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Abstract—Due to the fact that the reliability and availability of 

a large scaled system inverse to the number of computing 
elements, fault tolerance has become a major concern in high 
performance computing (HPC) including a very large system 
with GPGPU. In this paper, we propose a checkpoint/restart 
mechanism model which employs two-phase protocol and a 
latency hiding technique such as CUDA streams in order to 
achieve a low checkpoint overhead. We introduce GPU 
checkpoint and restart protocols. Also, we show experimental 
results and analyze the influences of the mechanism, especially in 
a long-running application. 

I. INTRODUCTION 
Due to the ability to accelerate computation by parallelism, 

graphic processing units (GPUs) have long been deployed for 
graphic applications for decades [1]. Nowadays, 
supercomputing applications has increasingly explored power 
of GPU and the cluster of GPUs for non-graphic applications 
[2] [3]. Nevertheless, the more elements there are in the 
system, the lower reliability [4]. 

System failure can cause interruptions to jobs running on 
the system at time. For this reason, fault tolerance research on 
HPC has been actively discussed in recent years [4]. 

Checkpoint/restart is a fault tolerance mechanism that has 
been used in many system platforms. Instead of restarting 
computation from the beginning when a failure occurs, with 
checkpoint/restart, a process can be restarted from the last 
checkpoint on a healthier system [5] [6]. However, an 
overhead due to the checkpoint causes lower performance of 
the system [7]. 

We introduced our two-phase checkpoint work from [7] 
which presents a novel model of checkpoint/restart utilizing 
CUDA streamed and GPU virtualization. However, in this 
paper, our focus is particularly on checkpointing and restarting 
between GPU and CPU. We leave the checkpoint/restart on 
the CPU side to the underline checkpoint/restart mechanism. 

Our experimental results reveal the performance 
improvement due to the latency hiding checkpoint/restart 
mechanism in three different aspects; checkpoint overhead, 
restart overhead, and wasted time. Our simulation shows the 
influence of the latency hiding checkpoint/restart mechanism  
 
 

 
to the performance of the long-running application. 

The rest of this paper is organized as follows: The related 
works are discussed in Section II. Section III describes the 
streamed checkpoint/restart protocols. Section IV describes 
the experiments to study the behavior of both streamed and 
non-streamed checkpoint/restart mechanism. The simulation 
results are presented in Section V. Finally, the conclusion of 
this paper is stated in Section VI. 

II. RELATED WORKS 
The checkpoint/restart mechanism is a tool to improve the 

application resilience. By saving the state and considerable 
data in the checkpoint file, the process can be restarted from 
that state later. Therefore, the recomputing time - the time 
spent to re-execute the work due to a failure, can be reduced. 
There are many methods that have been implemented for 
checkpoint/restart [5] [8] [9] [10]. 

BLCR [9] is a checkpoint/restart mechanism for Linux 
systems. It is developed for checkpointing at the operating 
system-level, which allows the system preemption. Periodic 
and preemptive checkpointing can be used in response to the 
precursors of a possible failure. 

VCCP [5] provides transparent checkpoint/restart 
mechanism for virtual machines (VMs). It uses a hypervisor 
based coordinated checkpoint/restart protocols so that the 
guest OS does not have to be changed. There are two 
protocols in hypervisor-based checkpoint/restart mechanism; 
VM checkpoint protocol and VM restart protocol. The 
experimental results indicate that VCCP generates less than 1 
percent of additional overhead for non-communication 
intensive parallel applications. 

For GPGPU fault tolerance, CheCUDA [6] is a 
checkpoint/restart mechanism for NVIDIA's CUDA (Compute 
Unified Device Architecture). However, it results in reduction 
of system performance due to the checkpoint overhead, 
particularly, for a large data set. This cost is mainly produced 
by memory transfer. 

