
Performance Modeling and
Scalability Optimization of
Distributed Deep Learning Systems
Feng Yan
College of William and Mary Williamsburg, VA, USA

Olatunji Ruwase, Yuxiong He, Trishul Chilimbi
Microsoft Research Redmond,WA, USA

KDD '15 Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining

http://www.kdd.org/kdd2015/

Background
• In order to improving the efficiency of training large
DNNs, researchers exploited distributed deep
learning systems over clusters of machines in
several ways:

Model parallelism

• Each machine that model parallelism partitions
called a worker.

• A collection of workers that make up a complete
DNN model called a model replica.

Model Replica

Replica worker

Data parallelism

• Every Machine share parameter server to ensure
convergence.

• Parameter server can also be partitioned if needed

Param
Server(s)

Combination

• This framework enables to train a large amount of
data into reasonable accuracy in a matter of time.

Param
Server(s)

Problem

• Since the cluster of machines becomes larger, it
becomes a challenging problem to find a proper
way to configure the distributed system.

• System configuration includes the number of model
replicas, number of works each replica has, number
of the parameter servers, and so on…

Benefits and challenges
of finding an optimal configuration

• Benefits

• 10x faster than the worst one

• Noticeably faster than median one

• Challenges

• A large configuration space that
makes enumeration very time and
resource consuming

• One optimal configuration may be
specific to only one kinds of
model/hardware combination

ImageNet-22k
Processing on 20 machines

The way to solve

• Performance Model: estimates training epoch time for a
given system configuration

• Scalability Optimizar: explores the configuration space
efficiently and figure out the optimal one according to the
estimation given by performance model

Given
hardware/
model specs

Scalability
Optimizar

Performance
Model

Optimal
Configuration

System config Estimated time

Performance Model ̶ Model Parallelism
• The input of DNN is typically processed in three steps:

• Feedforward evaluation

• Back-propagation

• Error terms of the output layer

• Error terms

• Weight update

Performance Model ̶ Model Parallelism
• Local computation time

• Depends on number of connections, numbers of neurons,
and the latency of basic operations (such as MulAdd
operations)

• U(l, p) represents the computation of the layer l in partition p.

• Remote communication time

• Depends on the size of cross-machine activations, network
latency and bandwidth

• M(l, p) represents the communication time of the layer l in
partition p

• So, T(l, p) = U(l, p) + M(l, p)

Feedforward ̶ Local Computation time
• Feedforward evaluation

• Compute the output activation of neurons

• donates the time of one multiply-add operation

• W(l, p) donates the number of weight connected from layer l - 1 to
the neurons in partition p of layer l

• donates the number of neurons in partition p of layer l

• donates the time of computing the function of each neuron

• The estimation of and can be obtained by a micro
benchmark which emulates feedforward evaluation only using basic
operations on a worker machine.

Feedforward ̶ Remote communication time
• Feedforward evaluation

• donates the network latency of sending one bit of data
between two workers

• A(l, p) donates the number of remote activations that partition p
received from layer l - 1

• donates the size of each activation

• donates the bandwidth of machine’s NIC.

• Since activations can be sent to the next layer asynchronously, so
the total communication time is dominated by the delay in receiving
activations from previous layer.

Back propagation
• Back propagation

• Local computation time

• Compute the error terms of neuron in layer l +1

• W’(l, p) donates the number of weight connected from layer l + 1 to
the neurons in partition p of layer l

• donates the time of computing error function

• The estimation of Muladd and error function is also made through
basic canonical computations, similar to the one in feedforward.

• Remote communication time

• E(l, p) replace A(l, p) in the one of feedforward, which is the number of
remote error terms that partition p received from layer l+1

Weight update
• Since weights are not communicated in model parallelism, the

remote communication time is zero, so:

• From the estimated time for feedforward, back-propagation and
weight updates, we can finally get the train time for each layer and
thus the total time to train on an example with model parallelism.

Data Parallelism ̶ Chip-level Multiprocessing
• Data parallelism can be also applied on modern multi-core

processors. The cores of a CMP system can process different
samples concurrently. So the number of concurrent thread may be
a configuration choice.

• A new dimension h(h ∈ [1,H(l)]) is introduced to extend the model
to support data parallelism using CMP, where H(l) represent the
number of threads training in parallel in layer l.

Data Parallelism ̶ Chip-level Multiprocessing
• Local computation time

• is a performance interference factor to model the
interference among threads. It’s estimated as the ratio of the H(l)-
thread execution time and the single-thread by running a multi-
threaded version of basic operation such that each thread processes
the same code using different cores.

