
 

 

Checkpointing Orchestration: Toward a Scalable HPC Fault-Tolerant Environment 
Hui Jin, Tao Ke 

Illinois Institute of Technology 
Chicago, IL 60616 

{hjin6, tke1}@iit.edu

Yong Chen 
Texas Tech University 
Lubbock, TX 79409 
yong.chen@ttu.edu 

Xian-He Sun 
Illinois Institute of Technology 

Chicago, IL 60616 
sun@cs.iit.edu 

 
Abstract- Checkpointing is widely used in technical computing. 
However, the overhead of checkpointing is a subject of 
increasing in concern in recent years, especially for large-scale 
parallel computer systems. In these systems, checkpointing 
generates a huge number of concurrent I/O writes. The burst 
of writes plus the worsening I/O-wall problem often leads to 
network and I/O congestion, and makes the overall system 
performance painfully slow. Recognizing contention as a 
dominant performance factor, in this paper we propose a 
systematic approach named checkpointing orchestration to 
reduce write contention, which combines the marshaling of 
concurrent checkpoint requests and the adopting of vertical 
data access in coordination. A prototype of the proposed 
checkpointing orchestration approach has been implemented 
at the system-level under Open MPI over the PVFS2 file 
system. Extensive experiments based on NPB benchmarks 
have been conducted to verify the design and implementation. 
Experimental results show that checkpointing orchestration 
reduced the checkpointing cost at a degree of more than 30%. 
Checkpointing cost was halved for 4 out of 5 the C class NPB 
benchmarks.  

Keywords- Fault Tolerance, Checkpointing, Parallel File System 

I. INTRODUCTION 
High-Performance Computing (HPC) has crossed the 

petaflop (1015 FLOPS) mark and is moving forward to 
reach the exaflop (1018 FLOPS) range [1]. Such ultra-scale 
computing power comes with increased system complexity 
and has significantly increased the likelihood of failures. 
Mean-Time-Between-Failures (MTBF) of a large-scale 
cluster is predicted to drop to hours [2] [3]. Effective fault 
tolerance support is a necessity for tomorrow’s high-end 
computing systems.   

Checkpointing/Restart (C/R) is a widely used 
mechanism for fault-tolerant computing, where checkpoints 
are taken periodically to store a snapshot of the application 
to a stable storage for resuming the application in case of 
failures [4]. The C/R mechanism mitigates the damage of 
failures. However, in the meantime, it introduces 
considerable overhead, and could degrade the overall 
performance significantly as well. Oldfield, et al. have 
shown that checkpointing in a 1-petaflop system can 
potentially harm the system performance by up to 50% [5]. 
Whether checkpointing is feasible for the future exascale 
computing environment is a subject under intensive 
scrutiny in recent years [6] [7]. 

Parallel file systems (PFS) such as Lustre [8], GPFS [9] 
and PVFS2 [10] are widely deployed on modern large-scale 
systems and serve as the storage of checkpoint images. The 
parallel file systems are usually deployed on dedicated I/O 
servers that are separated from compute nodes. 

Conventional PFS are motivated by mitigating the I/O-wall 
problem. They are designed to mask the performance gap 
between memory and disks. However, the flood of 
emerging data-intensive applications has pushed PFS into 
new scenarios than what they were originally designed for. 
As one of the representative data intensive applications, 
checkpointing in a large-scale system usually issues 
hundreds of thousands of concurrent I/O requests to the 
PFS in a burst, which introduces considerable data access 
contentions. I/O contention is a main factor that influences 
the checkpointing performance, partially due to the fact that 
the number of compute nodes is often one to two orders of 
magnitude greater than the number of I/O servers [11] [12]. 
The gap is further enlarged with the wide adoption of 
multi-core/many-core processors that supports multiple 
computation processes on one compute node. The 
contention limits the scalability of checkpointing, due to 
the fact that more processes usually lead to higher 
contention and more waste in bandwidth. A recent study 
has revealed that checkpointing scalability is the key factor 
that limits the scalability of applications for the emerging 
exascale computing era [13]. 
A. Impact of I/O Contention 

To evaluate the impact of I/O contention on 
checkpointing performance, we have set up experiments on 
a cluster of 32 compute nodes and 4 I/O server nodes. We 
set up PVFS2 on these 4 dedicated I/O servers as 
checkpointing storage. Open MPI was used as the MPI and 
checkpointing environment. Detailed configuration of the 
experimental environment can be found in sub-section IV-
A. 