HiAL-Ckpt [11] is also a checkpoint/restart mechanism for 
GPGPU. However, it is implemented based on Brook+ 
programming language and allows the programmer to do 
checkpoint at the application level. Although its idea of 
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hierarchical checkpoint is similar to our previous work [7], the 
overhead optimization is not considered. 

NVIDIA's CUDA has introduced a latency hiding 
technique, called stream. Since the GPU is idle during the 
memory transfer, this technique allows overlapping between 
kernel execution and memory transfer [12]. The performance 
models of CUDA stream are presented in [13]. They show that 
stream can reduce kernel execution time in case that the 
application consumes more time on memory transfer, and can 
eliminate some memory transfer time when the device is 
occupied on kernel execution. It also suggests that CUDA 
stream is most utilized when the data of the application are 
independent because stream can be applied on both host-to-
device and device-to-host memory transfers. 

III. PROTOCOLS 
This section presents checkpoint and restart protocols of 

streamed checkpoint/restart (CPR) mechanism. Since a GPU 
system is a heterogeneous system, checkpointing and 
restarting require transferring checkpoint data between the 
CPU (host) and the GPU (device). We introduce a two-phase 
checkpoint/restart protocol to provide resilience in 
heterogeneous computing applications. Basically, the protocol 
must first checkpoint GPU kernel states to CPU memory and 
then from a source CPU memory to a target memory system or 
reliable storage. We, however, focus on the latency hiding 
checkpoint/restart protocol on the GPU side that is enhanced 
from [7]. 

Normally, a GPU works as a co-processor of a CPU. First, 
the data set has to be transferred from the host memory to the 
device memory. This process is called host-to-device memory 
copy. Once host-to-device memory copy finishes, the kernel 
on the device is invoked. After the kernel execution finishes, 
the result data are transferred back from the device memory to 
the host memory which is called device-to-host memory copy. 
Any failure that may occur while the kernel is executing will 
cause a loss of kernel computation. The GPU CPR mechanism 
potentially improves the application performance for a long- 
running kernel [7]. 

Fig 2 illustrates the streamed checkpoint protocol. The 
checkpoint overhead is a result of host memory allocation and 
device-to-host memory copy after a thread synchronization. 
With streams, the kernel continues executing while the 
checkpoint data are copied to the host. Once the memory copy 
finishes, the host dumps all the checkpoint data to a 
checkpoint file which is handled by the underline CPR 
mechanism. When using streams, the data set is chopped into 
chunks. The first chunk is copied to the host before the next 
kernel is invoked. Then, the subsequence chunk is copied 
while the kernel is executing after the first chunk transfer 
completes [13]. 

Fig 1 shows the streamed restart protocol. When a failure 
occurs while the kernel is executing, the device application 
context, including the device memory is destroyed. Therefore, 
to restore the application, the device context has to be 
recreated along with device memory, and redo host-to-device 
memory copy again. The restart process begins by reading the 

checkpoint file to host memory. Since reading the checkpoint 
file is handled by the underline mechanism and the duration of 
this process depends on the speed of reading from the hard 
drive, I/O or networked storage, we do not consider it as the 
GPU restart overhead on the device. The restart overhead 
includes the device memory allocation and host-to-device 
memory copy. CUDA streams are beneficial by starting the 
kernel execution while the rest of checkpoint data is being 
transferred. The experiments based on our CPR protocols are 
presented in the next section. 

Fig 1. The checkpoint protocol for GPU streamed CPR 

Fig 2. The restart protocol for GPU streamed CPR 
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IV. EXPERIMENTS 
To study the cost of checkpoint and restart processes, we 

simulate the behavior of the protocols presented in the 
previous section and time the checkpoint overheads, restart 
overheads, and wasted time - the aggregate of checkpoint 
overhead, restart overhead and recomputing time, due to a 
failure. We do experiments on various sizes of a large array 
addition application with three types of GPU CPR mechanism: 
non-streamed, 4-streamed, 8-streamed. 

