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Background
• In order to improving the efficiency of training large 
DNNs, researchers exploited distributed deep 
learning systems over clusters of machines in 
several ways: 



Model parallelism

• Each machine that model parallelism partitions 
called a worker. 

• A collection of workers that make up a complete 
DNN model called a model replica.
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Data parallelism

• Every Machine share parameter server to ensure 
convergence. 

• Parameter server can also be partitioned if needed
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Combination

• This framework enables to train a large amount of 
data into reasonable accuracy in a matter of time.
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Problem

• Since the cluster of machines becomes larger, it 
becomes a challenging problem to find a proper 
way to configure the distributed system. 

• System configuration includes the number of model 
replicas, number of works each replica has, number 
of the parameter servers, and so on…



Benefits and challenges 
of finding an optimal configuration

• Benefits 

• 10x faster than the worst one 

• Noticeably faster than median one 

• Challenges 

• A large configuration space that 
makes  enumeration very time and 
resource consuming 

• One optimal configuration may be 
specific to only one kinds of 
model/hardware combination
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The way to solve

• Performance Model: estimates training epoch time for a 
given system configuration 

• Scalability Optimizar: explores the configuration space 
efficiently and figure out the optimal one according to the 
estimation given by performance model
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Performance Model ̶ Model Parallelism
• The input of DNN is typically processed in three steps:  

• Feedforward evaluation 

• Back-propagation 

• Error terms of the output layer 

• Error terms  

• Weight update



Performance Model ̶ Model Parallelism
• Local computation time 

• Depends on number of connections, numbers of neurons, 
and the latency of basic operations (such as MulAdd 
operations) 

• U(l, p) represents the computation of the layer l in partition p. 

• Remote communication time 

• Depends on the size of cross-machine activations, network 
latency and bandwidth 

• M(l, p) represents the communication time of the layer l in 
partition p 

• So, T(l, p) = U(l, p) + M(l, p)



Feedforward ̶ Local Computation time
• Feedforward evaluation 

• Compute the output activation of neurons 

•             donates the time of one multiply-add operation 

• W(l, p) donates the number of weight connected from layer l - 1 to 
the neurons in partition p of layer l 

•                   donates the number of neurons in partition p of layer l 

•         donates the time of computing the function of each neuron 

• The estimation of             and        can be obtained by a micro 
benchmark which emulates feedforward evaluation only using basic 
operations on a worker machine.



Feedforward ̶ Remote communication time
• Feedforward evaluation 

•            donates the network latency of sending one bit of data 
between two workers 

• A(l, p) donates the number of remote activations that partition p 
received from layer l - 1 

•          donates the size of each activation 

•         donates the bandwidth of machine’s NIC. 

• Since activations can be sent to the next layer asynchronously, so 
the total communication time is dominated by the delay in receiving 
activations from previous layer.



Back propagation
• Back propagation 

• Local computation time 

• Compute the error terms of neuron in layer l +1  

• W’(l, p) donates the number of weight connected from layer l + 1 to 
the neurons in partition p of layer l 

•        donates the time of computing error function 

• The estimation of Muladd and error function is also made through 
basic canonical computations, similar to the one in feedforward. 

• Remote communication time 

• E(l, p) replace A(l, p) in the one of feedforward, which is the number of 
remote error terms that partition p received from layer l+1



Weight update
• Since weights are not communicated in model parallelism, the 

remote communication time is zero, so: 

• From the estimated time for feedforward, back-propagation and 
weight updates, we can finally get the train time for each layer and 
thus the total time to train on an example with model parallelism.



Data Parallelism ̶ Chip-level Multiprocessing
• Data parallelism can be also applied on modern multi-core 

processors. The cores of a CMP system can process different 
samples concurrently. So the number of concurrent thread may be 
a configuration choice. 

• A new dimension h(h ∈ [1,H(l)]) is introduced to extend the model 
to support data parallelism using CMP, where H(l) represent the 
number of threads training in parallel in layer l.



Data Parallelism ̶ Chip-level Multiprocessing
• Local computation time 

•                     is a performance interference factor to model the 
interference among threads. It’s estimated as the ratio of the H(l)-
thread execution time and the single-thread by running a multi-
threaded version of basic operation such that each thread processes 
the same code using different cores. 

• It’s possible for                   to be larger than one, which cause 
computation time of training one example increases. But running 
multiple samples concurrently can still reduce the epoch time of 
training the entire sample set. 

• Q(l) is defined as data parallelism degree which is to represent the 
concurrency degree of training samples in parallel in layer l in order 
to define the epoch time. 