We ran one synthetic parallel application with the 
native checkpointing method that is supported in Open MPI 
v1.4. We minimized the communication in the synthetic 
application to remove the influence of coordination on 
checkpointing and focus on the I/O performance. We kept 
the overall image size at 16GB, varied the number of 
processes from 16 to 256, and measured their 
corresponding checkpointing overheads. 

Fig. 1 demonstrates the aggregated bandwidth with 
different number of processes. Though writing the same 
amount of checkpoint image to the storage, the I/O 
bandwidth has a huge variance with different number of 
processes. We observed that the average bandwidth was 
halved when the number of processes was increased from 
16 to 256, which confirms the scalability limitation of 
traditional checkpointing. 

2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-0-7695-4691-9/12 $26.00 © 2012 IEEE

DOI 10.1109/CCGrid.2012.61

276



 

 

Figure 1. Aggregated Bandwidth under Contentions 
 

B. Our Solution: Checkpointing Orchestration 
Recognizing I/O contention as a dominant performance 

factor of checkpointing, we propose a systematic approach 
to reducing I/O contention of parallel checkpointing in this 
study. Checkpointing has its own characteristic and is 
important enough to have its own optimization systems. In 
this paper, we explore a seamless integration between PFS 
and checkpointing, and investigate the methodology to 
adapt both sides for better overall performance. 

The main idea of our solution is to orchestrate the 
concurrent checkpoints in an optimized and controllable 
way to minimize the I/O contention. The contribution of this 
research is multi-fold: 
• We propose a new vertical checkpointing manner to 

rearrange data layout of the checkpoint files on PFS 
and reduce the contention. 

• We propose a staged checkpointing marshaling 
technique to serialize the concurrent checkpoints on 
each compute node and to further reduce the I/O 
contention 

• A prototype of the system-level checkpointing 
orchestration is implemented under the PVFS2 and 
Open MPI environments. We have released the 
software implementation of checkpointing 
orchestration and made it publicly accessible to the 
community [14]. 

• Extensive experiments are conducted with NPB 
benchmarks to evaluate the proposed checkpointing 
orchestration approach.  

The rest of this paper is organized as follows. We 
introduce the design of checkpointing orchestration in 
Section II, followed by the implementation introduced in 
Section III. Experimental evaluation is presented in Section 
IV. Section V reviews related work and compares them 
with our work. Section VI concludes this study and 
discusses future work. 

II. DESIGN OF CHECKPOINTING ORCHESTRATION 
A. Background 

A parallel application can be composed of hundreds of 
thousands of processes. To complete a checkpointing, the 
processes first coordinate with one another to get a 
consistent state. Each process will issue a checkpoint 
request after the coordination. We use the term checkpoint 
and checkpoint request interchangeably throughout the 
paper when context is clear. Checkpoint requests are issued 
in a burst, which strikingly increases contention and harms 
the performance. The objective of checkpointing 
orchestration is to reduce the contention caused by the burst 
of checkpoint requests. Each checkpoint request generates a 
sequence of I/O requests. The I/O requests are different 
from each other in size. For example, the I/O requests that 
store the CPU registers signal handler and pid are usually 
small, while the I/O requests that store the virtual memory 
area (VMA) are relatively big. The I/O requests are 
represented by VFS requests at the file system layer. 

Checkpointing can be supported at either application-
level or system-level. Application-level checkpointing 
relies on the application to provide its fault tolerant 
capabilities. This research of checkpointing orchestration 
aims at enhancing system-level checkpointing, which does 
not require modification to the source code of applications. 
However, the idea of checkpointing orchestration is general 
and can be extended to support application-level 
checkpointing as well. 

From the perspective of file systems, there are two 
types of checkpointing patterns, N�N and N�1 [15]. An 
N�N checkpointing pattern is one in which each of the N 
processes writes to a unique file, with a result of total of N 
checkpoint files. An N�1 checkpointing pattern differs in 
that all the N processes write to a single shared file. The 
implementation of N�1 based checkpointing is limited to 
application-level checkpointing. From system-level, it is 
difficult, if not impossible, to combine/retrieve multiple 
independent checkpoint images into/from one file. Thus, in 
this research, we focus on the performance optimization 
of the N-N checkpointing pattern. 