Fig 3 illustrates our simulation based on the protocols in Fig 
2 and Fig 1. Since the checkpoint process is called at the host, 
the kernel of iterated array addition is split into three parts: 
kernel_1(), kernel_2() and kernel_3() which are 
prolonged by �, �, and � loops of iterative array addition 
(� =  � +  �), respectively. We assume that kernel_1() 
is the computation before a checkpoint, kernel_2() is the 
computation between the checkpoint and a failure, and 
kernel_3() is the computation after the failure until the 
application finishes. Then, when a failure occurs, it has to re-
compute only kernel_2() instead of restarting from the 
beginning. 

Checkpoint and restart processes 
 

1 // Begin computing 
2 Do host-to-device memory copy of array A and 

B. 
3 Execute kernel_1() with l iterations. 
  

4 // Checkpoint process 
5 Synchronize all threads to prepare for memory 

copy. 
6 Allocate host memory for data checkpointing, 

i.e., for array A, B, and C. 
7 Do device-to-host memory copy of array A, B, 

and C. 
  

8 Execute kernel_2() with m iterations. 
  

9 // Failure occurrence 
10 Free all device memory. 

  
11 // Restart process 
12 Reallocate  device memory for array A, B, and 

C. 
13 Do host-to-device memory copy of array A, B, 

and C. 
  

14 // Recomputing time 
15 Re-execute kernel_2() with m iterations. 

  
16 Execute kernel_3() with n iterations. 

  
17 Do device-to-host memory copy of the result 

array C. 
Fig 3. The pseudo code imitating GPU streamed checkpoint and 
restart protocols 

TABLE I 
THE OVERHEADS OF DOING A CHECKPOINT WITH NON-STREAMED, 4-

STREAMED, AND 8-STREAMED CPRS 

Array Size 
Checkpoint Overhead (ms) 

Non-streamed 4-streamed 8-streamed 
2

�	  5.116 5.337 5.812 
2

��  5.086 5.555 5.795 
2

�
  5.098 5.590 5.924 
2

��  5.159 5.600 6.108 
2

��  5.239 5.713 5.940 
2

�
  5.404 5.829 6.285 
2

��  5.679 6.123 6.640 
2

��  6.256 6.586 7.196 
2

��  7.390 7.577 7.770 
2

�� 9.579 9.396 9.917 
2


	 14.475 12.016 14.171 
2


� 22.726 17.568 17.613 
2



 41.075 29.938 27.930 
2


� 80.754 54.034 50.436 
2


� 147.704 103.702 99.220 

TABLE II 
THE RESTART OVERHEADS DUE TO A FAILURE OCCURRENCE ON AN 

APPLICATION WITH NON-STREAMED, 4-STREAMED, AND 8-STREAMED CPRS 

Array Size 
Restart Overhead (ms) 

Non-streamed 4-streamed 8-streamed 
2

�	  0.437 1.248 2.099 
2

��  0.490 1.264 2.160 
2

�
  0.491 1.241 2.111 
2

��  0.502 1.240 1.923 
2

��  0.521 1.223 1.862 
2

�
  0.577 1.132 2.088 
2

��  0.716 1.141 1.965 
2

��  0.975 1.546 2.451 
2

��  1.427 1.763 1.982 
2

�� 2.403 2.063 2.622 
2


	 4.330 2.620 3.682 
2


� 8.140 3.963 3.931 
2



 15.826 6.160 6.163 
2


� 31.178 10.899 9.322 
2


� 61.751 20.537 15.904 

TABLE III 
THE WASTED TIMES DUE TO A FAILURE OCCURRENCE ON AN APPLICATION 

WITH NON-STREAMED, 4-STREAMED, AND 8-STREAMED CPRS 

Array Size 
Wasted Time (ms) 

