#### Sameer Deshmukh

17M38101

deshmukh.s.aa@m.titech.ac.jp

# **Training Large Scale** Deep Neural Networks on the Intel Xeon Phi Many-core Coprocessor

Lei Jin, Zhaokang Wang, Rong Gu, Chunfeng Yuan and Yihua Huang (2014)

#### Talk Structure

- Key takeaways.
- Prerequisites.
- Elaboration of solution.
- Experiments for verifying result.
- Conclusion.

# **Key Takeaways**

- Learn algorithms for fast unsupervised pretraining of Neural Networks using RBMs and Spare Auto-encoder on the Intel Xeon Phi.
- Understand the architecture of the Intel Xeon Phi co-processor and its advantages and disadvantages compared to GPUs.
- See benchmarks between a traditional sequential training algorithm vs. parallel algorithm on the Xeon Phi co-processor.

# Use of the Intel Xeon Phi for training neural networks.



# Prerequisites

# Unsupervised pre-training

- When neural networks get deeper, they face the vanishing gradient problem.
- Basically when training a NN using back propagation, you might get zero or really high gradients sometimes.
- An additional unsupervised pre-training step before the actual training solves this problem.

# Unsupervised pre-training

- It finds patterns in the data by reconstructing the input.
- This is done with unlabeled data and forces the NN to decide which of the features are most important, eventually acting as a feature extraction engine.
- Sparse Auto Encoder and Restricted Boltzmann Machine are two main ways of achieving this.

#### Sparse Auto-encoder

A sparse auto-encoder is an unsupervised learning algorithm that applies back propagation, setting the target values to be equal to the inputs.

# Top level structure



## Forward propagation

Takes input  $x \in \mathbb{R}^m$  through input layer x and maps it to the hidden layer y with the function:

$$y = s(W^1 \bullet x + b^1)$$

 $W^1$  is the weight,  $b^1$  is the bias of the layer and s is an activation function like sigmoid that brings y in the domain of [0,1].

## Forward propagation

Takes input  $y \in \mathbb{R}^n$  through hidden layer y and maps it to the output layer z with the function:

$$z = s(W^2 \bullet y + b^2)$$

 $W^2$  is the weight,  $b^2$  is the bias of the layer and s is an activation function like sigmoid that brings z in the domain of [0,1].

#### Loss function

The square error function is usually used as the loss function:

$$J(W,b;x,z) = \frac{1}{2} ||z - x||^2$$

#### Cost function

We make use of the following cost function to train our neural network:

$$J(W,b) = \frac{1}{m} \sum_{i=1}^{m} J(W,b,x^{i},z^{i}) + \frac{\lambda}{2} (\|W^{1}\|^{2} + \|W^{2}\|^{2})$$

The goal of the algorithm is to minimize this function.

#### Cost function

$$J(W,b) = \frac{1}{m} \sum_{i=1}^{m} J(W,b,x^{i},z^{i}) + \frac{\lambda}{2} (\|W^{1}\|^{2} + \|W^{2}\|^{2})$$

m signifies the number of IID samples that will be used to train this neural network from a set of samples  $\{x_1, x_2 ... x_m\}$ .

#### Cost function

$$J(W,b) = \frac{1}{m} \sum_{i=1}^{m} J(W,b,x^{i},z^{i}) + \frac{\lambda}{2} (\|W^{1}\|^{2} + \|W^{2}\|^{2})$$

λ is the **weight decay parameter** that controls the relative importance of the two terms.

It tends to decrease the magnitude of the weights, and thereby prevent over-fitting.

# The auto-encoder tries to approximate the identity function such that $z = f_{W,b}(x)$ .

# Sparse auto-encoder

The identity function seems like a trivial function to learn.

But, by limiting the number of hidden units, we can discover interesting correlations in the data.

## Sparsity parameter p

It is observed that structures in the data are better observed if the number of hidden neurons that fire is limited.

The parameter  $\rho$  determines how many neurons will fire. All hidden neurons firing does not lead to the best results.

# Final cost equation

$$J(W,b,\rho) = J(W,b) + \beta \sum_{i=1}^{h} KL(\rho \parallel \rho_i)$$

$$KL(\rho \parallel \rho_i) = \rho \log \frac{\rho}{\rho_i} + (1-\rho) \log \frac{1-\rho}{1-\rho_i}$$

 $\rho_i$  -> average activation of the hidden node i given the training set.

*h* -> number of hidden nodes.

 $\beta$  -> Additional learning rate parameter.

#### Stacked Auto-encoder



#### Restricted Boltzmann Machine

# Top level structure



Figure 3. the architecture of a Restricted Boltamann Machine

#### **RBM Overview**

- Used for building Deep Belief Networks (DBM).
- Two-layer fully-connected network.
- Works based on 'Energy' equation of neurons back propagation using Contrastive Divergence.
- Trains the NN for each layer; layer by layer.
- Uses unlabeled data.

#### Training stage

- Consist of 'forward pass' and 'backward pass'.
- Works like a 2 way translator.
- Input -> encoding translation in the forward pass.
- Encoding -> input translation in the backward pass.

#### Feature detection

- The input vector corresponds to the visible units because they are observed.
- Feature vector corresponds to the hidden layer.
- Weights are converted into most important features due to weight adjustment.

## **Energy function**

- RBM is an Energy Based Model (EBM) It defines the probability via an energy function.
- The actual probability of firing is controlled by the weights between the neurons and their individual biases.
- An energy function assigns probabilities to different configurations of a system.