PFS generally stripes data over multiple I/O servers for 
high performance I/O. Fig. 2 illustrates how checkpoint 
requests are handled with a traditional checkpointing 
method. Suppose we have two compute nodes. Each node 
is equipped with dual cores and executes two parallel 
processes. Assume that PFS is deployed on two dedicated 
I/O servers. A PFS client daemon resides on each compute 
node to capture the I/O requests to/from I/O servers. The 
checkpoint snapshot of each process is divided into 4 
stripes, which are evenly distributed onto the two I/O 
servers. One data stripe is not guaranteed to be serviced 
exclusively by the I/O server: it could be preempted by the 
I/O requests of other stripes for the sake of fairness. In the 
ideal case, the processing time is halved by distributing the 
checkpoint snapshot onto two I/O servers. The striping 
design of PFS facilitates fast processing time, which is 

277



 

 

defined as the time from the start of file writing to its 
completion. As a specific data intensive application to PFS, 
however, checkpointing has several distinctive features that 
provide room for performance improvement, as discussed 
below. 

 
Figure 2. Traditional Checkpointing 

• Checkpoints of all parallel processes act as a whole 
and their performance is evaluated by the time span 
between the issuance of the first checkpoint request 
and the completion of last one. The processing time of 
one single checkpoint has a limited, if not 
meaningless, representation of the overall 
performance. As a consequence, we need to reevaluate 
the role of striping under the scenario of 
checkpointing. 

• Checkpointing usually issues a burst of write requests, 
which are serviced in a round-robin manner at file 
system side for the sake of fairness, and introduces 
additional overhead due to the context switch and the 
contention that causes extra physical disk head 
movement. Fig. 2 reflects this overhead by further 
dividing each stripe into two sub-requests.   

In this paper, we propose to orchestrate both the 
checkpointing system and the parallel file system for better 
performance. The orchestration is two-fold. First, we 
propose a vertical checkpointing mechanism to reduce the 
number of checkpoints serviced by each I/O server. Second, 
we introduce a staged checkpointing marshaling to reduce 
I/O contention. 

B. Vertical Checkpointing 
The striping mechanism of PFS helps to speed up the 

processing time of single checkpoint. However, it may not 
be helpful for a burst of concurrent checkpoint requests. On 
the contrary, striping checkpoint requests across I/O servers 

introduces contention and can harm the overall 
performance. 

One of the main functionalities of checkpointing 
orchestration is being able to disable striping and select one 
dedicated I/O server for each checkpoint to reduce the 
contention. As illustrated in Fig. 3, checkpointing 
orchestration first generates a mapping file. PFS later refers 
the mapping file to choose I/O servers for checkpointing 
storage. The term of vertical checkpointing comes from the 
fact that each checkpoint file is stored directly onto one 
given I/O server. In contrast, as illustrated in Fig. 2, the 
conventional striping methodology distributes the 
checkpoint file horizontally among all the I/O servers. 

 
Figure 3. Vertical Checkpointing 

With vertical checkpointing, each I/O server only needs 
to service two checkpoint files as shown in Fig. 3, which 
considerably reduces the contention. 

The mapping file is a hashing function from PFS clients 
to PFS servers. Checkpoints from one compute node share 
one identical I/O server to reduce network contention. The 
mapping file is generated at the beginning of an application 
run and maintained until the completion of the application 
or an interruption because of failures. It is important to 
balance the workload of each I/O server. By default, the 
mapping file assigns each I/O server with the same number 
of compute nodes and the associated checkpoints. This 
strategy works well since the checkpoint image sizes of 
each process are similar, especially for well optimized MPI 
applications. For applications with irregular workload 
patterns, the mapping file can be adjusted accordingly to 
balance the data distribution on each I/O server. Note that 
there is no consistency and synchronization issue for 
sharing the mapping file among multiple clients, because 
all the requests are read only. 
C. Staged Checkpointing Marshaling  

Vertical checkpointing helps to reduce the number of 
checkpoint requests served by each I/O server and the cost 

278



 

 

of coordination among I/O servers. However, even with the 
vertical checkpointing method, each I/O server is still 
burdened by I/O interleaving of checkpoint requests as 
shown in Fig. 3. The I/O interleaving issue is exaggerated 
with the fact that each I/O server services multiple compute 
nodes, and each compute node can spawn multiple 
checkpoint processes to the I/O server. The proposed 
checkpointing orchestration approach serializes the 
checkpoints on each compute node to boost the 
performance. We employ a staged marshaling design for 
this purpose. Each checkpoint process first stages its image 
in the local memory, and then flushes the image from 
memory to the PFS server.  

 
Figure 4. Staged Checkpointing Marshaling 

In Fig. 4 we have two compute nodes whose 
checkpoints are mapped onto one shared I/O server. The 
staged checkpointing marshaling is adopted on each 
compute node. Each checkpoint file is first staged onto the 
local memory, and then flushed into the PFS I/O server. 
The motivation of the staging phase is to mitigate the 
impact of small VFS writes [16]. The flushing phase has a 
mutex to govern the multiple checkpoint requests in a 
stream and reduce the contention. Multiple checkpoint 
requests from one compute node are served sequentially by 
the I/O server. From Fig. 4 we can observe that at the I/O 
server side, the VFS requests from one compute node are 
not interleaved. As a result, we have more contiguous 
requests in Fig. 4. 