Non-streamed 4-streamed 8-streamed 
2

�	  5.665 6.698 8.025 
2

��  5.688 6.931 8.067 
2

�
  5.701 6.943 8.147 
2

��  5.776 6.954 8.146 
2

��  5.936 7.112 7.978 
2

�
  6.322 7.302 8.714 
2

��  6.964 7.834 9.175 
2

��  8.255 9.156 10.671 
2

��  10.803 11.326 11.738 
2

�� 15.913 15.389 16.469 
2


	 26.573 22.404 25.620 
2


� 46.352 37.016 37.029 
2



 87.749 66.946 64.941 
2


� 173.624 126.625 121.450 
2


� 332.888 247.673 238.557 
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Our experiments are done on the NVIDIA GeForce GTX 
295 system which has compute compatibility 1.3. The 
heuristics of NVIDIA's graphic card with compute 
compatibility 1.x indicates that the maximum number of 
blocks in a grid is 65535, and the maximum number of threads 

in a block is 512 [12]. Then the maximum number of threads 
there can be is 65535 × 512, or 2

 − 2�. For the purpose of 
load balancing and data correctness while invoking the kernel 
with streams, we vary the size of arrays from 2�	 to 2
�. If the 
size of arrays reaches 2

, the number of iterations in the 
kernel will be influenced. 

In non-streamed case, the memory copy and the kernel 
execution are done consecutively. However, in 4-streamed and 
8-streamed cases, those instructions are done simultaneously. 
The checkpoint overhead is obtained by timing host memory 
allocation and device-to-host memory copy. A restart 
overhead is obtained by timing device memory reallocation 
and host-to-device memory copy. The wasted time is obtained 
by the summation of those overheads and the time of 
kernel_2() execution. The results are shown in Table I to 
III and Fig 4. 

Table I shows the overheads caused by a checkpoint, 
comparing between non-streamed, 4-streamed, and 8-streamed 
CPRs. When the size of arrays is less than 2��, 4-streamed 
CPR does not show advantage over non-streamed CPR. 
However, as the size of arrays is at least 2��, the checkpoint 
overhead of 4-streamed CPR is less than that of non-streamed 
CPR. Moreover, when the size of arrays is greater than 2
�, 
the checkpoint overhead of 8-streamed CPR is the smallest. 
This corresponds to the graph in Fig 4 (a), which illustrates the 
percentage of the performance improvement of streamed CPR 
in term of checkpoint overhead. When the size of arrays is less 
than 2��, the percentage of improvement is negative since the 
streamed CPR has no advantage over non-streamed CPR. 
However, it becomes positive when the size of arrays is 2��. 
As the size of arrays is 2
�, 4-streamed and 8-streamed CPRs 
gain advantage over non-streamed CPR  with the percentages 
of 29.790 and 32.699, respectively. 

Table II describes restart overheads of non-streamed, 4-
streamed, and 8-streamed CPRs due to a failure occurrence. It 
corresponds to the graph in Fig 4 (b). Similar to the 
checkpoint overhead, the restart overhead of 4-streamed CPR 
is smaller than non-streamed CPR when the size of arrays is at 
least 2��. Also, the restart overhead of 8-streamed CPR gains 
advantage over 4-streamed CPR when the size of arrays is at 
least 2
�. As the size of arrays is 2
�, the percentages of 
improvement of 4-streamed and 8-streamed CPRs are 66.743 
and 74.305, respectively. This similarity is because both 
checkpoint and restart overheads depend mainly on the 
duration of memory copy. 

Table III shows the wasted times due to a failure occurrence 
on an application with non-streamed, 4-streamed, and 8-
streamed CPRs. This table corresponds to the graph in Fig 4 
(c). Since wasted time is the aggregate of checkpoint 
overhead, restart overhead, and recomputing time, the 
performance improvement in the aspect of wasted time is 
similar to the checkpoint and restart overheads as we have 
already stated. 