• In this case, Q(l) = H(l)



Data Parallelism ̶ Chip-level Multiprocessing
• Remote communication time 

• When training multiple samples with multiple threads, the network 
bandwidth is shared among the threads, so each threads can only 
gets 1/H(l) of the bandwidth, we define which is  

•                   denotes the network latency which is effected by H(l) 
because the latency may increase when establishing H(l) concurrent 
connection sending and receiving activations/error terms.



Data Parallelism ̶ Layer Replication
• Since partitioning a fully connected layer may produce a large 

amount of data communication, a better alternative is to replicate 
the whole layer among several machines where each machine 
processes a subset of training data. 

• A new dimension r is introduced to extend the model to support 
data parallelism using layer replication. 

• The computation time is the same as that of using CMP, and the 
communication time is very similar. 

• The data parallelism degree Q(l) = H(l) * R(l), R(l) denote to the 
number of layer replications.



Data Parallelism ̶ Model Replicas
• The number of model replicas and parameter servers are the 

critical configuration choice to balance computation and 
communication. 

• Computation time doesn’t change as before. The data parallelism 
degree is extended to Q(l) = H(l) * R(l) *       , where        donates 
the number of replicas.



Data Parallelism ̶ Model Replicas
• Communication time 

• The communication of weight update between replicas and 
parameter servers needs to be considered (only consider 
reading weights). However, the time it takes depends on the 
communication pattern. The worst case is when all replicas read 
weights from the same server simultaneously, the time will be:  

• where  

• The best case occurs when a single replica uses all of its 
workers and reads from all parameter servers in parallel, and 
there is no overlapped among multiple replicas while reading.



Performance Model
• We get the estimation of the epoch time of the complete model. 

• where 

• Then we can use the performance model to do scalability 
optimization.



Scalability optimizer
• The purpose of a scalability optimizer is to enumerates different 

system configurations and use to proposed performance model to 
estimate the training time, and finally finds out the optimal 
configuration. 

• Here is the problem formulation for the optimizer:



Brute-force search
• The simplest way to search is to traverse the configuration space 

to find the best performed one. 

• To find the proper of resource parameters, there are N^3 
combinations. 

• To find an assignment that minimizes the remote communications,  
mapping of segments and worker is a permutation that results in 
O(n!) complexity. 

• At each layer, the selection on the number of partitions and replicas 
will also be N^2 

• There are K choices of the number of threads 

• So the complexity of the brute-force search is



Efficient Search Algorithm
• Optimizing segment-worker mapping 

• Using a greedy approach,  for each segment, just finding a 
worker which can minimize the remote connection time from 
previous. The time complexity is O(n). So for all segments, the 
complexity is O(N^2) 

• Optimizing multi-layer composition 

• An optimal solution for up to l layers can be constructed using 
the optimal of sub-problems for up to layer l - 1. The key 
observation is that an optimal solution for up to l layers can be 
constructed using the optimal of sub-problems for up to layer 
l-1.



Optimizing multi-layer composition
• Donate                      as the accumulated training time from layer 1 

to layer l. 

• Where            is the computation time of layer l, and                     
is the communication time between layer l-1 and layer l                 

• Dynamic programing is applied to prevent the cost being 
exponential. To get each         , the cost is N times segment-worker 
mapping cost, i.e., N^3. And if we consider replica, the complexity 
of per layer becomes O(N^4), and total complexity is O(L * N^4) 

• To sum up, the entire complexity can be                       , reducing 
from exponential time to polynomial time.  

• And complexity can be further reduced to 



Evaluation
• Methodology 

• Distributed deep learning system 

• Adam  http://web.eecs.umich.edu/~mosharaf/Readings/Project-Adam.pdf 

• Benchmarks 

• MINST 

• DNN contains about 2.5 million connections in 5 layers: 2 convolutional layers, 2 
linear layers and an output layer 

• ImageNet-22K 

• DNN contains over 2 billion connections in 8 layers: 5 convolutional layers, 2 
linear layers and an output layer 

• Computer Cluster 

• A cluster of 20 identically configured commodity servers connected by Ethernet 

• For each server: 

• Xeon-E2450 with 16 cores running at 2.1GHz 

• 64 GB of memory 

• 268.8 GFLOP/s SIMD FPU 

• A single 10Gbps NIC

http://web.eecs.umich.edu/~mosharaf/Readings/Project-Adam.pdf


Performance Model Validation



Performance Model Validation

• Estimation error <25%



Problems
• The estimation of communication time is still less accurate than 

that of computation time. 

• Can this performance model estimate art-of-the-state DNN models 
which the number of layers is over 100?



The end 
Thank you for listening!
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