUIS

0
1

2
3

4

Workloads

S
pe

ed
up

config1
config2
config3

Figure 8: MUMmerGPU++ speedup compared to
MUMmerGPU.

V. DISCUSSION

This section discusses several interrelated questions.

1) Are the speedups offered by MUMmerGPU++ significant?
DNA sequencing technologies have taken major steps towards
commoditization [27]. Moreover, sequencing rates have
drastically increased: almost 100 billion nucleotides per day per
machine, which is 50,000 times faster than ten years ago [27]. In
fact, this considerable improvement encouraged large scale
sequencing projects. For example, the 1,000 Genomes project
aims to sequence 1,000 human genomes, and will produce more
than six trillion nucleotides of data [28]. The widespread
availability of sequencing machines, and the associated dramatic
increase in daily sequencing rates, must be supported by sequence
analysis tools, such as read alignment tools. Indeed, McPherson
[10] argues that there is an increasingly growing gap between
sequence generation and processing, and that the bottleneck in the
ability to generate new knowledge has, in fact, moved from
sequencing to the data analysis pipeline, especially for individual
investigators and small-scale research laboratories. Accordingly,
any performance improvement to these tools translates to saving
thousands of much-needed computational hours.

Hence, the speedup offered by MUMmerGPU++ has significant
practical implications, especially given the fact that these
improvements were achieved only by a better software design, and
on commodity hardware.

2) Is it fair to use MUMmerGPU as a baseline to evaluate the
advantages of the suffix array-based approach? Otherwise said,
is it possible that the speedup offered by MUMmerGPU++ is
simply due to a better optimized GPU implementation and not to
the choice of a data-structure that inherently offers a better fit to
for the computing platform at hand?
We have three arguments to support our choice of MUMmerGPU
as the reference for a suffix tree-based tool. First, our analysis of
the opportunities a suffix array-based implementation offers
(§III.D.1) is solely based on the characteristics of the core data
structure, and is agnostic to the detailed GPU implementation of
the tool. Second, MUMmerGPU is a well optimized GPU-based
tool. The tool’s authors exhaustively examined 128 data layout
configurations to select the configuration which delivers the best
overall performance. The results were presented in two previous
publications [8, 9]. Finally, as mentioned in (§IV.A) we have not
specifically optimized the MUMmerGPU++: apart from placing
the reference string in texture memory, the kernel places all input
and output data in global memory, it does not employ the shared
memory available on each multiprocessor and does not try to
improve memory throughput by coalescing memory accesses.

3) Can the data transfer overheads be hidden by overlapping
the transfers with the GPU kernel execution?
No, especially for large-scale workloads. The reason is that the
computation on the GPU requires a set of input/output buffers.
Facilitating communication-computation overlap requires double
buffering for the input and output (such that the GPU computes
on one set of buffers while the transfers are concurrently
performed to/from the others). This entails allocating two sets of
input/output buffers on a scarce resource: GPU’s onboard
memory.

To further investigate this opportunity, we ran an experiment (for
both MUMmerGPU and MUMmerGPU++) in which the tool
assumed half of the memory available on the device to simulate a

double buffering condition. The results demonstrated that the
increase in the time spent in the matching stage was larger than
the total time spent transferring data from/to the GPU (and could
potentially be hidden by the overlapping technique mentioned).
Hence, for this application, overlapping would actually hurt the
performance. Thus we believe that the opportunity to overlap data
transfers with kernel execution has no practical value in this case.

4) How does MUMmerGPU++ perform in terms of energy
consumption compared to its counterparts?
We measured the total energy consumption of the test machine
when running the three tools. Note that while the CPU-based
version, MUMmer, is widely used and has undergone numerous
optimizations [5-7], we have simply used an out-of-the box
version of this single-threaded code.

The energy is measured at the wall socket for the execution of an
entire workload, hence taking into account the energy usage of the
whole compute node (i.e., including the host CPU, I/O, etc.). Two
observations are worth noting: first, for all three tools, the energy
consumed was linearly proportional to the computation time of
the tool; therefore, we show the results (Table 3) for one
workload, HS2, as all other workloads exhibited similar behavior.
Second, both GPU-based tools, MUMmerGPU and
MUMmerGPU++, consume energy at the same rate (200 Watt),
while MUMmer, the CPU-based tool consumes energy at a lower
rate (178 Watt).

Although the CPU-based tool uses energy at a lower rate, the
significant runtime reduction achieved by the GPU-based tools
renders their total consumed energy much lower than the CPU-
based one. For the same reason, MUMmerGPU++ consumes 40%
less energy than MUMmerGPU.

Finally, it is important to note that the ratio of the energy
consumption rate between the hybrid architecture that includes
the GPU and the traditional architecture that only includes a CPU
reveals that, for our setup, the application running on the hybrid
architecture has to offer only 13% better performance to be more
energy efficient.