In our experiments, we study the benefits of streamed CPR 
mechanism with only one checkpoint and one failure. In the 
next section, the simulation and its results will be presented in 

(a) 
 

(b) 
 

(c) 
Fig 4.  Percentages of performance improvement in terms of (a) 
checkpoint overhead, (b) restart overhead due to a failure 
occurrence, and (c) wasted time due to a failure occurrence 
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order to study the benefit of streamed CPR on real-world 
applications. 

V. SIMULATION 
In the previous section, we have shown the performance 

improvement of streamed CPR with various sizes of arrays. In 
this section, we study fault tolerance performability of 
streamed CPR, based on the checkpoint and restart overheads 
achieved in the experiments. 

In our simulation, despite of various checkpoint intervals, 
we also concern about mean-time-to-failures (MTTFs). Due to 
the fact that a large scale GPU cluster system is a 
heterogeneous system with a significant number of GPUs, 
such as Tianhe-1A [14], the MTTF of the system depends on 
the MTTF of some other modules or nodes in the system. Our 
study varied the MTTFs from 12 hours to 7 days with the 
checkpoint intervals of 30 and 120 minutes. The application 
length is fixed at 1000 hours. Since both 4-streamed and 8-
streamed CPRs have advantage over non-streamed CPR when 
the size of arrays is over 2

��, we do the simulation for the 

array sizes of 2
	 and 2
�. The performance is observed in 
three different aspects; the percentage of total checkpoint 
overheads and total restart overheads compared to wasted 
time, and the percentage of wasted time compared to 
completion time, which is the aggregate of the application 
length and wasted time. Fig 6 - Fig 5 show the percentages of 
total checkpoint overheads, while Fig 7 - Fig 8 illustrate the 
percentages of total restart overheads, and Fig 10 - Fig 11 
show the percentages of wasted time. 

Fig 6 illustrates the percentages of total checkpoint 
overheads compared to wasted time when the size of arrays is 
2
	. As shown in Fig 6 (a), when the MTTF is larger while the 
checkpoint interval is fixed at 30 minutes, the percentages of 
total checkpoint overheads grow bigger since the number of 
failures decreases while the number of checkpoints is more 
likely the same. On the other hand, when fixing the MTTF at 
12 hours and varying the checkpoint intervals, as shown in Fig 
6 (b), the larger interval produces fewer checkpoints. As a 
result, the total checkpoint overheads decrease. Furthermore, 
the percentages of total checkpoint overheads of 4-streamed 

(a) 
 

(b) 
Fig 5. The percentages of total checkpoint overheads compared to 
wasted time of the application with non-streamed, 4-streamed, and 
8-streamed CPRs when the size of arrays is 2


� and (a) the 
checkpoint interval is 30 minutes, and (b) the MTTF is 12 hours 

(a) 
 

(b) 
Fig 6. The percentages of total checkpoint overheads compared to 
wasted time of the application with non-streamed, 4-streamed, and 
8-streamed CPRs when the size of arrays is 2


	 and (a) the 
checkpoint interval is 30 minutes, and (b) the MTTF is 12 hours 
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CPR are the smallest in both cases which corresponds to our 
experimental results in the previous section. 

Fig 5 illustrates the percentages of total checkpoint 
overheads compared to wasted time when the size of array is 
2
�. According to table I, when the size of arrays is 2
�, the 
checkpoint overhead of 8-streamed CPR is the smallest. As a 
result, 8-streamed CPR performs better than non-streamed and 
4-streamed CPRs in term of total checkpoint overheads, 
particularly when there are more checkpoints. Similar to the 
graphs in Fig 6, the CPRs with the checkpoint interval of 30 
minutes, shown in Fig 5 (a), produce larger total checkpoint 
overheads when the MTTF increases. Also, with various 
checkpoint intervals, shown in Fig 5 (b), the total checkpoint 
overheads are smaller for the larger checkpoint interval. 
Moreover, as non-streamed CPR produces the most 
checkpoint overheads in both cases; the total checkpoint 
overheads are very small compared to the wasted time with no 
more than 5 percent.  

