

�
Abstract—Due to the fact that the reliability and availability of

a large scaled system inverse to the number of computing
elements, fault tolerance has become a major concern in high
performance computing (HPC) including a very large system
with GPGPU. In this paper, we propose a checkpoint/restart
mechanism model which employs two-phase protocol and a
latency hiding technique such as CUDA streams in order to
achieve a low checkpoint overhead. We introduce GPU
checkpoint and restart protocols. Also, we show experimental
results and analyze the influences of the mechanism, especially in
a long-running application.

I. INTRODUCTION
Due to the ability to accelerate computation by parallelism,

graphic processing units (GPUs) have long been deployed for
graphic applications for decades [1]. Nowadays,
supercomputing applications has increasingly explored power
of GPU and the cluster of GPUs for non-graphic applications
[2] [3]. Nevertheless, the more elements there are in the
system, the lower reliability [4].

System failure can cause interruptions to jobs running on
the system at time. For this reason, fault tolerance research on
HPC has been actively discussed in recent years [4].

Checkpoint/restart is a fault tolerance mechanism that has
been used in many system platforms. Instead of restarting
computation from the beginning when a failure occurs, with
checkpoint/restart, a process can be restarted from the last
checkpoint on a healthier system [5] [6]. However, an
overhead due to the checkpoint causes lower performance of
the system [7].

We introduced our two-phase checkpoint work from [7]
which presents a novel model of checkpoint/restart utilizing
CUDA streamed and GPU virtualization. However, in this
paper, our focus is particularly on checkpointing and restarting
between GPU and CPU. We leave the checkpoint/restart on
the CPU side to the underline checkpoint/restart mechanism.

Our experimental results reveal the performance
improvement due to the latency hiding checkpoint/restart
mechanism in three different aspects; checkpoint overhead,
restart overhead, and wasted time. Our simulation shows the
influence of the latency hiding checkpoint/restart mechanism

to the performance of the long-running application.

The rest of this paper is organized as follows: The related
works are discussed in Section II. Section III describes the
streamed checkpoint/restart protocols. Section IV describes
the experiments to study the behavior of both streamed and
non-streamed checkpoint/restart mechanism. The simulation
results are presented in Section V. Finally, the conclusion of
this paper is stated in Section VI.

II. RELATED WORKS
The checkpoint/restart mechanism is a tool to improve the

application resilience. By saving the state and considerable
data in the checkpoint file, the process can be restarted from
that state later. Therefore, the recomputing time - the time
spent to re-execute the work due to a failure, can be reduced.
There are many methods that have been implemented for
checkpoint/restart [5] [8] [9] [10].

BLCR [9] is a checkpoint/restart mechanism for Linux
systems. It is developed for checkpointing at the operating
system-level, which allows the system preemption. Periodic
and preemptive checkpointing can be used in response to the
precursors of a possible failure.

VCCP [5] provides transparent checkpoint/restart
mechanism for virtual machines (VMs). It uses a hypervisor
based coordinated checkpoint/restart protocols so that the
guest OS does not have to be changed. There are two
protocols in hypervisor-based checkpoint/restart mechanism;
VM checkpoint protocol and VM restart protocol. The
experimental results indicate that VCCP generates less than 1
percent of additional overhead for non-communication
intensive parallel applications.

For GPGPU fault tolerance, CheCUDA [6] is a
checkpoint/restart mechanism for NVIDIA's CUDA (Compute
Unified Device Architecture). However, it results in reduction
of system performance due to the checkpoint overhead,
particularly, for a large data set. This cost is mainly produced
by memory transfer.

HiAL-Ckpt [11] is also a checkpoint/restart mechanism for
GPGPU. However, it is implemented based on Brook+
programming language and allows the programmer to do
checkpoint at the application level. Although its idea of

Two-Level Checkpoint/Restart Modeling for
GPGPU

Supada Laosooksathit1, Nichamon Naksinehaboon2, Chokchai Leangsuksan3
Department of Computer Science, College of Engineering and Science

Louisiana Tech University, Ruston 71272, USA
1 sla036@latech.edu
2 nna033@latech.edu

3 box@latech.edu

978-1-4577-0476-5/11/$26.00 © 2011 IEEE AICCSA 2011276

hierarchical checkpoint is similar to our previous work [7], the
overhead optimization is not considered.

