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Abstract
In big data and cloud computing era, reliability of distributed
systems is extremely important. Unfortunately, distributed
concurrency bugs, referred to as DCbugs, widely exist. They
hide in the large state space of distributed cloud systems
and manifest non-deterministically depending on the timing
of distributed computation and communication. Effective
techniques to detect DCbugs are desired.

This paper presents a pilot solution, DCatch, in the world
of DCbug detection. DCatch predicts DCbugs by analyzing
correct execution of distributed systems. To build DCatch,
we design a set of happens-before rules that model a wide
variety of communication and concurrency mechanisms in
real-world distributed cloud systems. We then build run-
time tracing and trace analysis tools to effectively identify
concurrent conflicting memory accesses in these systems.
Finally, we design tools to help prune false positives and
trigger DCbugs.

We have evaluated DCatch on four representative open-
source distributed cloud systems, Cassandra, Hadoop MapRe-
duce, HBase, and ZooKeeper. By monitoring correct execu-
tion of seven workloads on these systems, DCatch reports
32 DCbugs, with 20 of them being truly harmful.

CCS Concepts •Software and its engineering ! Cloud
computing; Software reliability; Software testing and de-
bugging

Keywords Concurrency Bugs, Distributed Systems, Bug
Detection, Cloud Computing
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Figure 1. A Hadoop DCbug: Hang (buggy) if #3 happens
before #2, or no failure (

p
) if the otherwise.

1. Introduction
1.1 Motivation
In big data and cloud computing era, distributed cloud soft-
ware infrastructures such as scale-out storage systems [4, 6,
11, 33], computing frameworks [5, 30], synchronization ser-
vices [3, 18], and cluster management services [16, 43], have
emerged as a dominant backbone for modern applications.
Users expect high reliability from them, which unfortunately
is challenging to guarantee due to wide-spreading software
bugs [12–14, 47].

Among all types of bugs in distributed systems, dis-
tributed concurrency bugs, referred to as DCbugs, are among
the most troublesome [13, 24]. These bugs are triggered
by untimely interaction among nodes and could propa-
gate the resulting errors beyond one node. Previous stud-
ies have shown that DCbugs widely exist in real-world dis-
tributed systems, causing a wide variety of failure symp-
toms like data corruptions, system crashes, job hangs, etc
[13, 14, 23, 24, 47].

Figure 1 illustrates a real-world DCbug from Hadoop
MapReduce. It is triggered by unexpected timing among
Node-Manager (NM), Application-Manager (AM), and the
client nodes. Specifically, after the AM assigns a task T to
a container in NM (#1), this NM container tries to retrieve
the content of task T from AM (#2). However, when this
retrieval request is delivered to AM, task T has already been
canceled upon the client’s request (#3). Not anticipating



while (!getTask(jID)) 
{
/*getTask is a RPC call.  
Waits until gets Task jID.*/

}

Thread 1

//RPC function
Task getTask(jID) {

…...
return jMap.get(jID); 

}
/*return null if removed*/

Thread 2

//Register-Handler
jMap.put (jID, task);
…...
…...
//UnRegister-Handler
jMap.remove (jID);

AMNM AM

Figure 2. Root cause of the DCbug shown in Fig. 1

this timing scenario, the NM container hangs (#4), waiting
forever for AM to return task T to it.

As we can see, DCbugs are non-deterministic and hide in
the huge state space of a distributed system spreading across
multiple nodes. They are difficult to avoid, detect, and debug.

There are only a few sets of approaches that tackle
DCbugs, to the best of our knowledge: software model
checking, verification, verifiable language, record and re-
play debugging. Although this set of techniques are power-
ful, they suffer from inherent limitations. Distributed system
model checkers [14, 20, 23, 41, 47] face state-space ex-
plosion problems, making them difficult to scale for many
large real-world systems. Verification approaches [15, 45]
require thousands of lines of proof to be written for every
protocol. Verifiable language [7] is not deployed, as low-
level imperative languages are still popular for performance
reasons. Record and replay techniques [25] cannot help dis-
cover bugs until software has failed and are not yet effective
for debugging DCbugs due to the huge number of timing-
related events in distributed systems.

In comparison, there is one approach that has been widely
studied for combating local concurrency (LC) bugs in single-
machine software but has yet been explored for DCbugs
— dynamic bug detection [9, 17, 19, 26, 27, 37]. In a
nutshell, dynamic bug-detection techniques monitor and
analyze memory accesses and synchronization operations,
and identify conflicting and concurrent memory accesses as
LCbug suspects. Conflicting means that multiple accesses
are touching the same memory location with at least one
write access. Concurrent means that there is no happens-
before causality relationship between accesses, and hence
accesses can happen one right after the other in any order
[21]. These techniques do not guarantee finding all bugs and
often report many false positives. However, they can usually
work directly on large existing real-world systems imple-
mented in popular languages, without much annotation or
code changes from developers.

Despite its benefits, bug-detection approach has not per-
meated the literature of combating DCbugs. Thus, in this
paper, we present one the first attempts in building DCbug-
detection tool for distributed systems.

1.2 Opportunities and Challenges
Our attempt of building a DCbug detection tool is guided by
our following understanding of DCbugs.

Opportunities DCbugs have fundamentally similar root
causes as LCbugs: unexpected timing among concurrent
conflicting accesses to the same memory location inside
one machine. Take the DCbug in Figure 1 as an example.
Although its triggering and error propagation involve com-
munication among multiple nodes, its root cause is that event
handler UnRegister could delete the jID-entry of jMap
concurrently with a Remote Procedure Call (RPC) getTask
reading the same entry, which is unexpected by developers
(Figure 2).

This similarity provides opportunities for DCbug detec-
tion to re-use the theoretical foundation (i.e., happens-before
ordering) and work flow of LCbug detection. That is, we can
abstract the causality relationship in distributed systems into
a few happens-before (HB) rules; we can then follow these
rules to build an HB graph representing the timing relation-
ship among all memory accesses; finally, we can identify all
pairs of concurrent conflicting memory accesses based on
this HB graph and treat them as DCbug candidates.

Challenges DCbugs and distributed systems also differ
from LCbugs and single-machine systems in several aspects,
which raise several challenges to DCbug detection.

1. More complicated timing relationship: Although root-
cause memory accesses of DCbugs are inside one machine,
reasoning about their timing relationship is complicated.
Within each distributed system, concurrent accesses are con-
ducted not only at thread level but also node level and event
level, using a diverse set of communication and synchroniza-
tion mechanisms like RPCs, queues, and many more (exem-
plified by Figure 2). Across different systems, there are dif-
ferent choices of communication and synchronization mech-
anisms, which are not always standardized. Thus, designing
HB rules for real-world distributed systems is not trivial.
Wrong or incomplete HB modeling would significantly re-
duce the accuracy and the coverage of DCbug detection.

2. Larger scales of systems and bugs: Distributed sys-
tems naturally run at a larger scale than single-machine sys-
tems, containing more nodes and collectively more dynamic
memory accesses. DCbugs also operate at a larger scale than
LCbugs. For example, the DCbug shown in Figure 1 involves
three nodes (client, AM, and NM) in its triggering and error
propagation. The larger system scale poses scalability chal-
lenges to identify DCbugs among huge numbers of memory
accesses; the larger bug scale also demands new techniques
in bug impact analysis and bug exposing.