Fig 7 and Fig 8 illustrates the percentages of total restart 
overheads compared to wasted time when the sizes of arrays 

are 2
	 and 2
�, respectively. Since the number of failures 
depends on MTTF, when the MTTF increases, both restart 
overheads and wasted time decreases. As a result, the graphs 
slightly change (as shown in Fig 7 (a) and Fig 8 (a)). On the 
other hand, when the MTTF is fixed at 12 hours, by varying 
the checkpoint intervals (as shown in Fig 7 (b) and Fig 8 (b)), 
the graphs drop due to the increase of checkpoint overheads, 
resulting in the increase of wasted time. Furthermore, in both 
cases, streamed CPR obviously performs better than non-
streamed CPR. However, the restart overheads do not have 
much effect to the performance of the application since the 
percentages of total restart overheads are less than 0.01 
percent of wasted time in any cases. 

Fig 10 and Fig 11 illustrates the percentages of wasted time 
compared to completion time, which is the aggregate of 
wasted time and application length, when the sizes of arrays 
are 2
	 and 2
�, respectively. When the checkpoint interval is 
fixed 30 minutes (shown in Fig 10 (a) and Fig 11 (a)), as the 
MTTF increases, the percentage of wasted time tends to be 
smaller. However, when the MTTF is fixed at 12 hours 

(a) 
 

(b) 
Fig 7. The percentages of total restart overheads compared to wasted 
time of the application with non-streamed, 4-streamed, and 8-
streamed CPRs when the size of arrays is 2
	 and (a) the checkpoint 
interval is 30 minutes, and (b) the MTTF is 12 hours 

(a) 
 

(b) 
Fig 8. The percentages of total restart overheads compared to wasted 
time of the application with non-streamed, 4-streamed, and 8-
streamed CPRs when the size of arrays is 2
� and (a) the checkpoint 
interval is 30 minutes, and (b) the MTTF is 12 hours 
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(shown in Fig 10 (b) and Fig 11 (b)), as the checkpoint 
interval increases, the percentage of wasted time also increases 
due to the more recomputing time. Nevertheless, the 
overheads of non-streamed, 4-streamed, and 8-streamed CPRs 
are relatively small comparing to the recomputing time and 
completion time. Thus, the difference of the wasted time 
between those three types of CPRs is insignificant. 
 

VI. CONCLUSION 
Even though the checkpoint/restart mechanism can improve 

the application resilience, it reduces the performance by the 
cost of doing checkpoint. In this paper, we proposed GPU 
checkpoint/restart protocol that aims to reduce the fault 
tolerance overhead. Our experiments have revealed that the 
streamed CPR can reduce the checkpoint overhead when the 
size of checkpoint data is large enough. It can also improve 
the restart process by reducing the restart overhead. 

Our simulation has shown that the streamed CPR can 
reduce the cost of doing checkpoint. However, in the long-

running application, since the overhead of both checkpoint and 
restart processes are relatively small comparing to the 
recomputing time and the completion time, streamed CPR 
may not be beneficial on a single GPU system. 

Since the proposed checkpoint/restart mechanism needs 
thread synchronization in order to ensure the data correctness 
when performing checkpoint, we plan to apply our mechanism 
with data scheduling in compiler level in order to perform 
checkpoint at the proper time in the future work. 
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(a) 
 

(b) 
Fig 10. The percentages of wasted time compared to completion 
time of the application with non-streamed, 4-streamed, and 8-
streamed CPRs when the size of arrays is 2
	 and (a) the checkpoint 
interval is 30 minutes, and (b) the MTTF is 12 hours 

(a) 
 

(b) 
Fig 11. The percentages of wasted time compared to completion 
time of the application with non-streamed, 4-streamed, and 8-
streamed CPRs when the size of arrays is 2
� and (a) the checkpoint 
interval is 30 minutes, and (b) the MTTF is 12 hours 
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