NVIDIA's CUDA has introduced a latency hiding
technique, called stream. Since the GPU is idle during the
memory transfer, this technique allows overlapping between
kernel execution and memory transfer [12]. The performance
models of CUDA stream are presented in [13]. They show that
stream can reduce kernel execution time in case that the
application consumes more time on memory transfer, and can
eliminate some memory transfer time when the device is
occupied on kernel execution. It also suggests that CUDA
stream is most utilized when the data of the application are
independent because stream can be applied on both host-to-
device and device-to-host memory transfers.

III. PROTOCOLS
This section presents checkpoint and restart protocols of

streamed checkpoint/restart (CPR) mechanism. Since a GPU
system is a heterogeneous system, checkpointing and
restarting require transferring checkpoint data between the
CPU (host) and the GPU (device). We introduce a two-phase
checkpoint/restart protocol to provide resilience in
heterogeneous computing applications. Basically, the protocol
must first checkpoint GPU kernel states to CPU memory and
then from a source CPU memory to a target memory system or
reliable storage. We, however, focus on the latency hiding
checkpoint/restart protocol on the GPU side that is enhanced
from [7].

Normally, a GPU works as a co-processor of a CPU. First,
the data set has to be transferred from the host memory to the
device memory. This process is called host-to-device memory
copy. Once host-to-device memory copy finishes, the kernel
on the device is invoked. After the kernel execution finishes,
the result data are transferred back from the device memory to
the host memory which is called device-to-host memory copy.
Any failure that may occur while the kernel is executing will
cause a loss of kernel computation. The GPU CPR mechanism
potentially improves the application performance for a long-
running kernel [7].

Fig 2 illustrates the streamed checkpoint protocol. The
checkpoint overhead is a result of host memory allocation and
device-to-host memory copy after a thread synchronization.
With streams, the kernel continues executing while the
checkpoint data are copied to the host. Once the memory copy
finishes, the host dumps all the checkpoint data to a
checkpoint file which is handled by the underline CPR
mechanism. When using streams, the data set is chopped into
chunks. The first chunk is copied to the host before the next
kernel is invoked. Then, the subsequence chunk is copied
while the kernel is executing after the first chunk transfer
completes [13].

Fig 1 shows the streamed restart protocol. When a failure
occurs while the kernel is executing, the device application
context, including the device memory is destroyed. Therefore,
to restore the application, the device context has to be
recreated along with device memory, and redo host-to-device
memory copy again. The restart process begins by reading the

checkpoint file to host memory. Since reading the checkpoint
file is handled by the underline mechanism and the duration of
this process depends on the speed of reading from the hard
drive, I/O or networked storage, we do not consider it as the
GPU restart overhead on the device. The restart overhead
includes the device memory allocation and host-to-device
memory copy. CUDA streams are beneficial by starting the
kernel execution while the rest of checkpoint data is being
transferred. The experiments based on our CPR protocols are
presented in the next section.

Fig 1. The checkpoint protocol for GPU streamed CPR

Fig 2. The restart protocol for GPU streamed CPR

277

IV. EXPERIMENTS
To study the cost of checkpoint and restart processes, we

simulate the behavior of the protocols presented in the
previous section and time the checkpoint overheads, restart
overheads, and wasted time - the aggregate of checkpoint
overhead, restart overhead and recomputing time, due to a
failure. We do experiments on various sizes of a large array
addition application with three types of GPU CPR mechanism:
non-streamed, 4-streamed, 8-streamed.

Fig 3 illustrates our simulation based on the protocols in Fig
2 and Fig 1. Since the checkpoint process is called at the host,
the kernel of iterated array addition is split into three parts:
kernel_1(), kernel_2() and kernel_3() which are
prolonged by �, �, and � loops of iterative array addition
(� = � + �), respectively. We assume that kernel_1()
is the computation before a checkpoint, kernel_2() is the
computation between the checkpoint and a failure, and
kernel_3() is the computation after the failure until the
application finishes. Then, when a failure occurs, it has to re-
compute only kernel_2() instead of restarting from the
beginning.