The pseudo code of the staged checkpointing 
marshaling is shown in Algorithm 1. We have two 
interleaved mutexes. The first mutex is used to limit only 
one checkpoint process carrying out the staging at one time. 
The second mutex marshals the concurrent checkpoints in a 
serialized manner. The two mutexes are interleaved, which 
means a checkpoint will not release the staging lock until it 
gets the PFS flushing lock. The staging phase operates in 
memory and is faster than the PFS operation, and by 
interleaving the two mutexes we avoid the excessive 

memory usage. Staged marshaling requires the memory to 
accommodate up to two checkpoint files, which is 
affordable. The staged marshaling technique facilitates 
checkpointing by both mitigating the burden of small VFS 
requests and limiting the memory usage. Checkpoint 
requests are serviced in a pipeline manner with staged 
checkpointing marshaling: The flush operation of the 
previous request runs in parallel with the stage operation of 
the next request. 

Wait(StageMutex) 
Stage Checkpoint onto local memory 

Wait(PFSMutex) 
Signal(StageMutex) 

Flush checkpoint to PFS server 

Signal(PFSMutex) 
Algorithm 1. Pseudo Code for Staged Marshaling

III. IMPLEMENTATION OF CHECKPOINTING 
ORCHESTRATION 

A prototype of checkpointing orchestration system is 
implemented under PVFS2 and Open MPI. In particular, 
we implement vertical checkpointing under PVFS2 and 
optimize the performance from the PFS side. The staged 
checkpointing marshaling is implemented under Open MPI 
and optimizes the performance from the perspective of 
checkpointing middleware. 
A. Implementation under PVFS2 

As a parallel file system that provides high performance 
I/O for parallel applications, PVFS2 [10] not only supports 
MPI-IO interface, but also provides POSIX interface to 
benefit general application such as system-level 
checkpointing. We choose to implement the checkpointing 
orchestration under PVFS2. We made the following 
modifications to PVFS2 to facilitate vertical checkpointing. 

First, the striping mechanism is disabled to enforce that 
one checkpoint is served by a single I/O server. As 
checkpoint files are stored within a PVFS2 directory that 
the user specifies, we reset the attributes of the PVFS2 
directory to enforce single I/O server access.  

Second, we need to balance the workload of each I/O 
server to achieve the overall optimal performance. In the 
original implementation of PVFS2, I/O server is chosen 
randomly for each I/O request, which provides 
approximately balanced distribution in general. However, if 
each task has a similar workload, as in the checkpointing 
application, a controlled distribution achieves a better load 
balance. We use a mapping file to hash checkpoints to I/O 
servers for balanced distribution. Each checkpoint process 
first reads the mapping file, and piggybacks hashed I/O 
server information in the hint field of PFS clients, which is 
used later by the PFS metadata server to map requests to 
the corresponding I/O servers. 

PFS usually service mixed workloads and our 
implementation should not affect I/O requests from other 
ordinary applications. We take two approaches to handling 

279



 

 

this problem. First, each checkpoint goes to the specified 
directory that disables the striping mechanism. This 
approach isolates the effect of checkpointing orchestration 
from regular applications. Furthermore, since the hint filed 
of each checkpoint request is flagged, PFS can easily 
identify the checkpoint I/O requests from regular I/O 
requests and route the request to the right I/O server. 
Regular I/O requests from other applications will not be 
affected by checkpointing orchestration. 
B. Implementation under Open MPI 

Open MPI is an open source MPI-2 implementation that 
provides high-performance, robust, parallel execution 
environment for a wide variety of MPI applications [17] 
[18]. Open MPI supports a transparent, coordinated 
checkpoint/restart implementation primarily based on 
BLCR library [19]. The staged checkpointing marshaling 
component of checkpointing orchestration is implemented 
under Open MPI. 

The system call fcntl is chosen for the implementation 
of mutex locks. Each process requires an exclusive write 
request to the lock file in order to carry out the staging or 
flushing operation. We use ram-based file as the mutex 
lock file for better efficiency. Since the lock file is only 
shared by a limited number of processes inside one 
compute node, it provides sufficient and required 
concurrency control. 