# **Energy function**

 The energy function for a joint distribution of (v,h) can be defined as follows:

$$E(v,h) = -b'v - c'h - h'Wv$$

 The probability of firing in RBM is inversely proportional to the energy:

$$p(v,h) \propto \frac{1}{e^{E(v,h)}}$$

# Probability from energy equation

The probability of visible vector v, is given by summing over all the probabilities:

$$p(v) = \frac{e^{-E(v,h)}}{\sum_{h} e^{-E(v,h)}}$$

Due to the nature of RBM, the probabilities of visible and hidden units are independent of each other.

#### Calculating conditional probabilities

$$p(v_i = 1 | h) = s(b_i + \sum_j W_{ij} h_j)$$
$$p(h_i = 1 | v) = s(c_i + \sum_j W_{ji} v_j)$$

B<sub>i</sub> -> bias of the visible layer.

C<sub>i</sub> -> bias of the hidden layer.

W<sub>ii</sub> -> Weight from visible to hidden layer.

W<sub>ii</sub> -> Weight from hidden to visible layer.

## **Contrastive Divergence**

- RBM uses this technique to adjust weights during training.
- Calculates the partial derivatives of log likelihood of probability equation with respect to weight and biases.

#### Calculating partial derivatives

$$\frac{\partial \log p(v)}{\partial w_{ii}} = \left\langle v_i h_j \right\rangle_{data} - \left\langle v_i h_j \right\rangle_{model}$$

$$\frac{\partial \log p(v)}{\partial b_i} = \left\langle v_i \right\rangle_{data} - \left\langle v_i \right\rangle_{model}$$

$$\frac{\partial \log p(v)}{\partial c_i} = \left\langle h_i \right\rangle_{data} - \left\langle h_i \right\rangle_{model}$$

$$\Delta w_{ij} = \eta(\left\langle v_i h_j \right\rangle_{data} - \left\langle v_i h_j \right\rangle_{sample})$$

#### Intel Xeon Phi

- Upto 60 cores.
- 1.053 GHz per core.
- Cores connected by a ring bus.
- 8 GB GDDR5 memory.
- Each core supports 512-bit wide SIMD instructions.
- All tools and programs used on Intel x86 processors can be used with little change.

#### Hardware interconnect



## Advantages of Xeon Phi

- Ability to login and run 'native applications' without intervention from host CPU. Very different from GPU!
- Run x86 code on the co-processor without major modifications.

# Elaboration of solution

# Key considerations for design

- Memory transfers between Host and Phi are relatively slow. Thus, we load training data into Phi memory in large chunks.
- Use threads to load data into the Phi so that our algorithm does not need to wait for data loading.

# Data loading overview



#### 1:Initialize parameters of our unsupervised network

- 2: While stop condition is not satisfied
- get a chunk of data from the buffer area in global memory
- 4 : split the chunk into many smaller training batches
- 5: **For** each small training batch
- 6: compute the gradient accordingly
- 7: update the parameters
- 8: EndFor
- 9:EndWhile

# Parallelize RBM

# Parallelization steps (1)

- 1. Since size of model is small, keep all parameters including *W*, *b* and *c* in the Phi global memory.
- 2. Vectorize the sampling and update step of RBM training using 512-bit wide VPU.

# Vectorizing equations

Vectorizing sampling step:

$$p(v | h) = vectorsig(b + W \bullet h)$$
  
 $p(h | v) = vectorsig(c + W \bullet v)$ 

Vectorizing the update step:

$$W = W + \Delta W$$
$$b = b + \Delta b$$
$$c = c + \Delta c$$

# Parallelization steps (2)

3. Parallelize matrix operations using Intel MKL.

4. Parallelize matrix operations based on sequence of

execution.



the dependency of all temporary variables in computing the gradient of a RBM network.

# Parallelize Sparse Auto-encoder

## Parallelization steps

- 1. Limited scope in parallelization due to complexity of back propagation algorithm.
- 2. Use matrix multiplications tackled by Intel MKL packages.
- 3. Parallelize loops with OpenMP.

# Performance Evaluation

#### **Evaluation** criteria

- Comparison of Intel Xeon Phi vs. Intel Xeon CPU core.
- Comparison done in three aspects of network size, dataset size and batch size.
- Dataset consists of a range of handwritten and nature images. Training samples extracted by randomly taking patches from images.

#### Impact of Network Size



Figure 7. Performance of parallel Autoencoder and RBM algorithms running on Intel Xeon Phi compared with sequential one on single CPU core on host

#### Impact of dataset size



Figure 8. performances when the size of dataset goes up. Network size: 1024 \* 4096. Batch size: 1000

Impact of batch size



Figure 9. the impactof batch size when batch size goes larger

#### Successive performance optimizations

TABLE I. PERFORMANCE AFTER EACH OPTIMIZATION STEP ON XEON PHI

|                                                 | 60 cores | 30 cores |
|-------------------------------------------------|----------|----------|
| Baseline                                        | 16024s   | 15960s   |
| OpenMP                                          | 892s     | 2122s    |
| OpenMP+MKL                                      | 97s      | 120s     |
| Improved OpenMP+MKL                             | 53s      | 81s      |
| Speedup(fully-optimized compared with baseline) | 302      | 197      |

#### Conclusion

- Xeon Phi provides almost 300-fold increase in computation speed compared to sequential algorithm.
- Due to the general-purpose programming model for Xeon Phi, programmers can quickly transplant their original program on host machine to the Intel Xeon Phi platform

#### THANK YOU!