Checkpoint and restart processes

1 // Begin computing
2 Do host-to-device memory copy of array A and

B.
3 Execute kernel_1() with l iterations.

4 // Checkpoint process
5 Synchronize all threads to prepare for memory

copy.
6 Allocate host memory for data checkpointing,

i.e., for array A, B, and C.
7 Do device-to-host memory copy of array A, B,

and C.

8 Execute kernel_2() with m iterations.

9 // Failure occurrence
10 Free all device memory.

11 // Restart process
12 Reallocate device memory for array A, B, and

C.
13 Do host-to-device memory copy of array A, B,

and C.

14 // Recomputing time
15 Re-execute kernel_2() with m iterations.

16 Execute kernel_3() with n iterations.

17 Do device-to-host memory copy of the result

array C.
Fig 3. The pseudo code imitating GPU streamed checkpoint and
restart protocols

TABLE I
THE OVERHEADS OF DOING A CHECKPOINT WITH NON-STREAMED, 4-

STREAMED, AND 8-STREAMED CPRS

Array Size
Checkpoint Overhead (ms)

Non-streamed 4-streamed 8-streamed
2

�	 5.116 5.337 5.812
2

�� 5.086 5.555 5.795
2

�
 5.098 5.590 5.924
2

�� 5.159 5.600 6.108
2

�� 5.239 5.713 5.940
2

�
 5.404 5.829 6.285
2

�� 5.679 6.123 6.640
2

�� 6.256 6.586 7.196
2

�� 7.390 7.577 7.770
2

�� 9.579 9.396 9.917
2

	 14.475 12.016 14.171
2

� 22.726 17.568 17.613
2

 41.075 29.938 27.930
2

� 80.754 54.034 50.436
2

� 147.704 103.702 99.220

TABLE II
THE RESTART OVERHEADS DUE TO A FAILURE OCCURRENCE ON AN

APPLICATION WITH NON-STREAMED, 4-STREAMED, AND 8-STREAMED CPRS

Array Size
Restart Overhead (ms)

Non-streamed 4-streamed 8-streamed
2

�	 0.437 1.248 2.099
2

�� 0.490 1.264 2.160
2

�
 0.491 1.241 2.111
2

�� 0.502 1.240 1.923
2

�� 0.521 1.223 1.862
2

�
 0.577 1.132 2.088
2

�� 0.716 1.141 1.965
2

�� 0.975 1.546 2.451
2

�� 1.427 1.763 1.982
2

�� 2.403 2.063 2.622
2

	 4.330 2.620 3.682
2

� 8.140 3.963 3.931
2

 15.826 6.160 6.163
2

� 31.178 10.899 9.322
2

� 61.751 20.537 15.904

TABLE III
THE WASTED TIMES DUE TO A FAILURE OCCURRENCE ON AN APPLICATION

WITH NON-STREAMED, 4-STREAMED, AND 8-STREAMED CPRS

Array Size
Wasted Time (ms)

Non-streamed 4-streamed 8-streamed
2

�	 5.665 6.698 8.025
2

�� 5.688 6.931 8.067
2

�
 5.701 6.943 8.147
2

�� 5.776 6.954 8.146
2

�� 5.936 7.112 7.978
2

�
 6.322 7.302 8.714
2

�� 6.964 7.834 9.175
2

�� 8.255 9.156 10.671
2

�� 10.803 11.326 11.738
2

�� 15.913 15.389 16.469
2

	 26.573 22.404 25.620
2

� 46.352 37.016 37.029
2

 87.749 66.946 64.941
2

� 173.624 126.625 121.450
2

� 332.888 247.673 238.557

278

Our experiments are done on the NVIDIA GeForce GTX
295 system which has compute compatibility 1.3. The
heuristics of NVIDIA's graphic card with compute
compatibility 1.x indicates that the maximum number of
blocks in a grid is 65535, and the maximum number of threads

in a block is 512 [12]. Then the maximum number of threads
there can be is 65535 × 512, or 2

 − 2�. For the purpose of
load balancing and data correctness while invoking the kernel
with streams, we vary the size of arrays from 2�	 to 2
�. If the
size of arrays reaches 2

, the number of iterations in the
kernel will be influenced.