3. More subtle fault tolerance: Distributed systems con-
tain inherent redundancy and aim to tolerate component
failures. Their fault-tolerance design sometimes cures in-
termediate errors and sometimes amplifies errors, making
it difficult to judge what are truly harmful bugs. For ex-



ample, in Figure 2, the jMap.get(jID) in Thread-1 actu-
ally executes concurrently with two conflicting accesses in
Thread-2: jMap.put(jID,task) from the Register handler,
and jMap.remove(jID) from the UnRegister handler. The
former is not a bug, due to the re-try while loop in NM; the
latter is indeed a bug, as it causes the re-try while loop in
NM to hang. Thus, the subtle fault tolerance features pose
challenges in maintaining accuracy of DCbug detection.

1.3 DCatch
Guided by the above opportunities and challenges, we built
DCatch, to the best of our knowledge, a pilot solution in
the world of DCbug detection. The design of DCatch con-
tains two important stages: (a) design the HB model for dis-
tributed systems and (b) design DCatch tool components.

HB Model: First, we build an HB model on which DCatch
will operate, based on our study of representative open-
source distributed cloud systems. This HB model is com-
posed of a set of HB rules that cover inter-node communi-
cation, intra-node asynchronous event processing, and intra-
node multi-threaded computation and synchronization. The
details will be discussed in Section 2.

DCatch tool components: Next we build DCatch, our
DCbug-detection tool. Although it follows the standard
work flow of many LCbug detectors, our contribution in-
cludes customizing each step to address unique challenges
for DCbugs.

1. Run-time tracer traces memory accesses, event oper-
ations, inter-node RPCs, socket communication, and others
as the system runs. The scope and granularity of this compo-
nent is carefully designed to focus on inter-node communi-
cation and computation, which helps us to address the large-
scale challenge in DCbug detection and make DCatch scale
to large real-world distributed cloud systems (Section 3.1).

2. Offline trace analysis processes run-time traces to
construct an HB graph for all recorded memory accesses
and reports all pairs of concurrent conflicting accesses as
DCbug candidates. Our contribution is the implementation
of DCatch HB model for real-world distributed systems
(Section 3.2).

3. Static pruning analyzes the program to figure out what
might be the local and distributed impact of a DCbug can-
didate. It estimates which DCbug candidates are unlikely to
cause failures, avoiding excessive false positives (Section 4).

4. DCbug triggering re-runs the system and manipulates
the timing of distributed execution according to the bug re-
port, while considering the diverse concurrency and commu-
nication mechanisms in distributed systems. It helps trigger
true bugs and further prunes false positives (Section 5).

We evaluated DCatch on 4 varying real-world distributed
systems, Cassandra, HBase, Hadoop MapReduce, and ZooKeeper.
We tested 7 different workloads in total on these systems.
Users have reported timing-related failures under these
workloads. DCatch reports 32 DCbugs. With the help of

W: regionsToOpen.add(region)	
R: if(regionsToOpen.isEmpty())	
(After this R, it has another W (regionsToOpen.remove(region)) 

HMaster	

ΩΩ	

W
OpenRegion 

(RPC) 

DeQueue 

(4)EnQueue 
 

ZK	
Coordinator	

HRegionServer	(HRS)	

(2)create  

(1)	
t	

e	
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 (7)Notify 

 

(8)	
R

(3)	
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Figure 3. HBase guarantees W to execute before R through
a wide variety of causality relationships. (1) HMaster adds
a region to regionsToOpen list (i.e., the W); (2) a thread
t is created to open the region; (3) t invokes an RPC
call OpenRegion; (4) The RPC implementation in HRS
puts a region-open event e into a queue; (5) e is handled,
at the end of which (6) a request is sent to ZooKeeper
to update the status of the corresponding region to be
RS ZK REGION OPENED; (7) ZooKeeper sends a no-
tification to HMaster about this state change; (8) while han-
dling this notification, the event-handler in HMaster reads
regionsToOpen (i.e., the R).

DCatch triggering component, we confirmed that 20 out of
these 32 DCbugs are indeed harmful: 12 of them explain the
7 failures we were aware of and the remaining 8 could lead
to other failures we were unaware of. The detailed experi-
mental results are presented in Section 7.

2. DCatch Happens-Before (HB) Model
Goals & Challenges Timing relationship is complicated in
distributed systems. For example, to understand the timing
between R and W in Figure 3, we need to consider thread
(step 2 in Figure 3), RPC (step 3), event handling (step
4 & 5), ZooKeeper synchronization service (step 6 & 7),
etc. Missing any of these steps will cause R and W to be
incorrectly identified as concurrent with each other.

Our goal here is to abstract a set of HB rules by studying
representative distributed cloud systems. Every rule R rep-
resents one type of causality relationship between a pair of
operations1, denoted as o1

R
=) o2. These rules altogether al-

low reasoning about the timing between any two operations:
if a set of HB rules chain o1 and o2 together o1

R1

=) oo1
R2

=)
oo2...ook�1

Rk

=) o2, o1 must happen before o2, denoted as
o1 =) o2. If neither o1 =) o2 nor o2 =) o1 holds, they are
concurrent and hence can execute side by side in any order.
This set of HB rules need to be comprehensive and precise
in order for DCatch to achieve good bug detection accuracy
and coverage.

1 An operation could be a memory access, a thread creation, etc.



App
Inter-Node Intra-Node

Sync. Async. Custom Sync. Async.
RPC Socket Protocol Threads Events

Cassandra - X - X X
HBase X - X X X
MapReduce X - X X X
ZooKeeper - X - X X

Table 1. Concurrency & communication in distributed sys-
tems (Sync.: synchronous; Async.: asynchronous)

Why do we need a new model? On one hand, HB mod-
els were thoroughly studied for single-machine systems, in-
cluding both multi-threaded software [32] and event-driven
applications [17, 29, 36]. However, these models do not con-
tain all causality relationships in distributed systems, and
may contain causality relationships not held in distributed
systems. On the other hand, distributed-system debugging
tools [28, 40] proposed meta-data propagation techniques
to track coarse-granularity causality relationship between
user-specified operations. However, without a formal HB
model, they are unsuitable for DCbug detection, where
fine-granularity causality relationship needs to be computed
among a huge number of memory accesses.

Below we present the concurrency and communication
mechanisms that we learn from studying representative dis-
tributed systems (Table 1), from which we abstract HB rules.

2.1 Inter-node concurrency and communication
Every distributed system involves multiple parallel-executing
nodes that communicate with each other through messages
(Figure 4a). We abstract message-related HB rules, short as
Rule-M, based on different communication patterns.

Synchronous RPC A thread in node n1 could call an RPC
function r implemented by node n2, like step (3) in Figure
3. This thread will block until n2 sends back the RPC result.
RPC communication implies the following HB rules: mak-
ing an RPC call r on n1, denoted as Create (r, n1), happens
before the beginning of the RPC execution on n2, Begin (r,
n2); the end of the RPC execution, End (r, n2), happens be-
fore the return from the RPC call r on n1, Join (r, n1).

Rule-Mrpc: Create (r, n1) M rpc

==) Begin (r, n2);
End (r, n2) M rpc

==) Join (r, n1).

Asynchronous Socket A thread in node n1 sends a mes-
sage m to node n2 through network sockets. Unlike RPC,
the sender does not block and continues its execution. The
sending happens before the receiving.

Rule-Msoc: Send (m, n1) M soc

==) Recv (m, n2).

In addition to the above two basic communication mech-
anisms, we also found the following common custom syn-
chronization protocols, implemented using a combination of
RPC/socket communication and intra-node computation.