Note that checkpointing orchestration is currently 
implemented as an augment to PVFS2 and Open MPI. 
Users can flexibly decide whether to take advantage of 
checkpointing orchestration by setting different flag 
parameters. PVFS2 and Open MPI work normally if 
checkpointing orchestration is disabled. 

IV. PERFORMANCE EVALUATION 
A. Experimental Settings 

Our experiments were conducted on a cluster of 32 Sun 
Fire Linux-based compute nodes. Each node is equipped 
with dual 2.7 GHz Opteron quad-core processors, 8 GB 
memory and 250GB SATA hard drive. All the nodes are 
connected with 1 Gigabit NICs in a fat tree topology. We 
use Open MPI v1.4 as the MPI and checkpointing 
environment, and use PVFS2 as the parallel file system for 
checkpointing storage. PVFS2 is built on 4 extra nodes as 
I/O servers. The PVFS2 stripe size for traditional 
checkpointing is set as 64KB. The I/O servers have the 
same hardware configuration as the compute nodes. Each 
I/O server also works as a metadata server. 

We use NAS Parallel Benchmark (NPB) as parallel 
applications for performance evaluation [20]. NPB is a 
suite of programs widely used to evaluate the performance 
of parallel applications. We select 5 representative 
benchmarks with the consideration of image sizes, number 
of processes available for the performance evaluation. 
Table I summarizes the benchmarks selected, their problem 
sizes (class C/D), process number and the corresponding 
checkpointing image sizes. Among the five benchmarks, 

the number of processes for BT and SP can be only set as 
the squared integers, while the other three require the 
process number as the power of 2*. The applications with 
36 and 196 processes are assigned 12 and 28 nodes such 
that the images can be evenly distributed over the 4 I/O 
servers. 

Three environments have been set up to evaluate the 
proposed checkpointing orchestration. The traditional 
environment is the default configuration without 
orchestration. The vertical environment employs only 
vertical checkpointing and disables staged checkpointing 
marshaling. The orchestration environment reflects the 
performance with the deployments of both the two 
techniques. Measuring the checkpointing overhead is 
naturally supported by Open MPI.  

Problem Size Class=C Class=D 

Benchmarks/# of Procs 256 32/36 64 128/196 256 

LU 2.5GB 12GB 12GB 14GB 16GB 

CG 2.1GB 20GB 20GB 21GB 22GB 

BT 4.2GB 26GB 28GB 31GB 32GB 

SP 3.7GB 22GB 24GB 27GB 28GB 

FT 9.3GB N/A 81GB 81GB 82GB 

Table I: Benchmarks and the Overall Image Size (GB) 

B. Performance with Different Benchmarks 

Figure 5. Checkpointing Performance Comparison  

We first measured the checkpointing performance for 
all five benchmarks with class D as reported in Fig. 5. The 
number of processes is set as 256. The first observation is 
that checkpointing orchestration presents better 
performance than that of the traditional approach. As an 
example, checkpointing orchestration saved 254 seconds 
compared to the traditional approach for benchmark FT. 
The checkpointing overhead of benchmark LU was reduced 
from 157.41 seconds of the traditional approach to 105.99 
seconds, with a speedup close to 30%. Vertical 
checkpointing outperforms the traditional approach but still 
leaves a considerable performance improvement space for 
staged checkpointing marshaling. In the traditional 
approach, one I/O server services 256 concurrent 

                                                                 
* Class C of benchmark FT was omitted in the experiment since this 

configuration couldn’t complete the compilation phase. 

280



 

 

checkpointing processes, which is reduced to 64 by vertical 
checkpointing, and further optimized to 8 when equipped 
with staged checkpointing marshaling. 
C. Task Scaling Performance  

In Fig. 6 we scaled the number of processes from 32/36 
to 256 to observe the performance changes. It shows that 
the growth of processes constantly increases traditional 
checkpointing costs. Checkpointing orchestration presents 
considerable performance improvement over both the 
traditional approach and vertical checkpointing.  

We observe that checkpointing orchestration presents 
much better scalability through these tests. The overhead 
increase was less than 15% for benchmarks LU and CG 
when the number of processes was doubled. The 
performance variance of checkpointing orchestration was 
also trivial for benchmark FT, BT and SP when the number 
of processes was doubled from 128 to 256. The gap 
between the traditional and orchestration approaches is 
enlarged as the number of processes increases. These 
observations confirm the potential of checkpointing 
orchestration in fostering the scalability for large-scale 
computing environment. 