In non-streamed case, the memory copy and the kernel
execution are done consecutively. However, in 4-streamed and
8-streamed cases, those instructions are done simultaneously.
The checkpoint overhead is obtained by timing host memory
allocation and device-to-host memory copy. A restart
overhead is obtained by timing device memory reallocation
and host-to-device memory copy. The wasted time is obtained
by the summation of those overheads and the time of
kernel_2() execution. The results are shown in Table I to
III and Fig 4.

Table I shows the overheads caused by a checkpoint,
comparing between non-streamed, 4-streamed, and 8-streamed
CPRs. When the size of arrays is less than 2��, 4-streamed
CPR does not show advantage over non-streamed CPR.
However, as the size of arrays is at least 2��, the checkpoint
overhead of 4-streamed CPR is less than that of non-streamed
CPR. Moreover, when the size of arrays is greater than 2
�,
the checkpoint overhead of 8-streamed CPR is the smallest.
This corresponds to the graph in Fig 4 (a), which illustrates the
percentage of the performance improvement of streamed CPR
in term of checkpoint overhead. When the size of arrays is less
than 2��, the percentage of improvement is negative since the
streamed CPR has no advantage over non-streamed CPR.
However, it becomes positive when the size of arrays is 2��.
As the size of arrays is 2
�, 4-streamed and 8-streamed CPRs
gain advantage over non-streamed CPR with the percentages
of 29.790 and 32.699, respectively.

Table II describes restart overheads of non-streamed, 4-
streamed, and 8-streamed CPRs due to a failure occurrence. It
corresponds to the graph in Fig 4 (b). Similar to the
checkpoint overhead, the restart overhead of 4-streamed CPR
is smaller than non-streamed CPR when the size of arrays is at
least 2��. Also, the restart overhead of 8-streamed CPR gains
advantage over 4-streamed CPR when the size of arrays is at
least 2
�. As the size of arrays is 2
�, the percentages of
improvement of 4-streamed and 8-streamed CPRs are 66.743
and 74.305, respectively. This similarity is because both
checkpoint and restart overheads depend mainly on the
duration of memory copy.

Table III shows the wasted times due to a failure occurrence
on an application with non-streamed, 4-streamed, and 8-
streamed CPRs. This table corresponds to the graph in Fig 4
(c). Since wasted time is the aggregate of checkpoint
overhead, restart overhead, and recomputing time, the
performance improvement in the aspect of wasted time is
similar to the checkpoint and restart overheads as we have
already stated.

In our experiments, we study the benefits of streamed CPR
mechanism with only one checkpoint and one failure. In the
next section, the simulation and its results will be presented in

(a)

(b)

(c)
Fig 4. Percentages of performance improvement in terms of (a)
checkpoint overhead, (b) restart overhead due to a failure
occurrence, and (c) wasted time due to a failure occurrence

279

order to study the benefit of streamed CPR on real-world
applications.

V. SIMULATION
In the previous section, we have shown the performance

improvement of streamed CPR with various sizes of arrays. In
this section, we study fault tolerance performability of
streamed CPR, based on the checkpoint and restart overheads
achieved in the experiments.

In our simulation, despite of various checkpoint intervals,
we also concern about mean-time-to-failures (MTTFs). Due to
the fact that a large scale GPU cluster system is a
heterogeneous system with a significant number of GPUs,
such as Tianhe-1A [14], the MTTF of the system depends on
the MTTF of some other modules or nodes in the system. Our
study varied the MTTFs from 12 hours to 7 days with the
checkpoint intervals of 30 and 120 minutes. The application
length is fixed at 1000 hours. Since both 4-streamed and 8-
streamed CPRs have advantage over non-streamed CPR when
the size of arrays is over 2

��, we do the simulation for the

array sizes of 2
	 and 2
�. The performance is observed in
three different aspects; the percentage of total checkpoint
overheads and total restart overheads compared to wasted
time, and the percentage of wasted time compared to
completion time, which is the aggregate of the application
length and wasted time. Fig 6 - Fig 5 show the percentages of
total checkpoint overheads, while Fig 7 - Fig 8 illustrate the
percentages of total restart overheads, and Fig 10 - Fig 11
show the percentages of wasted time.