AM	

NM	 RM	
RPC	Threads	

Event	Threads								
(one	pool	per	queue)	

Event	Queues	

Regular	Threads	

RPC	

b.	Inside	one	node	(AM/NM/RM)	

EnQueue	

DeQueue	

create	

create	

a.	Inter-node	communicaEon	

Figure 4. Concurrency and communication in MapReduce
(a vertical line: a thread; a black rectangle: a RPC function
or an event handler)

Custom Push-Based Synchronization Protocol Node n1

updates a status s to a dedicated coordination node nc, and
nc notifies all subscribed nodes, such as n2, about this up-
date. The update of s by n1, Update (s,n1), happens be-
fore the notification delivered at n2, Pushed (s, n2). For
example, HBase nodes sometimes communicate through
ZooKeeper: one node registers a zknode with a specific path
in ZooKeeper; ZooKeeper will then notify this node of all
changes to this zknode from other nodes, like steps (6) and
(7) in Figure 3.

Rule-Mpush: Update (s, n1) M push

===) Pushed (s, n2).
Note that, this rule is not redundant given Rule-Mrpc and

Rule-Msoc. We can decompose this rule into three chains of
causality relationship: (1) Update(s, n1) =) Recv(s, nc); (2)
Recv(s, nc) =) Send(s, nc); (3) Send(s, nc) =) Pushed(s,
n2). Chain (2) is very difficult to figure out, as it involves
complicated intra-node computation and synchronization in
nc, which guarantees that every node interested in s gets a
notification. Even for chain (1) and (3), there is no guarantee
that Rule-Mrpc and Rule-Msoc can figure them out, because
the communication between n1/n2 and nc often contains
more than just one RPC or socket message.

Custom Pull-Based Synchronization Protocol Node n2

keeps polling n1 about status s in n1, and does not proceed
until it learns that s has been updated to a specific value.
Clearly, the update of s in n1 happens before the use of this
status on n2.

Rule-Mpull: Update(s, n1) M pull

===) Pulled(s, n2).
This is similar with the distributed version of the while-

loop custom synchronization in single-machine systems [42,
46]. Figure 2 shows an example of this HB relationship:
jMap.put (jID, task) in AM happens before the exit of the
while-loop in NM.

This rule is not redundant given other rules due to com-
plicated semantics inside n1: traditional HB rules cannot es-
tablish the causality between s being set and s being read by
an RPC function or being serialized into a socket message.

2.2 Intra-node concurrency and communication
Synchronous multi-threaded concurrency Within each
node, there are multiple processes and threads, as shown



in Figure 4b2. The rules here are about classic fork/join
causality: the creation of a thread t (or process) in the parent
thread, denoted as Create(t), happens before the execution of
t starts, Begin (t). The end of t’s execution, End (t), happens
before a successful join of t Join (t).

Rule-Tfork: Create (t) T fork

==) Begin (t).
Rule-Tjoin: End (t) T join

==) Join (t).

Asynchronous event-driven concurrency All the systems
in Table 1 conduct asynchronous event-driven processing,
like steps (4)(5) in Figure 3, essentially creating concurrency
inside a thread. Events could be enqueued by any thread, and
then processed by pre-defined handlers in event-handling
thread(s). The enqueue of an event e, Create (e), happens
before the handler-function of e starts, denoted as Begin (e).

Rule-Eenq: Create (e) Eenq

==) Begin (e).
For two events e1 and e2 from the same queue, the timing

between their handling depends on several properties of the
queue. For all the systems that we have studied, all the
queues are FIFO and every queue has only one dispatching
thread, one or multiple handling threads. Consequently, the
handling of e1 and e2 is serialized when their queue is
equipped with only one handling thread, and is concurrent
otherwise. We refer to the former type of queues as single-
consumer queues. All the queues in ZooKeeper and some
queues in MapReduce are single-consumer queues.

Rule Eserial: End (e1) Eserial

===) Begin (e2), if Create (e1) =)
Create (e2); e1, e2 2 Q; Q is single-consumer FIFO queue.

Previous work has built HB rules for single-machine
event-driven applications, particularly Android apps [17, 29,
36]. In comparison, some complicated queues (e.g., non-
FIFO queues) and corresponding rules observed by previous
work have not been observed in these distributed systems.

Sequential program ordering According to the classical
HB model [21], the execution order within one thread is
deterministic and hence has the following rule.

Rule Preg: o1
P reg

==) o2, if o1 occurs before o2 during the
execution of a regular thread.

We need to revise this rule for threads that are involved
in asynchronous computing. Specifically, for two operations
inside an event/RPC/message handling thread, sequential
program ordering exists between them only when they be-
long to the same event/RPC/message handler function.

Rule Pnreg: o1
P nreg

==) o2, if o1 occurs before o2 during the
execution of an event handler, a message handler, or an RPC
function.

2.3 Summary
The above MTEP rules constitute the DCatch HB model.
Our evaluation will show that every rule is crucial to the
accuracy and coverage of DCbug detection (Section 7.4).
For the real-world example demonstrated in Figure 3, we

2 MapReduce contains multiple processes in one node not shown in figure.

can now infer W ) R, because of the following chains of
happens-before relationship: W P reg

==) Create (t) T fork

==) Begin
(t) P reg

==) Create (OpenRegion, HMaster) M rpc

==) Begin (Open-
Region, HRS) P nreg

==)Create (e) Eenq

==)Begin (e) P nreg

==)Update
(RS...OPENED, HRS) M push

===)Pushed (RS...OPENED, HMas-
ter) P nreg

==) R.
Note that, our model is not the only viable HB model for

distributed systems. Our model abstracts away some low-
level details in RPC and event libraries. For example, incom-
ing RPC calls are first put into queue(s) before assigned to
RPC threads, but our Rule-Mrpc abstracts away these queues
inside RPC library; between the enqueue of an event and the
beginning of the event handling, a dedicated thread would
conduct event dispatching, which is also abstracted away in
our Rule-Eenq.

Our model also intentionally ignores certain causality
relationships that do not affect our DCbug detection. For
example, our model does not consider condition-variable
notify-and-wait causality relationship, because it is almost
never used in the inter-node communication and computa-
tion part of our studied distributed systems; we do not con-
sider lock synchronization in this model, because lock pro-
vides mutual exclusions not strict ordering.

Our model could also miss some custom synchronization
protocols in distributed systems.

Next few sections will describe the design of the four
components of DCatch based on the model defined above.

3. DCatch tracing and trace analysis
Given our HB model, we began building the DCatch tool. As
first steps, we need to (1) trace the necessary operations and
(2) build the HB graph and perform analysis on top. Below
we describe how these work and how we address tracing and
analysis challenges such as reducing memory access traces
and applying the MTEP rules correctly.

3.1 DCatch Tracing
DCatch produces a trace file for every thread of a target
distributed system at run time. These traces will then allow
trace analyzer to identify DCbug candidates. The detailed
implementation is based on WALA, a static Java bytecode
analysis framework, and Javassist, a dynamic Java bytecode
transformation framework; more details are in Section 6.

3.1.1 Which operations to trace?
Memory-access tracing Naively, we want to record all ac-
cesses to program variables that could potentially be shared
among threads or event handlers. However, this exhaustive
approach would lead to huge traces that are expensive or
even cannot be processed for many real-world distributed
system workloads as we will see in Section 7.4.

Fortunately, such excessive logging is unnecessary for
DCbug detection. DCbugs are triggered by inter-node in-



M-Rule T-Rule E-Rule P-Rule

Creat (t), Join (t) X
Begin (t), End (t) X
Begin (e), End (e) X X
Create (e) X
Begin (r, n2), End (r, n2) X X
Create (r, n1), Join (r, n1) X
Send (m, n1) X
Recv (m, n2) X X
Update (s, n1) X
Pushed (s, n2) X X
Pull (s, n2) X

Table 2. HB-related tracing (symbols defined in Section 2)

teraction, with the root-cause memory accesses in code re-
gions related to inter-node communication and correspond-
ing computation, not everywhere in the software.