 
Figure 6. Task Scaling Performance (class=D) 

Fig. 7 demonstrates the aggregated bandwidth with 
different number of processes for a better understanding of 
the scalability. Both traditional approach and vertical 
checkpointing exhibit considerable bandwidth degradation 
while the number of processes is increased. Checkpointing 
orchestration presents relatively stable bandwidth for CG 
and FT. For other benchmarks, the performance 
degradation of checkpointing orchestration is less than 25% 
when increasing the number of processes from 32/36 to 256, 
compared to over 50% bandwidth reduction of the 
traditional approach. 
D. Problem Size Scaling Performance 

Fig. 8 demonstrates the performance by varying the 
problems size from class C to D. Due to the increase in the 
image size, the checkpointing cost rises for all the three 
approaches. A quantitative study shows that the advantage 
of checkpointing orchestration actually drops as the 
problem size increases from class C to D. Further 
investigation of the data reveals that checkpointing 
orchestration boosts the performance more for class C than 

class D. For example, checkpointing orchestration reduces 
the cost of traditional checkpointing at a degree of 50% or 
more for the first four benchmarks of class C. However, the 
average gain of checkpointing orchestration is reduced to 
about 30% for class D. The increase of the problem size 
enlarges the portion of I/O in the overall checkpointing cost. 
The contention overhead, however, does not increase at the 
same pace since the number of processes is fixed at 256. 
These facts explain a relatively low performance 
improvement room for a larger problem size. 

 
Figure 7. Task Scaling Bandwidth  (class=D) 

Figure 8. Problem Size Scaling Performance 

V. RELATED WORK 
It is well recognized by the community that 

checkpointing overhead is a critical issue that hinders the 
scalability and performance of large-scale systems and the 
upcoming exascale computing environment 
[6][25][11][20]. The existing efforts that tackle this issue 
can be roughly classified into three categories. 
A. File System Optimizations for Checkpointing 

Several efforts have been made to develop file systems 
that are tailored to checkpointing. Lightweight File System 
(LWFS) [11] allows secure, direct access to storage, 
bypassing certain features of traditional file systems that 
potentially cause performance bottlenecks for 
checkpointing. In [15], Bent et al. proposed a parallel log-
structured file system(PLFS) that sits between the 
applications and the underlying parallel file system to 
achieve higher checkpointing bandwidth. PLFS 
transparently rearranges N-1 checkpointing pattern into an 

281



 

 

N-N pattern to leverage the high I/O bandwidth achieved 
via an N-N pattern while maintaining an N-1 pattern to 
users such that the failed applications can be restarted with 
a different number of processes. Neither of these two 
considers the I/O contention issue of surging checkpoints. 
Our work complements these studies by mitigating the 
impact of I/O contentions and can be used in combination 
with LWFS and PLFS to further boost the checkpointing 
performance.  

At the parallel I/O middleware level, there has been 
significant amount of work on the I/O optimization for 
parallel applications too. The notable optimizations include 
collective I/O and data sieving [21]. Collective I/O exploits 
the correlations among I/O accesses from multiple 
processes of a parallel application and combines them to 
form large and contiguous accesses. Data sieving is another 
optimization strategy that makes large and contiguous I/O 
requests and then filters out demanded data to service many 
non-contiguous requests. Both collective I/O and data 
sieving optimization techniques have been well 
implemented in the most notable MPI-IO implementation, 
ROMIO [22], and are thus beneficial transparently to 
parallel applications with MPI-IO interface. Unfortunately, 
these optimizations are not directly available to 
checkpointing utilities and can hardly improve the 
checkpointing performance for parallel applications 
because many checkpointing utilities adopt POSIX API. 
The system-level checkpointing tools such as Open MPI, 
MVAPICH only have the support of POSIX IO, which 
excludes the possibility to take the advantage of MPI-IO 
and its optimizations for checkpointing, at least not 
currently. 
B. Checkpointing System Optimizations 

In [23], the authors proposed to modify the coordination 
protocols such that the checkpointings are taken in smaller 
groups to reduce the contention. Our work provides a 
simpler and more reliable solution due to the fact that the 
coordination protocol is kept intact in checkpointing 
orchestration. There is no concern about the consistency, 
group formation and connection management in 
checkpointing orchestration. 

Aggregating the write requests at checkpointing system 
layer is another alternative to accelerate the checkpointing 
performance. Ouyang et al. categorized the VFS write 
requests by size, aggregates small and medium writes to 
relatively large writes for better performance for multi-core 
systems [16]. Our work differs from [16] in three aspects.  

First, the motivation of [16] is to mitigate the impact of 
massive small VFS writes. However, checkpointing 
orchestration aims at relieving the contention of concurrent 
parallel checkpoints. The staged marshaling technique of 
checkpointing orchestration is designed to marshal the 
multiple checkpoints from one compute node and reduce 
the contention. The contention from multiple checkpoint 
processes is not optimized in the design of [16]. 