Fig 6 illustrates the percentages of total checkpoint
overheads compared to wasted time when the size of arrays is
2
	. As shown in Fig 6 (a), when the MTTF is larger while the
checkpoint interval is fixed at 30 minutes, the percentages of
total checkpoint overheads grow bigger since the number of
failures decreases while the number of checkpoints is more
likely the same. On the other hand, when fixing the MTTF at
12 hours and varying the checkpoint intervals, as shown in Fig
6 (b), the larger interval produces fewer checkpoints. As a
result, the total checkpoint overheads decrease. Furthermore,
the percentages of total checkpoint overheads of 4-streamed

(a)

(b)
Fig 5. The percentages of total checkpoint overheads compared to
wasted time of the application with non-streamed, 4-streamed, and
8-streamed CPRs when the size of arrays is 2

� and (a) the
checkpoint interval is 30 minutes, and (b) the MTTF is 12 hours

(a)

(b)
Fig 6. The percentages of total checkpoint overheads compared to
wasted time of the application with non-streamed, 4-streamed, and
8-streamed CPRs when the size of arrays is 2

	 and (a) the
checkpoint interval is 30 minutes, and (b) the MTTF is 12 hours

280

CPR are the smallest in both cases which corresponds to our
experimental results in the previous section.

Fig 5 illustrates the percentages of total checkpoint
overheads compared to wasted time when the size of array is
2
�. According to table I, when the size of arrays is 2
�, the
checkpoint overhead of 8-streamed CPR is the smallest. As a
result, 8-streamed CPR performs better than non-streamed and
4-streamed CPRs in term of total checkpoint overheads,
particularly when there are more checkpoints. Similar to the
graphs in Fig 6, the CPRs with the checkpoint interval of 30
minutes, shown in Fig 5 (a), produce larger total checkpoint
overheads when the MTTF increases. Also, with various
checkpoint intervals, shown in Fig 5 (b), the total checkpoint
overheads are smaller for the larger checkpoint interval.
Moreover, as non-streamed CPR produces the most
checkpoint overheads in both cases; the total checkpoint
overheads are very small compared to the wasted time with no
more than 5 percent.

Fig 7 and Fig 8 illustrates the percentages of total restart
overheads compared to wasted time when the sizes of arrays

are 2
	 and 2
�, respectively. Since the number of failures
depends on MTTF, when the MTTF increases, both restart
overheads and wasted time decreases. As a result, the graphs
slightly change (as shown in Fig 7 (a) and Fig 8 (a)). On the
other hand, when the MTTF is fixed at 12 hours, by varying
the checkpoint intervals (as shown in Fig 7 (b) and Fig 8 (b)),
the graphs drop due to the increase of checkpoint overheads,
resulting in the increase of wasted time. Furthermore, in both
cases, streamed CPR obviously performs better than non-
streamed CPR. However, the restart overheads do not have
much effect to the performance of the application since the
percentages of total restart overheads are less than 0.01
percent of wasted time in any cases.

Fig 10 and Fig 11 illustrates the percentages of wasted time
compared to completion time, which is the aggregate of
wasted time and application length, when the sizes of arrays
are 2
	 and 2
�, respectively. When the checkpoint interval is
fixed 30 minutes (shown in Fig 10 (a) and Fig 11 (a)), as the
MTTF increases, the percentage of wasted time tends to be
smaller. However, when the MTTF is fixed at 12 hours

(a)

(b)
Fig 7. The percentages of total restart overheads compared to wasted
time of the application with non-streamed, 4-streamed, and 8-
streamed CPRs when the size of arrays is 2
	 and (a) the checkpoint
interval is 30 minutes, and (b) the MTTF is 12 hours

(a)

(b)
Fig 8. The percentages of total restart overheads compared to wasted
time of the application with non-streamed, 4-streamed, and 8-
streamed CPRs when the size of arrays is 2
� and (a) the checkpoint
interval is 30 minutes, and (b) the MTTF is 12 hours

281

(shown in Fig 10 (b) and Fig 11 (b)), as the checkpoint
interval increases, the percentage of wasted time also increases
due to the more recomputing time. Nevertheless, the
overheads of non-streamed, 4-streamed, and 8-streamed CPRs
are relatively small comparing to the recomputing time and
completion time. Thus, the difference of the wasted time
between those three types of CPRs is insignificant.