Following this design principle, DCatch traces all ac-
cesses to heap objects and static variables in the following
three types of functions and their callees: (1) RPC func-
tions; (2) functions that conduct socket operations; and (3)
event-handler functions. The third type is considered be-
cause they conduct many pre- and post-processing of socket
sending/receiving and RPC calls.

HB-related operation tracing DCatch traces operations
that allow its trace analysis to apply the MTEP rules, as
shown in Table 2. DCatch automatically identifies these op-
erations at run time using the Javassist infrastructure. The
implementation details are in Section 6.

For push-based synchronization, the current prototype
of DCatch focuses on the synchronization service provided
by ZooKeeper, as discussed in Section 2.1. DCatch traces
ZooKeeper APIs ZooKeeper::create, ZooKeeper::delete,
and ZooKeeper::setData as Update operations, and ZooKeeper
Watcher events with event types NoteCreated, NodeDeleted,
and NodeDataChanged as Push operations. The parame-
ters, event types, and timestamps help DCatch trace analy-
sis to group corresponding Update and Push together. For
pull-based synchronization, the Update and Pull operations
involve memory accesses, RPC calls, and loops, which are
already traced. We will explain how to put them together to
construct pull-based HB relationship in Section 3.2.1.

Other tracing DCatch does not need to trace lock and
unlock operations to detect DCbugs, because lock and un-
lock operations are not part of the DCatch HB model. How-
ever, as we will see in Section 5.2, DCatch needs to know
about lock/unlock operations to trigger some DCbug can-
didates. Such information sometimes can help avoid hangs
when DCatch tries to manipulate the timing and trigger a
DCbug candidate. Therefore, DCatch also traces lock and
unlock operations, including both implicit lock operations
(i.e., synchronized methods and synchronized statements)
and explicit lock operations.

3.1.2 What to record for each traced operation?
Each trace record contains three pieces of information: (1)
type of the recorded operation; (2) callstack of the recorded
operation; and (3) ID. The first two are straightforward. The
IDs help DCatch trace analyzer to find related trace records.

For a memory access, ID uniquely identifies the accessed
variable or object. The ID of an object field is the field-offset
and the object hashcode. The ID of a static variable is the
variable name and its corresponding namespace.

For HB-related operations, the IDs will allow DCatch
trace analysis to correctly apply HB rules. For every thread-
or event- related operation, the ID is the object hashcode
of the corresponding thread or event object. For each RPC-
related and socket-related operation, DCatch tags each RPC
call and each socket message with a random number gener-
ated at run time (details in Section 6).

For lock/unlock operations, the IDs uniquely identify the
lock objects, allowing DCatch’s triggering module to iden-
tify all lock critical sections and perturb the timing at appro-
priate places (details in Section 5.2).

3.2 DCatch trace analysis
DCatch trace analyzer identifies every pair of memory ac-
cesses (s, t), where s and t access the same variable with
at least one write and are concurrent with each other (i.e.,
no HB-relationship between them), and considers (s, t) as a
DCbug candidate.

3.2.1 HB-graph construction
An HB graph is a DAG graph. Every vertex v represents
an operation o(v) recorded in DCatch trace, including both
memory accesses and HB-related operations. The edges in
the graph are arranged in a way that v1 can reach v2 if and
only if o(v1) happens before o(v2).

To build such a graph, DCatch first goes through all trace
files collected from all threads of all processes in all nodes,
and makes every record a vertex in the graph.

Next, DCatch adds edges following our MTEP rules. We
discuss how to apply Rule Eserial and Rule Mpull below.
We omit the details of applying other rules, as they are
straightforward and can be applied in any order — the ID
of each trace record allows DCatch to easily group related
operations.

DCatch applies Rule Eserial as the last HB rule. For every
thread that handles a single-consumer event queue, DCatch
checks every pair of End (ei) and Begin (ej) recorded in
its trace, and adds an edge from the former to the latter, if
DCatch finds Create (ei) =) Create (ej) based on those HB
edges already added so far. DCatch repeats this step until
reaching a fixed point.

Applying Rule Mpull requires program analysis. The al-
gorithm here is inspired by how loop-based custom synchro-
nization is handled in LCbug detection [42, 46]. For every
pair of conflicting concurrent read and write {r, w}, we



consider r to be potentially part of a pull-based synchro-
nization protocol if (1) r is executed inside an RPC func-
tion; (2) the return value of of this RPC function depends
on r; (3) in another node that requests this RPC, the return
value of this RPC is part of the exit condition of a loop l.
We will then run the targeted software again, tracing only
such rs and all writes that touch the same object based on
the original trace. The new trace will tell us which write
w⇤ provides value for the last instance of r before l exits. If
w⇤ and r are from different threads, we will then conclude
that w⇤ in one node happens before the exit of the remote
loop l in another node. Due to space constraints, we omit
the analysis details here. This part of the analysis is done to-
gether with intra-node while-loop synchronization analysis.
Although requiring running the software for a second time,
it incurs little tracing or trace analysis overhead, because it
focuses on loop-related memory accesses.

3.2.2 DCbug candidate report
The HB graph is huge, containing thousands to millions of
vertices in our experiments. Naively computing and com-
paring the vector-timestamps of every pair of vertices would
be too slow. Note that each vector time-stamp will have a
huge number of dimensions, with each event handler and
RPC function contributing one dimension.

To speed up this analysis, DCatch uses the algorithm pro-
posed by previous asynchronous race detection work [36].
The algorithm there computes a reachable set for every ver-
tex in HB graph, represented by a bit array, and then turns
HB-relationship checking into a constant-time array lookup.

4. Static pruning
Not all DCbug candidates reported by trace analysis can
cause failures. This is particularly true in distributed sys-
tems, which inherently contain more redundancy and failure
tolerance than single-machine systems. The high-level idea
of pruning false positives by estimating failure impacts has
been used by previous LCbug detection tools [49, 50]. How-
ever, previous work only analyzes intra-procedural failure
impacts. Thus, the challenge is to conduct inter-procedural
and inter-node impact analysis to better suit the failure-
propagation nature of DCbugs in distributed systems.

To avoid excessive false positives, we first configure
DCatch to treat certain instructions in software as failure
instructions, which represent the (potential) occurrence of
severe failures. Then, given a bug candidate (s, t), DCatch
statically analyzes related Java bytecode of the target sys-
tem to see if s or t may have local (i.e., within one node)
or distributed (i.e., beyond one node) impact towards the
execution of any failure instruction identified above.

4.1 Identifying failure instructions
The current prototype of DCatch considers the follow-
ing failures and identifies failure instructions accordingly:

(1) system aborts and exits, whose corresponding failure
instructions are invocations of abort and exit functions
(e.g., System.exit); (2) severe errors that are printed out,
whose corresponding failure instructions are invocations of
Log::fatal and Log::error functions in studied systems; (3)
throwing uncatchable exceptions, such as RuntimeExcep-
tion; (4) infinite loops, where we consider every loop-exit
instruction as a potential failure instruction. Finally, if a fail-
ure instruction is inside a catch block, we also consider the
corresponding exception throw instruction, if available, as a
failure instruction. This list is configurable, allowing future
DCatch extension to detect DCbugs with different failures.

4.2 Impact estimation
For a DCbug candidate (s, t), if DCatch fails to find any
failure impact for s and t through the analysis described
below, this DCbug candidate will be pruned out from the
DCatch bug list. All the implementation below is done in
WALA code analysis framework, leveraging WALA APIs
that build program dependency graphs.