5) How do the GPU-based solutions compare when using a
high-end GPU model?
We use a recent high-end GPU model: Tesla C1060. Unlike the
GeForce series, which targets (gaming) workstations, Tesla targets
high-performance computing applications. Compared to GeForce
9800 GX2, Tesla C1060 is more power efficient, has a 4x larger
onboard memory (4GB) and 240 cores @ 1.5GHz. Our goal is to
evaluate the performance and the portability of MUMmerGPU++
on this new device.

Figure 11 (left) shows that MUMmerGPU++ is at least two times
faster than MUMmerGPU. Compared to the speedups achieved
over MUMmerGPU on the commodity card (GeForce 9800GX2),
MUMmerGPU++ offers significantly better speedups for the
larger workloads, HS1 and HS2, while for the relatively small-

Table 3: Total energy consumption of the test machine in kWh
(Killowatt-Hour) for workload HS2. The running time and the
energy consumption rate in watts are also shown.

Tool kWh
Running time

(minutes)
Watt

MUMmerGPU++ 0.07 21 200
MUMmerGPU 0.12 36 200

MUMmer 0.76 256 178

scale workloads, MONO and SUIS, the speedup achieved is
almost the same.

A closer look at the MUMmerGPU code explains this result: to
limit the space consumed by the suffix tree, MUMmerGPU
designers assumed that the maximum tree size to be 16M nodes,
which puts a limit on the maximum reference segment length.
This assumption was made to reduce the length of the indices
used to access the 2D texture memory, where the tree is placed, to
12-bits in each dimension. This enabled reducing the total size of
the suffix tree significantly, while, at the same time, still using the
entire memory space low-end cards, such as the GeForce, offer.
Our tool, MUMmerGPU++, does not make such assumptions and
uses full 32-bit indices for the suffix array; thus it does not
implicitly limit its size.

In the case of MONO and SUIS, the reference strings are short,
and do not require segmentation, thus the size limitations
mentioned above do not play any role, and the speedup achieved
by MUMmerGPU++ over MUMmerGPU is the same as in the
previous experiments on GeForce (see Figure 8 for comparison).
For the HS1 and HS2 workloads which have long reference
strings, MUMmerGPU++ is able to use longer reference segments
than MUMmerGPU, thus to perform fewer computation rounds
and consequently to obtain additional speedup.

Finally, the speedups obtained by MUMmerGPU++ when running
on the high-end Tesla card compared to running on the
commodity GeForce card (Figure 11, right), support the choice of
our policy (discussed in §IV.A) to divide the GPU memory
between the reference and the queries, which revolves around
maximizing the segment length. As argued above, the MONO and
SUIS have short sequences, hence the extra space offered by the
high-end card is used to increase the size of the query subset;
however, this does not translate to significant speedups as the
GPU memory bandwidth is already saturated. In contrast, on the
large-scale workloads, HS1 and HS2, the performance improves
significantly due to the opportunity to increase the segment
length.

VI. CONCLUSIONS

GPUs have drastically different performance characteristics
compared to traditional multicore architectures: up to two orders
of magnitude higher peak memory access bandwidth, one order of
magnitude higher peak computational power per Byte of memory,
yet one order of magnitude lower internal memory space.

We argue that these differences make reconsidering the choice of
the data structures used a necessary step when porting
applications to hybrid, GPU-supported platforms.

Our experience with MUMmerGPU++, a fully compatible GPU
port of the widely used sequence alignment tool MUMmer,
supports this conclusion. Our evaluation, performed on a two
commodity GPU cards using realistic workloads, which include
large-scale human genome sequencing data, demonstrates that
MUMmerGPU++ enables up to 4x speedup compared to
MUMmerGPU, a highly optimized GPU port that uses, however,
the same data structure as the original CPU-based
implementation.

We synthesize our experience with porting MUMmer as three
guidelines to design efficient GPU-based applications. First, a
solution that supports minimum computational overhead does not
necessarily enable maximum overall performance: a better
optimization point is one that maintains a balance between
communication and computation overheads. Second, GPUs’ high
computational power per Byte of memory compared to traditional
multiprocessor architectures, makes trading-off additional per
thread processing time for a more compact in-memory data
representation an attractive technique to increase overall
performance (by enabling higher parallelism levels and reducing
data transfer overheads). Finally, ensuring that the chosen GPU-
offloaded part of the application entails low pre- and post-
processing overheads is essential to maximize the overall
performance gains.

REFERENCES

[1] M. D. Hill and M. R. Marty, "Amdahl's Law in the Multicore
Era," Computer, vol. 41, pp. 33-38, 2008.

[2] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger,
A. E. Lefohn and T. J. Purcell, "A survey of general-purpose
computation on graphics hardware," in Computer Graphics
Forum, 2007, pp. 80-113.