VI. CONCLUSION
Even though the checkpoint/restart mechanism can improve

the application resilience, it reduces the performance by the
cost of doing checkpoint. In this paper, we proposed GPU
checkpoint/restart protocol that aims to reduce the fault
tolerance overhead. Our experiments have revealed that the
streamed CPR can reduce the checkpoint overhead when the
size of checkpoint data is large enough. It can also improve
the restart process by reducing the restart overhead.

Our simulation has shown that the streamed CPR can
reduce the cost of doing checkpoint. However, in the long-

running application, since the overhead of both checkpoint and
restart processes are relatively small comparing to the
recomputing time and the completion time, streamed CPR
may not be beneficial on a single GPU system.

Since the proposed checkpoint/restart mechanism needs
thread synchronization in order to ensure the data correctness
when performing checkpoint, we plan to apply our mechanism
with data scheduling in compiler level in order to perform
checkpoint at the proper time in the future work.

ACKNOWLEDGMENT
This work was partially supported by the grants CNS-

0834483 and EPS-1003897 from the National Science
Foundation.

(a)

(b)
Fig 10. The percentages of wasted time compared to completion
time of the application with non-streamed, 4-streamed, and 8-
streamed CPRs when the size of arrays is 2
	 and (a) the checkpoint
interval is 30 minutes, and (b) the MTTF is 12 hours

(a)

(b)
Fig 11. The percentages of wasted time compared to completion
time of the application with non-streamed, 4-streamed, and 8-
streamed CPRs when the size of arrays is 2
� and (a) the checkpoint
interval is 30 minutes, and (b) the MTTF is 12 hours

282

REFERENCES

[1] (2010) General-Purpose Computation on Graphics Hardware.
[Online]. http://gpgpu.org

[2] Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-
Stover, "GPU Cluster for High Performance Computing," SC
Conference, vol. 0, p. 47, 2004.

[3] Volodymyr V. Kindratenko et al., "GPU clusters for high-
performance computing," CLUSTER, pp. 1-8, 2009.

[4] HPC Resilience Consortium Wiki. [Online].
http://resilience.latech.edu/

[5] Hong Ong, Natthapol Saragol, Kasidit Chanchio, and Chokchai
Leangsuksun, "VCCP: A Transparent, Coordinated
Checkpointing System for Virtualization-based Cluster
Computing," IEEE Cluster 2009.

[6] Hiroyuki Takizawa, Katsuto Sato, Kazuhiko Komatsu, and
Hiroaki Kobayashi, "CheCUDA: A Checkpoint/Restart Tool for
CUDA Applications," in PDCAT, 2009, pp. 408-413.

[7] Supada Laosooksathit et al., "Lightweight Checkpoint
Mechanism and Modeling in GPGPU Environment," in 4th
Workshop on System-level Virtualization for High Performance
Computing (HPCVirt 2010), 2010.

[8] John W. Young, "A first order approximation to the optimum
checkpoint interval," Commun. ACM, vol. 17, no. 9, pp. 530--
531, September 1974.

[9] Paul H Hargrove and Jason C Duell, "Berkeley lab
checkpoint/restart (BLCR) for Linux clusters," Journal of
Physics: Conference Series, vol. 46, p. 494, 2006.

[10] Adam J. Ferrari, Stephen J. Chapin, and Andrew S. Grimshaw,
"Process Introspection: A Heterogeneous Checkpoint/Restart
Mechanism Based on Automatic Code Modification,"
University of Virginia, Charlottesville, VA, USA, 1997.

[11] Xinhai Xu, Yufei Lin, Tao Tang, and Yisong Lin, "HiAL-Ckpt:
A hierarchical application-level checkpointing for CPU-GPU
hybrid systems," in Computer Science and Education (ICCSE),
2010, pp. 1895-1899.

[12] NVIDIA, NVIDIA CUDA Programming Guide, 2010.
[13] Supada Laosooksathit, Chokchai Leangsuksun, Abdelkader

Baggag, and Clayton Chandler, "Stream Experiments: Toward
Latency Hiding in GPGPU," in Parallel and Distributed
Computing and Networks (PDCN), 2010.

[14] TOP500 Supercomputing Sites. [Online]. http://top500.org/

283