Local impact analysis We conduct both intra-procedural
and inter-procedural analysis for local impact analysis.
Given a memory-access statement s located in method M ,
we first check whether any failure instruction in M has
control- or data- dependence on s. We apply similar check-
ing for t.

We then check whether s could affect failure instructions
inside the callers of M through either the return value of M
or heap/global objects. For the latter, DCatch only applies
the analysis to one-level caller of M , not further up the
call chain for accuracy concerns. Note that, since DCatch
tracer and trace analysis report call-stack information, our
inter-procedural analysis follows the reported call-stack of
s. Finally, we check whether s could affect failure sites
in the callee functions of M through either function-call
parameters or heap/global variables. This analysis is also
only applied to the one-level callee of M . We skip our
algorithm details due to space constraints.

Distributed impact analysis As shown in Figure 2, an ac-
cess in one node could lead to a failure in a different node.
Therefore, DCatch also analyzes RPC functions to under-
stand the remote impact of a memory access.

Specifically, if we find an RPC function R along the
callstack of the memory access s, we check whether the
return value of R depends on s. If so, we then locate the
function Mr on a different node that invokes the RPC call
R. Inside Mr, we check whether any failure instruction
depends on the return value of R. Note that locating Mr is
straightforward given the HB chains already established by
DCatch trace analysis.

DCatch does not analyze inter-node impact through sock-
ets, as socket communication is not as structured as RPCs.



5. DCBug triggering and validation
A DCatch bug report (s, t) still may not be harmful for two
reasons. First, s and t may not be truly concurrent with
each other due to custom synchronization unidentified by
DCatch. Second, the concurrent execution of s and t may
not lead to any failures, as the impact analysis conducted
in Section 4 only provides a static estimation. Furthermore,
even for those truly harmful DCbug candidates, triggering
them could be very challenging in distributed systems.

To address this, we do not stop with just reporting poten-
tial DCbugs, but rather we also build this last component
of DCatch to help assess DCbug reports and reliably ex-
pose truly harmful DCbugs, hence an end-to-end analysis-
to-testing tool. This phase includes two parts: (1) an infras-
tructure that enables easy timing manipulation in distributed
systems; and (2) an analysis tool that suggests how to use
the infrastructure to trigger a DCbug candidate. These two
features are unique to triggering DCbugs.

5.1 Enable timing manipulation
Naively, we could perturb the execution timing by insert-
ing sleep into the program, like how LCbugs are triggered in
some previous work [35]. However, this naive approach does
not work for complicated bugs in complicated systems, be-
cause it is hard to know how long the sleep needs to be. More
sophisticated LCbug exposing approach [31, 38] runs the
whole program in one core and controls the timing through
thread scheduler. This approach does not work for DCbugs,
which may require manipulating the timing among opera-
tions from different nodes, in real-world large distributed
systems, which are impractical to run on one core.

Our infrastructure includes two components: client-side
APIs for sending coordination-request messages and a message-
controller server (we refer to the distributed system under
testing as client here).

Imagine we are given a pair of operations A and B,
and we want to explore executing A right before B and
also B right before A. We will simply put a request API
call before A and a confirm API call right after A, and
the same for B. At run time, the request API will send a
message to the controller server to ask for the permission to
continue execution. At the controller side, it will wait for the
request-message to arrive from both parties, and then grant
the permission to one party, wait for the confirm-message
sent by the confirm API, and finally grant the permission
for the remaining party. The controller will keep a record of
what ordering has been explored and will re-start the system
several times, until all ordering permutations among all the
request parties (just two in this example) are explored.

5.2 Design timing-manipulation strategy
With the above infrastructure, the remaining question is
where to put the request and confirm APIs given a DCbug
report (s, t). The confirm APIs can be simply inserted right

after the heap access in the bug report. Therefore, our dis-
cussion below focuses on the placement of request APIs.

The naive solution is to put request right before s and
t. However, this naive approach may lead to hangs or too
many request messages sent to the controller server due
to the huge number of dynamic instances of s or t. DCatch
provides the following analysis to help solve this problem,
both are unique to triggering DCbugs.

First, DCatch warns about potential hangs caused by poor
placements of request in the following three cases and
suggests non-hang placements. (1) If s and t are both in-
side event handlers and their event handlers correspond to a
single-consumer queue, DCatch warns about hangs and sug-
gests putting request in corresponding event enqueue func-
tions. (2) If s and t are both inside RPC handlers and their
RPC functions are executed by the same handling thread in
the same node, DCatch suggests putting request in corre-
sponding RPC callers. (3) If s and t are inside critical sec-
tions guarded by the same lock, DCatch suggests putting
request right before the corresponding critical sections.

DCatch gets the critical section information based on lock-
related records in its trace, as discussed in Section 3.1.

Second, DCatch warns about large number of dynamic
instances of s and t and suggest better placements. The
DCBug report will contain call-stacks for s and t. When
DCatch checks the run-time trace and finds a large number
of dynamic instances of the corresponding call-stack for s
(same for t), DCatch will check its happens-before graph
to find an operation o in a different node that causes s, and
checks whether o is a better place for request. This analysis
is very effective: many event handlers and RPC functions are
always executed under the same call stack, and hence could
make bug triggering very complicated without this support
from DCatch.

6. Implementation
DCatch is implemented using WALA v1.3.5 and Javassist
v3.20.0 for a total of 12 KLOC. Below are more details.

HB-related operation tracing DCatch traces HB-related
operations using Javassist, a dynamic Java bytecode re-
writing tool, which allows us to analyze and instrument Java
bytecode whenever a class is loaded.

All thread-related operations can be easily identified fol-
lowing the java.lang.Thread interface. Event handling is
implemented using org.apache.hadoop.yarn.event.EventHandler
and org.apache.hadoop.hbase.executor.EventHandler in-
terface in Hadoop and HBase. The prototype of an handler
function is EventHandler::handle (Event e). Cassandra
and ZooKeeper use their own event interfaces. The way han-
dler functions are implemented and invoked are similar as
that in Hadoop/HBase.

For RPC, HBase and early versions of Hadoop share the
same RPC library interface, VersionedProtocol. All meth-
ods declared under classes instantiated from this interface



are RPC functions, and hence can be easily identified. Later
versions of Hadoop use a slightly different interface, Proto-
Base, but the way to identify its RPC functions is similar.

For socket, Cassandra has a superclass IVerbHandler
to handle socket communication and every message send-
ing is conducted by IVerbHandler::sendOneWay (Mes-
sage, EndPoint). DCatch can easily identify all such func-
tion calls, as well as the message object. ZooKeeper uses a
super-class Record for all socket messages. DCatch identi-
fies socket sending and receiving based on how Record ob-
jects are used.

Memory access tracing DCatch first uses WALA, a static
Java bytecode analysis framework, to statically analyze
the target software, identifies all RPC/socket/event related
functions, and stores the result. DCatch then uses Javas-
sist to insert tracing functions before every heap access
(getfield/putfield instruction) or static variable access (getstatic/
putstatic instruction) in functions identified above.

Tagging RPC DCatch statically transforms the target soft-
ware, adding one extra parameter for every RPC function
and one extra field in socket-message object, and inserting
the code to generate a random value for each such parame-
ter/field at the invocation of every RPC/socket-sending func-
tion. DCatch tracing module will record this random number
at both the sending side and the receiving side, allowing trace
analysis to pair message sending and receiving together.

Portability of DCatch As described above, applying DCatch
to a distributed software project would require the follow-
ing information about that software: (1) what is the RPC
interface; (2) what are socket messaging APIs; (3) what are
event enqueue/dequeue/handler APIs; (4) whether the event
queues are FIFO and whether they have one or multiple han-
dler threads.