Second, checkpointing orchestration mitigates the 
impact of small VFS writes by staging each checkpoint in 
the local memory, and drops the inter-process requests 
aggregation as proposed in [16]. This design makes 
checkpointing orchestration easier to rebuild the image for 
restart than the design of [16]. 

Third, checkpointing orchestration also proposes to 
improve the performance from the perspective of PFS, 
which is not considered in [16]. 

Open MPI has a native support of staging, which first 
stages the checkpoint file locally and then transfer it out in 
the background. Even though such a staging technique can 
be used to implement our proposed staged marshaling 
technique*, the contention optimization is not considered in 
Open MPI. 

In a summary, most existing works optimize the 
checkpointing performance from the perspective of either 
file system [11] [15] or checkpointing system [16] [23]. 
Checkpointing orchestration explores the optimization of 
both sides to foster a better integration of both sides and to 
provide a systematic approach to boost the checkpointing 
performance. We believe that the checkpointing overhead 
problem for the exascale systems will become even more 
imminent, and we need to explore all the possible ways to 
make a breakthrough.  

VI. CONCLUSIONS, SOFTWARE AVAIALABILITY 
AND FUTURE WORK 

Checkpointing is a widely adopted fault tolerance 
mechanism in parallel computing, while in the meantime it 
is highly criticized for its costly I/O access overhead. The 
overhead challenge could be further amplified with the 
emerging of exascale computing environment [6]. 

In this paper we start with analyzing the underlying 
sources of performance bottlenecks of coordinated 
checkpointing. In observing data access contention as a 
dominant contributor for performance degradation, we 
propose to orchestrate checkpointing to minimize the 
contention and improve its performance by managing the 
concurrency at different levels. The proposed 
checkpointing orchestration approach suggests a controlled 
management of both PFS and checkpointing system for 
better integration. From the perspective of PFS, we propose 
to customize the data distribution to benefit checkpointing. 
From the perspective of checkpointing system, we adopt a 
methodology of reorganizing the checkpointing order to 
avoid potential I/O contentions.  

The prototype of checkpointing orchestration has been 
implemented under PVFS2 and Open MPI. The 
performance evaluation confirms that the proposed 
checkpointing orchestration can reduce the checkpointing 
cost by nearly 50% for 4 out of 5 the class C NPB 

                                                                 
* Checkpointing local staging was broken on the version of Open MPI we tested so 

we dropped the idea of implementing staged marshaling based on the native 
staging support. See https://svn.open-mpi.org/trac/ompi/ticket/2139 

282



 

 

benchmarks. Checkpointing orchestration also helps to 
improve the scalability of checkpointing. Checkpointing 
orchestration considers the mixed workloads of the system, 
keeps the regular I/O requests intact by treating the 
checkpointing requests with a special PVFS2 hint.  

The design of checkpointing orchestration is based on 
existing hardware and software architecture of HPC 
environment. Software patching from PFS and 
checkpointing system is sufficient to deploy the proposed 
checkpointing orchestration.  

We have developed the software named ORCHECK to 
implement the idea of checkpointing orchestration.  The software 
has been released and is available at 
http://www.cs.iit.edu/~scs/invention/orcheck/. 

In the future, we plan to evaluate the potential of 
checkpointing orchestration for large-scale computing 
environment. We are also interested in studying the impact of 
checkpointing orchestration for newly emerging storage media 
such as SSD. Our long term goal along this direction is to 
build a coordinated framework with the cooperation of both 
checkpointing and parallel file systems to facilitate scalable 
fault tolerance for large-scale computing and the upcoming 
exascale computing environment.  

ACKNOWLEDGMENT 
The authors are thankful to anonymous reviewers for 

their valuable suggestions that help improve this study. 
This research was supported in part by National Science 
Foundation under NSF grant CCF-0621435, CCF-0937877 
and CNS-0751200. The authors would like to acknowledge 
Joshua Hursey of Open MPI group at Indiana University 
and Samuel Lang of PVFS2 group at Argonne National 
Lab for their valuable assistance in the implementation of 
checkpointing orchestration. 

REFERENCES 
[1] Top 500 Supercomptuer website. [Online]. http://www.top500.org 

[2] I.Philp, "Software Failures and The Road to A Petaflop Machine," in 
Proc. of Workshop on High Performance Computing Reliability 
Issues, 2005. 