[3] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D.
Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty and P.
Hammarlund, "Debunking the 100X GPU vs. CPU myth: An
evaluation of throughput computing on CPU and GPU," in
Proceedings of the 37th Annual International Symposium on
Computer Architecture, 2010, pp. 451-460.

[4] R. Vuduc, A. Chandramowlishwaran, J. Choi, M. E. Guney
and A. Shringarpure, "On the limits of GPU acceleration," in
Proc. of Workshop on Hot Topics in Parallelism, 2010.

[5] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O.
White and S. L. Salzberg, "Alignment of whole genomes,"
Nucleic Acids Res., vol. 27, pp. 2369, 1999.

[6] A. L. Delcher, A. Phillippy, J. Carlton and S. L. Salzberg,
"Fast algorithms for large-scale genome alignment and
comparison," Nucleic Acids Res., vol. 30, pp. 2478, 2002.

[7] S. Kurtz, A. Phillippy, A. Delcher, M. Smoot, M. Shumway,
C. Antonescu and S. Salzberg, "Versatile and open software for
comparing large genomes," Genome Biol., vol. 5, pp. R12, 2004.

[8] M. C. Schatz, C. Trapnell, A. L. Delcher and A. Varshney,
"High-throughput sequence alignment using Graphics Processing
Units," BMC Bioinformatics, vol. 8, pp. 474, Dec 10, 2007.

MUMmerGPU on Tesla MUMmerGPU++ on GeForce

0
1

2
3

4

Comparison Base

S
pe

ed
up

HS1
HS2
MONO
SUIS

Figure 11: Speedup offered by MUMmerGPU++ when
running on a high-end GPU (Tesla C1060) compared to:
MUMmerGPU running on the same card (left); and to
MUMmerGPU++ when running on the commodity GeForce
9800 (right).

[9] C. Trapnell and M. C. Schatz, "Optimizing data intensive
GPGPU computations for DNA sequence alignment," Parallel
Computing, 2009.

[10] J. D. McPherson, "Next-generation gap," Nature Methods,
vol. 6, pp. S2-S5, 2009.

[11] 454 Life Sciences, "http://454.com", 2010 .

[12] Illumina, "http://www.illumina.com", 2010.

[13] H. Li and N. Homer, "A survey of sequence alignment
algorithms for next-generation sequencing," Briefings in
Bioinformatics, 2010.

[14] M. Pop, A. Phillippy, A. L. Delcher and S. L. Salzberg,
"Comparative genome assembly," Briefings in Bioinformatics,
vol. 5, pp. 237, 2004.

[15] NCBI Trace Archive, "http://www.ncbi.nlm.nih.gov/Traces",
2010.

[16] P. Weiner, "Linear pattern matching algorithms," in
Proceedings of the 14th Annual Symposium on Switching and
Automata Theory, 1973.

[17] U. Manber and G. Myers, "Suffix arrays: A new method for
on-line string searches," in Proceedings of the First Annual ACM-
SIAM Symposium on Discrete Algorithms, 1990, pp. 319-327.

[18] M. I. Abouelhoda, S. Kurtz and E. Ohlebusch, "Replacing
suffix trees with enhanced suffix arrays," Journal of Discrete
Algorithms, vol. 2, pp. 53-86, 2004.

[19] S. Kurtz, "Reducing the space requirement of suffix trees,"
Software: Practice and Experience, vol. 29, pp. 1149-1171, 1999.

[20] P. Ko and S. Aluru, "Space efficient linear time construction
of suffix arrays," in Proceedings of the 14th Annual Conference
on Combinatorial Pattern Matching, 2003.

[21] D. K. Kim, J. S. Sim, H. Park and K. Park, "Linear-time
construction of suffix arrays," in Combinatorial Pattern Matching:
14th Annual Symposium, CPM 2003, Morelia, Michoacán,
Mexico, June 25-27, 2003. Proceedings, pp. 1017-1017.

[22] J. Kärkkäinen and P. Sanders, "Linear work suffix array
construction," Journal of the ACM, pp. 918-936, 2006.

[23] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B.
Kirk and W. W. Hwu, "Optimization principles and application
performance evaluation of a multithreaded GPU using CUDA," in
Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2008, pp. 73-82.

[24] C. Trapnell and S. L. Salzberg, "How to map billions of short
reads onto genomes," Nat. Biotechnol., vol. 27, pp. 455-457,
2009.

[25] M. Pop, "Genome assembly reborn: recent computational
challenges," Briefings in Bioinformatics, vol. 10, pp. 354, 2009.

[26] S. Popov, J. Gunther, H. P. Seidel and P. Slusallek,
"Stackless kd-tree traversal for high performance GPU ray
tracing," in Computer Graphics Forum, 2007, pp. 415-424.

[27] J. C. Venter, "Multiple personal genomes await," Nature, vol.
464, pp. 676-677, 2010.

[28] J. Kaiser, "DNA sequencing: A plan to capture human
diversity in 1000 Genomes," Science, vol. 319, pp. 395, 2008.