In our experience, providing the above specifications is
straightforward and reasonably easy, because we only need
to identify a small number of (RPC/event/socket) interfaces
or prototypes, instead of a large number of instance func-
tions. We also believe that the above specifications are nec-
essary for accurate DCbug detection in existing distributed
systems, just like specifying pthread functions for LCbug de-
tection and specifying event related APIs for asynchronous-
race detection.

7. Evaluation
7.1 Methodology
Benchmarks We evaluate DCatch on seven timing-related
problems reported by real-world users in four widely used
open-source distributed systems: Cassandra distributed key-
value stores (CA); HBase distributed key-value stores (HB);
Hadoop MapReduce distributed computing framework (MR);
ZooKeeper distributed synchronization service (ZK). These
systems range from about 61 thousand lines of code to more
than three million lines of code, as shown in Table 3.

BugID LoC Workload Symptom Error Root

CA-1011 61K startup Data backup failure DE AV
HB-4539 188K split table & alter table System Master Crash DE OV
HB-4729 213K enable table & expire server System Master Crash DE AV
MR-3274 1,266K startup + wordcount Hang DH OV
MR-4637 1,388K startup + wordcount Job Master Crash LE OV
ZK-1144 102K startup Service unavailable LH OV
ZK-1270 110K startup Service unavailable LH OV

Table 3. Benchmark bugs and applications.

We obtain these benchmarks from TaxDC benchmark
suite [24]. They are all triggered by untimely communication
across nodes. As shown in Table 3, they cover all common
types of failure symptoms: job-master node crash, system-
master node crash, hang, etc. They cover different patterns of
errors: local explicit error (LE), local hang (LH), distributed
explicit error (DE), distributed hang (DH). Here, local means
on the same machine as the root-cause memory accesses;
distributed means on a different machine from the root-
cause accesses. They also cover different root causes: order
violations (OV) and atomicity violations (AV).

Experiment settings We use failure-triggering workloads
described in the original user reports, as shown in Table
3. They are actually common workloads: system startups
in Cassandra and ZooKeeper; alter a table and then split it
in HBase; enable a table and then crash a region-server in
HBase; run WordCount (or any MapReduce job) and kill
the job before it finishes in MapReduce. Note that, due to
the non-determinism of DCbugs, failures rarely occur under
these workload. DCatch detects DCbugs by monitoring cor-
rect runs of these workload.

We run each node of a distributed system in one virtual
machine, and run all VMs in one physical machine (M1),
except for HB-4539, which requires two physical machines
(M1 & M2). Both machines use Ubuntu 14.04 and JVM
v1.7. M1 has Intel R� Xeon R� CPU E5-2620 and 64GB of
RAM. M2 has Intel R� CoreTMi7-3770 and 8GB of RAM.
We connect M1 and M2 with Ethernet cable. All trace anal-
ysis and static pruning are on M1. After the static prun-
ing in Section 4, all the remaining bug candidates are con-
sidered DCatch bug reports. We will then try to trigger
each reported bug leveraging the DCatch triggering module.
Note that, the triggering result does not change the count of
DCatch bug reports.

Evaluation metrics We will evaluate the following aspects
of DCatch: the coverage and accuracy of bug detection, and
the overhead of bug detection, including run-time overhead,
off-line analysis time, and log size. All the performance
numbers are based on an average of 5 runs. We will also
compare DCatch with a few alternative designs.

We will put a DCatch bug report (s, t) into one of three
categories: if s and t are not concurrent with each other, it is
a serial report (i.e., not concurrent); if s and t are concurrent
with each other, but their concurrent execution does not lead



BugID Detected? #Static Ins. Pair #CallStack Pair

Bug Benign Serial Bug Benign Serial

CA-1011 X 31 0 0 51 2 0
HB-4539 X 33 0 1 33 0 1
HB-4729 X 44 1 0 55 5 0
MR-3274 X 21 0 4 21 0 9
MR-4637 X 11 2 4 11 3 9
ZK-1144 X 51 1 1 51 1 1
ZK-1270 X 61 2 0 61 2 0

Total* 2012 5 7 2313 12 12

Table 4. DCatch bug detection results (*: Total is smaller
than sum of all rows, as we do not double count same bug
reported by two benchmarks. Subscript denotes bug reports
related to the known bug listed in Column-1. Definitions of
columns are in Section 7.1.)

to failures, it is a benign bug; if their concurrent execution
leads to failures, it is a true bug.

We report DCbug counts by the unique number of static
instruction pairs and the unique number of callstack pairs
as shown in Table 4. Since these two numbers do not dif-
fer much, we use static-instruction count by default unless
otherwise specified.

7.2 Bug detection results
Overall, DCatch has successfully detected DCbugs for all
benchmarks while monitoring correct execution of these
applications, as shown by the X in Table 4. In addition,
DCatch found a few truly harmful DCbugs we were unaware
of and outside the TaxDC suite [24]. DCatch is also accurate:
only about one third of all the 32 DCatch bug reports are
false positives based on static count.

Harmful bug reports DCatch has found root-cause DCbugs
for every benchmark. In some cases, DCatch found multi-
ple root-cause DCbugs for one benchmark. For example, in
HB-4729, users report that “clash between region unassign
and splitting kills the master”. DCatch found that one thread
t1 could delete a zknode concurrently with another thread
t2 reads this zknode and deletes this zknode. Consequently,
multiple DCbugs are reported here between delete and reads,
and between delete and delete. They are all truly harmful
bugs: any one of these zknode operations in t2 would fail
and cause HMaster to crash, if the delete from t1 executes
right before it.

DCatch also found a few harmful DCbugs, 8 in static
count and 10 in callstack count, that go beyond the 7 bench-
marks. We were unaware of these bugs, and they are not
part of the TaxDC bug suite. We have triggered all of them
and observed their harmful impact, such as node crashes
and unavailable services, through DCatch triggering mod-
ule. We have carefully checked the change log of each soft-
ware project, and found that two among these 8 DCbugs
have never been discovered or patched and the remaining
have already been patched by developers in later versions.

BugID #Static Ins. Pair #Callstack Pair

TA TA+SP TA+SP+LP TA TA+SP TA+SP+LP

CA-1011 46 4 3 175 9 7
HB-4539 24 4 4 57 5 4
HB-4729 52 6 5 219 12 10
MR-3274 53 8 6 553 18 11
MR-4637 61 8 7 568 21 13
ZK-1144 29 8 7 52 8 7
ZK-1270 25 10 8 25 10 8

Table 5. # of DCbugs reported by trace analysis (TA) alone,
then plus static pruning (SP), then plus loop-based synchro-
nization analysis (LP), which becomes DCatch.

Benign bug reports DCatch only reported few benign
DCbugs, 5 out of 32 across all benchmarks, benefitting
from its static pruning module. In Cassandra, DCatch re-
ports some DCbugs that can indeed cause inconsistent meta-
data across nodes. However, this inconsistency will soon
get resolved by the next gossip message. Therefore, they
are benign. Other benign reports are similar. Note that, for
CA-1011, the benign report count is 0 in static count but 2
in callstack count, because the two benign reports share the
same static identities with some truly harmful bug reports.