[3] B. Schroeder and G. A. Gibson, "A Large-Scale Study of Failures in 
High-Performance Computing Systems," in in Proc. of International 
Conference on Dependable Systems and Networks (DSN), 2006. 

[4] E. N. Elnozahy, L. Alvisi, Y. Wang, and D. B. Johnson, "A Survey of 
Rollback-Recovery Protocols in Message-Passing Systems," ACM 
Computing Survey, vol 34, issue 3, 2002. 

[5] R. Oldfield, S. Arunagiri, P. Teller, S. Seelam, M. Varela, R. Riesen, 
and P. Roth, "Modeling the Impact of Checkpoints on Next-
Generation Systems," in Proc. of the 24th IEEE Conference on Mass 
Storage Systems and Technologies, 2007. 

[6] F. Cappello, A. Geist, B. Gropp, B. Kramer, M. Snir, "Toward 
Exascale Resilience," International Journal of High Performance 
Computing Applications, vol 23, issue 4, 2009. 

 
 
 

[7] N. DeBardeleben, J. Laros J. T. Daly, S. L. Scott, C. Engelmann, B. 
Harrod, "High-End Computing Resilience: Analysis of Issues Facing 
the HEC Community and Path-Forward for Research and 
Development," White Paper 2009. 

[8] Lustre File System Website. [Online]. http://www.lustre.org 

[9] F. Schmuck and R. Haskin. , "GPFS: A Shared-Disk File System for 
Large Computing Clusters," in Proc. of the 1st USENIX Conference 
on File and Storage Technologies (FAST), 2002. 

[10] PVFS2 Website. [Online]. http://www.pvfs.org/ 

[11] R. Oldfield, L. Ward, R. Riesen, A. Maccabe, P. Widener, and T. 
Kordenbrock. , "Lightweight I/O for Scientific Applications," in In 
Proc. of IEEE Cluster Computing (Cluster), 2006. 

[12] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, 
"Design, Modeling and Evaluation of a Scalable Multi-Level 
Checkpointing System.," in Proc. of the International Conference for 
High Performance Computing, Networks, Storage and Analysis 
(Supercomputing), 2010. 

[13] H. Jin, Y. Chen, H. Zhu, and X.-H. Sun, "Optimizing HPC Fault-
Tolerant Envionment: An Analytical Approach," in International 
Conference on Parallel Processing (ICPP), 2010. 

[14] ORCHECK, An Open-Source Software Implementation of 
Checkpointing Orchestration. [Online]. 
http://www.cs.iit.edu/~scs/invention/orcheck/ 

[15] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. 
Nunez, M. Polte, and M. Wingate, "PLFS: a Checkpoint Filesystem 
for Parallel Applications.," in in Proc. of the International 
Conference for High Performance Computing, Networks, Storage 
and Analaysis (Supercomputing), 2009. 

[16] X. Ouyang, K. Gopalakrishnan, and D. K. Panda, "Accelerating 
Checkpoint Operation by Node-Level Write Aggregation on 
Multicore Systems," in Proc. of International Conference on Parallel 
Processing (ICPP), 2009. 

[17] E. Gabriel, G. E. Fagg, G. Bosilca, and etc , "Open MPI: Goals, 
Concept, and Design of a Next Generation MPI Implementation," in 
Proc. of European PVM/MPI Users Group Meeting., 2004. 

[18] J. Hursey, T. I. Mattox, and A. Lumsdaine, "Interconnect Agnostic 
Checkpoint/Restart in Open MPI," in in Proc. of International ACM 
Symposium on High-Performance Parallel and Distributed 
Computing (HPDC) , 2009. 

[19] J. Duell, P. Hargrove, and E. Roman, "The Design and 
Implementation of Berkeley Labs Linux Checkpoint/Restart, 
Lawrence Berkely National Laboratory," Lawrence Berkeley 
National Laboratory Technical Rep, LBNL-54941, 2002. 

[20] NAS Parallel Benchmarks (NPB). [Online]. 
http://www.nas.nasa.gov/Resources/Software/npb.html. 

[21] Rajeev Thakur, William Gropp, Ewing Lusk, "Data Sieving and 
Collective I/O in ROMIO," in Proc. of the 7th Symposium on the 
Frontiers of Massively Parallel Computation, 1999. 

[22] ROMIO Website. [Online]. http://www-unix.mcs.anl.gov/romio/ 

[23] Q. Gao, W. Huang, , M. J. Koop, and D. K. Panda, "Group-based 
Coordination Checkpointing for MPI: A Case Study on InfiniBand," 
in Proc. of International Conference on Parallel Processing (ICPP), 
2007. 

 

283