• It’s possible for to be larger than one, which cause
computation time of training one example increases. But running
multiple samples concurrently can still reduce the epoch time of
training the entire sample set.

• Q(l) is defined as data parallelism degree which is to represent the
concurrency degree of training samples in parallel in layer l in order
to define the epoch time.

• In this case, Q(l) = H(l)

Data Parallelism ̶ Chip-level Multiprocessing
• Remote communication time

• When training multiple samples with multiple threads, the network
bandwidth is shared among the threads, so each threads can only
gets 1/H(l) of the bandwidth, we define which is

• denotes the network latency which is effected by H(l)
because the latency may increase when establishing H(l) concurrent
connection sending and receiving activations/error terms.

Data Parallelism ̶ Layer Replication
• Since partitioning a fully connected layer may produce a large

amount of data communication, a better alternative is to replicate
the whole layer among several machines where each machine
processes a subset of training data.

• A new dimension r is introduced to extend the model to support
data parallelism using layer replication.

• The computation time is the same as that of using CMP, and the
communication time is very similar.

• The data parallelism degree Q(l) = H(l) * R(l), R(l) denote to the
number of layer replications.

Data Parallelism ̶ Model Replicas
• The number of model replicas and parameter servers are the

critical configuration choice to balance computation and
communication.

• Computation time doesn’t change as before. The data parallelism
degree is extended to Q(l) = H(l) * R(l) * , where donates
the number of replicas.

Data Parallelism ̶ Model Replicas
• Communication time

• The communication of weight update between replicas and
parameter servers needs to be considered (only consider
reading weights). However, the time it takes depends on the
communication pattern. The worst case is when all replicas read
weights from the same server simultaneously, the time will be:

• where

• The best case occurs when a single replica uses all of its
workers and reads from all parameter servers in parallel, and
there is no overlapped among multiple replicas while reading.

Performance Model
• We get the estimation of the epoch time of the complete model.

• where

• Then we can use the performance model to do scalability
optimization.

Scalability optimizer
• The purpose of a scalability optimizer is to enumerates different

system configurations and use to proposed performance model to
estimate the training time, and finally finds out the optimal
configuration.

• Here is the problem formulation for the optimizer:

Brute-force search
• The simplest way to search is to traverse the configuration space

to find the best performed one.

• To find the proper of resource parameters, there are N^3
combinations.

• To find an assignment that minimizes the remote communications,
mapping of segments and worker is a permutation that results in
O(n!) complexity.

• At each layer, the selection on the number of partitions and replicas
will also be N^2

• There are K choices of the number of threads

• So the complexity of the brute-force search is

Efficient Search Algorithm
• Optimizing segment-worker mapping

• Using a greedy approach, for each segment, just finding a
worker which can minimize the remote connection time from
previous. The time complexity is O(n). So for all segments, the
complexity is O(N^2)

• Optimizing multi-layer composition

• An optimal solution for up to l layers can be constructed using
the optimal of sub-problems for up to layer l - 1. The key
observation is that an optimal solution for up to l layers can be
constructed using the optimal of sub-problems for up to layer
l-1.

Optimizing multi-layer composition
• Donate as the accumulated training time from layer 1

to layer l.

• Where is the computation time of layer l, and
is the communication time between layer l-1 and layer l

• Dynamic programing is applied to prevent the cost being
exponential. To get each , the cost is N times segment-worker
mapping cost, i.e., N^3. And if we consider replica, the complexity
of per layer becomes O(N^4), and total complexity is O(L * N^4)

• To sum up, the entire complexity can be , reducing
from exponential time to polynomial time.

• And complexity can be further reduced to

Evaluation
• Methodology

• Distributed deep learning system

• Adam http://web.eecs.umich.edu/~mosharaf/Readings/Project-Adam.pdf

• Benchmarks

• MINST

• DNN contains about 2.5 million connections in 5 layers: 2 convolutional layers, 2
linear layers and an output layer

• ImageNet-22K

• DNN contains over 2 billion connections in 8 layers: 5 convolutional layers, 2
linear layers and an output layer

• Computer Cluster

• A cluster of 20 identically configured commodity servers connected by Ethernet

• For each server:

• Xeon-E2450 with 16 cores running at 2.1GHz

• 64 GB of memory

• 268.8 GFLOP/s SIMD FPU

• A single 10Gbps NIC

http://web.eecs.umich.edu/~mosharaf/Readings/Project-Adam.pdf

Performance Model Validation

Performance Model Validation

• Estimation error <25%

Problems
• The estimation of communication time is still less accurate than

that of computation time.

• Can this performance model estimate art-of-the-state DNN models
which the number of layers is over 100?

The end
Thank you for listening!

Zhang Chenwu
17M38153