Serial bug reports DCatch HB model and HB analysis did
well in identifying concurrent memory accesses. For only
7 out of 32 DCbug reports, DCatch mistakenly reports two
HB-ordered memory accesses as concurrent. Some of them
are caused by unidentified RPC functions, which do not
follow the regular prototype and hence are missed by our
static analysis. Some of them are caused by custom synchro-
nization related to address transfer [48]. The remaining are
caused by distributed custom synchronization. For example,
ZK has a function waitForEpoch, essentially a distributed
barrier — accesses before waitForEpoch in n1 happens be-
fore accesses after corresponding waitForEpoch in n2. The
implementation of waitForEpoch is complicated and can-
not be inferred by existing HB rules. Single-machine custom
synchronization is an important research topic in LCbug de-
tection [42, 46]. DCatch is just a starting point for research
on distributed custom synchronization.

DCatch false-positive pruning As shown in Table 5, our
static pruning pruned out a big portion of DCbug candidates
reported by DCatch trace analysis: less than 10% of DCbug
candidates (callstack count) remain after the static pruning
for CA, HB, and MR benchmarks.

To evaluate the quality of static pruning, we randomly
sampled and checked 35 DCbug candidates that have been
pruned out, 5 from each benchmark. We found that all of
them are indeed false positives. A few of them would lead
to exceptions, but the exceptions are well handled with
only warning or debugging messages printed out through
LOG.warn or LOG.debug.



Of course, our static pruning could prune out truly harm-
ful bugs. However, given the huge number of DCbug candi-
dates reported by DCatch trace analysis, DCatch static prun-
ing is valuable for prioritizing the bug detection focus.

Finally, our loop-based synchronization analysis is effec-
tive (Section 3.2.1). This analysis discovers both local while-
loop custom synchronization and distributed pull-based cus-
tom synchronization. It pruned out false positives even after
the intensive static pruning for all benchmarks, as shown in
Table 5.

Triggering Overall, DCatch triggering module has been
very useful for us to trigger DCbugs and prune out false
positives. As shown in Table 4, among the 47 DCatch bug
reports with unique call stacks, the triggering module is able
to automatically confirm 35 of them to be true races, with 23
of them causing severe failures, and the remaining 12 to be
false positives in DCatch race detection.

The analysis conducted by DCatch about how to avoid
hangs (challenge-1) and avoid large numbers of dynamic
requests (challenge-2) is crucial to trigger many DCatch

bug reports. In fact, the naive approach that inserts request
just before the racing heap accesses failed to confirm 23
DCatch bug reports to be true races, out of the total 35 true
races, exactly due to these two challenges. DCatch handles
the challenge-1 by putting requests outside critical sections
(17 cases) or outside event/RPC handlers (6 cases), and
handles the challenge-2 by moving the requests along the
happens-before graph into nodes different from the original
race instructions (2 cases), exactly like what described in
Section 5.2. In two cases, to avoid hangs, DCatch first move
request from inside RPC handlers into RPC callers and then

move request to be right outside the critical sections that
enclose corresponding RPC callers.

Of course, DCatch triggering module is not perfect. We
expect two remaining challenges that it could encounter.
First, DCatch cannot guarantee to find a location along the
HB chains with few dynamic instances. Automated DCbugs
triggering would be challenging in these cases, if failures
only happen at a specific dynamic instance. The current
prototype of DCatch focuses on the first dynamic instance
of every racing instruction. This strategy allows DCatch to
trigger the desired executing order among race instructions
with 100% frequency for 33 true races in DCatch bug reports
and with about 50% frequency for the remaining 2 true
races. Second, DCatch does not record all non-deterministic
environmental events and hence its triggering module may
fail to observe a race instruction whose execution depends
on unrecorded non-deterministic events.

False negative discussion DCatch is definitely not a panacea.
DCatch could miss DCbugs for several reasons. First, given
how its static pruning is configured, the current prototype of
DCatch only reports DCbugs that lead to explicit failures,
as discussed in Section 4.1. True DCbugs that lead to severe
but silent failures would be missed. This problem could be

BugID Base Tracing Trace Static Trace
Analysis Pruning Size

CA-1011 6.6s 13.0s 15.9s 324s 7.7MB
HB-4539 1.1s 3.8s 11.9s 87s 4.9MB
HB-4729 3.5s 16.1s 36.8s 278s 19MB
MR-3274 21.2s 94.4s 62.2s 341s 22MB
MR-4637 11.7s 36.4s 51.5s 356s 18MB
ZK-1144 0.8s 3.6s 4.8s 25s 1.9MB
ZK-1270 0.2s 1.1s 4.5s 15s 1.3MB

Table 6. DCatch Performance Results (Base is the execu-
tion time of each benchmark without DCatch).

addressed by skipping the static pruning step, and simply
applying the triggering module for all DCbug candidates.
This could be an option if the testing budget allows. Second,
DCatch selectively monitors only memory accesses related
to inter-node communication and corresponding computa-
tion. This strategy is crucial for the scalability of DCatch,
as we will see soon in Section 7.4. However, there could
be DCbugs that are between communication-related mem-
ory accesses and communication-unrelated accesses. These
bugs would be missed by DCatch. Fortunately, they are very
rare in real world based on our study. Third, DCatch may not
process extremely large traces. The scalability bottleneck of
DCatch, when facing huge traces, is its trace analysis. It cur-
rently takes about 4G memory for the three largest traces
in our benchmarks (HB-4729, MR-3274, and MR-4637).
DCatch will need to chunk the traces and conduct detection
within each chunk, an approach used by previous LCbug
detection tools.

7.3 Performance results
Run-time and off-line analysis time As shown in Table
6, DCatch performance is reasonable for in-house testing.
DCatch tracing causes 1.9X – 5.5X slowdowns across all
benchmarks. Furthermore, we found that up to 60% of the
tracing time is actually spent in dynamic analysis and code
transformation in Javassist. If we use a static instrumentation
tool, the tracing performance could be largely improved.
The trace analysis time is about 2–10 times of the baseline
execution time. Fortunately, it scales well, roughly linearly,
with the trace size: taking about 2–3 second to process every
1MB of trace.

The static pruning phase takes 15 seconds to about 6
minutes for each benchmark. It is the most time consuming
phase in DCatch as shown in the table. 20% – 89% of this
analysis time is spent for WALA to build the Program De-
pendency Graph (PDG). Therefore, the pruning time would
be greatly reduced, if future work can pre-compute the whole
program PDG, store it to file, and load it on demand.

The time consumed by loop-based synchronization anal-
ysis is negligible comparing with tracing, trace analysis, and
static pruning, and hence is not included in Table 6.



BugID Total Mem RPC / Event Thread Lock
Socket

CA-1011 19,984 17,722 0 / 196 0 634 1432
HB-4539 3,907 3,233 260 / 0 21 89 304
HB-4729 11,297 9,694 449 / 0 18 144 992
MR-3274 31,526 23,528 752 / 0 3,540 1,390 2316
MR-4637 24,437 17,201 406 / 0 2,996 1,780 2054
ZK-1144 3,820 3,303 0 / 120 0 79 318
ZK-1270 5,367 4,227 0 / 389 0 329 422

Table 7. Break downs of # of major types of trace records

BugID Trace Size Tracing Time TraceAnalysis Time

CA-1011 77MB 15.9s Out of Memory
HB-4539 26MB 10.2s 64.5s
HB-4729 60MB 49.9s Out of Memory
MR-3274 839MB 215.3s Out of Memory
MR-4637 639MB 137.8s Out of Memory
ZK-1144 6.9MB 5.7s 6.5s
ZK-1270 25MB 4.4s 232.7s

Table 8. Full Memory Tracing Results.

Tracing Details DCatch produces 1.2–21MB of traces for
these benchmarks. These traces could have been much larger
if DCatch did not selectively trace memory accesses, as
we will see in Table 8. As shown in Table 7, these traces
mostly contain memory access information. There are also
a good number of RPC, socket, event, and thread related
records in DCatch traces. MapReduce benchmarks partic-
ularly have many event and thread related records, because
MapReduce heavily uses event-driven computation. There
are many event-handling threads and many event handlers
further spawn threads. On the other hand, our workload
did not touch the event-driven computation part of Cassan-
dra and Zookeeper, consequently their traces do not contain
event operations.

7.4 Comparison with alternative designs
Unselective memory-access logging DCatch tracing only
selectively traces memory accesses related to inter-node
communication and computation. This design choice is
crucial in making DCatch scale to real-world systems. As
shown in Table 8, full memory-access tracing will increase
the trace size by up to 40 times. More importantly, for 4
out of the 7 benchmarks, trace analysis will run out of JVM
memory (50GB of RAM) and cannot finish.

Alternative HB design DCatch HB model contains many
rules. We want to check whether they have all taken effects
in DCbug detection, particularly those rules that do not exist
in traditional multi-threaded programs. Therefore, we eval-
uated how many extra false positives and false negatives are
reported by DCatch trace analysis when it ignores event,
RPC, socket, and push-synchronization operations in traces,
respectively, as shown in Table 9. Note that, the traces are

BugID #Static Ins. Pair #Callstack Pair

Event RPC Soc Push Event RPC Soc Push

CA-1011 - - - - - -
HB-4539 - -3/+35 -3/+35 - -12/+115 -11/+110
HB-4729 - -7/+37 -9/+36 - -23/+109 -24/+106
MR-3274 -46/+4 -5/+16 - -349/+ 8 -20/+ 18 -
MR-4637 -51/+4 -4/+17 - -369/+11 -24/+ 20 -
ZK-1144 - - - - - -
ZK-1270 - - - - - -

Table 9. False negatives (before ‘/’) and false positives (af-
ter ’/’) of ignoring certain HB-related operations (RPC and
socket are in one column as they are never used together in
one benchmark).

the same as those used to produce results in Table 4, except
that some trace records are ignored by analyzer.

Overall, modeling these HB-related operations are all
very useful. Excluding any one type of them would lead
to a good number of false positives and false negatives for
multiple benchmarks, as shown in Table 9.

The false positives are easy to understand. Without these
operations, corresponding HB relationships, related to Rule-
Eenq, Rule-MRPC, Rule-Msoc, and Rule-Mpush, would be
missed by trace analysis. Consequently, some memory ac-
cess pairs would be mistakenly judged as concurrent.

The false negatives are all related to Rule-Pnreg. For ex-
ample, when event-handler Begins and Ends are not traced,
DCatch trace analysis would conclude that all memory ac-
cesses from the same event-handling thread are HB ordered.
Consequently, DCatch would miss DCbugs caused by con-
flicting memory accesses from concurrent event handlers.
The same applies to false negatives caused by not tracking
RPC/socket and Push-based synchronization operations.

Finally, CA-1011 and the two ZK benchmarks did not en-
counter extra false positives or negatives in static/callstack
counts3 due to lucky “two wrongs make a right”: ignoring
socket-related operations misses some true HB relationships
and also mistakenly establishes some non-existing HB rela-
tionships. Imagine node n1 sends a message m1 to node n2,
and n2 sends m2 back in response. Tracing socket opera-
tions or not would both reach the conclusion that send m1

happens before receive m2 on n1, through different reason-
ing. Tracing socket operations provide correct HB relation-
ships: Send (m1, n1) M soc

==) Recv (m1, n2) P nreg

==) Send (m2,
n2) M soc

==) Recv (m2, n1). Not tracing socket would mistak-
enly apply Rule-Preg to message-handling threads, and do
the wrong reasoning: Send (m1, n1) P reg

==) Recv (m2, n1). In
short, tracing socket operations is still useful in providing
accurate HB relationships.

3 CA-1011 did encounter 8% more false positives in raw counts – each pair
of callstacks may have many dynamic instances.



8. Related Work
For combating DCbugs in real distributed systems imple-
mentations, to the best of our knowledge there are mainly
two approaches: software model checking and verification.

Model checking Distributed system model checkers (or
“dmck” in short) have many variance proposed in literature
recently (e.g., Demeter [14], MaceMC [20], SAMC [23],
Dbug [41], and MoDist [47]). Dmck is an implementation-
level model checker, that is, it works by intercepting non-
deterministic distributed events and permuting their order-
ing. Distributed events include message arrivals, fault/reboot
timings, as well as local computation. Although powerful,
dmck has one major weakness: the more events included,
the larger the state space to be explored. It can take hours or
days to explore some of the state space [23].

DCatch like many other run-time bug detection tools does
not provide any guarantee of finding all possible bugs in
software and does not guarantee free of false positives, but
is much faster than dmck. Furthermore, DCatch, like many
other run-time bug detection tools, are built to focus on bugs
with certain type of root causes. Consequently, once detect-
ing a bug, DCatch can pinpoint the bug root cause, which
could be valuable in bug fixing. This root-cause pinpointing
is not a goal of dmck.

Verification. The other set of work is based on verification
(e.g., IronFleet [15], Verdi [45]) which uses proving frame-
works such as Coq [1] and TLA [22] to verify distributed
system implementations. While verification/formal methods
is a stronger solution (no false positives and negatives) than
bug detection tools, such methods come with a cost: long
proof. Just for the basic read and write protocols, the length
of the proofs can reach thousands of lines of code, poten-
tially larger than the protocol implementation.

A similar but slightly different approach is to build dis-
tributed systems with verifiable language (e.g., P# [7]). This
approach is still an ongoing development. Today’s deployed
systems are still mostly written in imperative low-level lan-
guages such as C++ or Java as performance is crucial, espe-
cially in core-service distributed systems.

LCbug and DCbug detection LCbug detection has been
studied for decades. Many bug detectors have been proposed
to identify data races [19, 32, 37, 44], atomicity violations
[8, 26], order violations [10, 39, 50], and others. As we have
discussed in details in earlier sections, DCatch draws in-
spiration from LCbug detection approaches and shares the
same theoretical foundation (i.e., happens-before relation-
ship) with LCbug detections. However, every component
of DCatch design is customized to suit the unique need of
DCbugs and distributed systems.

DCbugs and DCbug detection have not been well stud-
ied in the past. ECRacer [2] is an inspiring recent work
that looks at applications using eventual consistency data
stores. ECRacer generalized conflict serializability to the

setting of eventual consistency and built a dynamic checker
to examine whether a program execution is serializable
considering the underlying eventual consistency data store.
ECRacer and DCatch both look at concurrency problems in
distributed systems. However, they target completely dif-
ferent problems. ECRacer focuses on how applications,
such as mobile applications, use underlying distributed
eventual-consistency data stores, while DCatch looks at gen-
eral distributed systems, particularly infrastructure systems.
ECRacer checks the serializability of the monitored run,
while DCatch tries to predict DCbugs for future runs.

9. Conclusions
Distributed concurrency bugs (DCbugs) severely threat the
reliability of distributed systems. They linger even in dis-
tributed transaction implementations [3, 24, 34]. In this pa-
per, we designed and implemented an automated DCbug
detection tool for large real-world distributed systems. The
DCatch happens-before model nicely combines causality
relationships previously studied in synchronous and asyn-
chronous single-machine systems and causality relation-
ships unique to distributed systems. The four components
of DCatch tool are carefully designed to suit the unique
features of DCbugs and distributed systems. The trigger-
ing module of DCatch can be used as a stand-alone testing
framework. We believe DCatch is just a starting point in
combating DCbugs. The understanding about false nega-
tives and false positives of DCatch will provide guidance for
future work in detecting DCbugs.
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