HPC2014

Yuu Ohmura (Watanabe Lab.)
2015/01/19

Today’s Paper

A System Software Approach to Proactive
Memory-Error Avoidance

Carlos H. A. Costa - IBM T. J. Watson Research Center, Yorktown Heights, NY
Yoonho Park - IBM T. J. Watson Research Center, Yorktown Heights, NY

Bryan S. Rosenburg - IBM T. J. Watson Research Center, Yorktown Heights, NY
Chen-Yong Cher - IBM T. J. Watson Research Center, Yorktown Heights, NY

Kyung Dong Ryu - IBM T. J. Watson Research Center, Yorktown Heights, NY

SC '14 Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis

Outline

. INTRODUCTION

Il. MEMORY HEALTH AND FAILURE
PREDICTABILITY

lI.LPROACTIVE MEMORY MANAGEMENT
IV.EXPERIMENTAL EVALUATION
V. RELATED WORK

VI.CONCLUSION AND FUTURE WORK

3

. INTRODUCTION

- Frequent system failure due to an increased
number of memory errors is a major obstacle to
scaling current HPC technology|[1].

Memory failures

Memory failure are cased by soft or hard errors.

- Soft errors are transient errors.
- eX) neutrons and alpha particles
- Hard errors are permanent, recurring errors.

- eXx) wear-and-tear and aging of transistors and metal

~3

ECC mechanisms can address both soft and

hard errors.
5

The predictability of
memory hard error

Several studies point to the predictability of
memory hard errors [5],[6].

- the potential benefits in the early identification of
unhealthy memory

- how the occurrence of correctable memory errors

is concentrated in a small fraction of memory in
few node

correctable error pattern, proactively

I using prediction algorithm based on
avoid using the failing memory
6

Proactive Memory-Error
Avoidance

There are two main challenges.

1. The first challenge is to enable real-time
access to corrected-error information.

2. The second challenge is to efficiently
analyze the error information.

Il. MEMORY HEALTH AND
FAILURE PREDICTABILITY

They derived a generic prediction algorithm
by analyzing a raw RAS log.

RAS --- Reliability and Availability Service
8

Correctable memory error
reporting format in BG/P

job start t1 t2 t3 t4: job end

T »

, 1stSSE-jobend e —>

\ 1stDSE -jobend ——————————— P

: 1st Chipkill - job end
Ty P >

! 1st SSE + Chipkill ! !

\/ \/ \/ \/

_ SSE, DSE, CK
1st corrected SSE 1st corrected DSE 1st chipkill total count

Fig. 1. Correctable memory error reporting format in BG/P.

A. Spatial Correlation(1/2)

- They show how the spatial distribution of
correctable errors can be used to identify
nodes with a high chance of developing non-
trivial error corrections.

- One approach to identify a faulty area is to
identify the repetition of correctable errors
in the same address.

10

A. Spatial Correlation(2/2)

- Two very distinct sets are observed.

1. are nodes that experienced instances of
single-symbol errors.

2. are nodes that activated Chipkill.

11

600

500

400

300

row(x1024)

200

100}

—-100

QgoocgoocgcPauosdose

Sogeocce8ocecone]

(@)

o

0

512

1024 1536 2048

column

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

row (x1024)

500

400

300

100

o

. ° o
®
® e
O —
o)
o)
@00 ©
S ° .

0
0

512

1024 1536 2048
column

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

Fig. 4. Example of error address distribution in a memory bank for two nodes
not activating Chipkill: (a) R21-M0-N10-J30 and (b) R44-M1-NO1-J26.

12

500 I I I I I 515 I I I I I

360 360
a00| 1 320 320
' R PR
1280 510". ; « ¢ 1280
300} 8 H i.]
4240 ®, 4240
: | S| S
41200 ° 4200
< 200} o o < 505| e o 8
~ ~ [)
=
3 1160 5 |* ° * 1160
o0 o o ° ¢ o
100} $ °
120 120
° O L4
. o. ‘ . 500_} o o |
80 d 80
Y []
Ol nocn ¢ capoaes s@e® 0 - °
40 ¢ 40
B . 5 [S
_100 | | | | | 0 495 | | | | | O
0 512 1024 1536 2048 0 512 1024 1536 2048
column column

Fig. 2. Example of error address distribution in a memory bank for two
nodes activating Chipkill: (a) R34-M0-N13-J24 and (b) R20-M0-N14-J24.

13

Probability of a CK Occurrence

100_ X
BOF oo . o R
<
2 60} EEl Spatial distribution |
o g SPatial & temporal distribution
3 rate > 1 error/s
(@)
a 40t -
20t _
(o] : : . _
I I I
address row column
repetition repetition repetition

Fig. 3. Probability of observing a Chipkill event based on spatial and temporal
distribution of repeated correctable errors for all jobs.

14

90

80

70

60

50

40

Coverage (%)

30
20

10

Fig. 5.

Prediction Coverage of CK Occurrence

.................... Spatigl distribution .
Spatill & temporal distribution

address row column
repetition repetition repetition

Coverage of Chipkill prediction based on spatial and temporal

distribution of repeated correctable errors for all jobs.

15

B. Temporal Correlation

- We use timing information.

- an error rate

- based on the first occurrence of an error and the
total number of errors.

- error timestamps

- measure the average time between the first
occurrence of a single-symbol error and a potential
Chipkill correction

16

Probability of a CK Occurrence

100 - — oo S oo e -
O o O o O e
S
2 60} Il Spathl distribgtion
5 Spatll & temgoral distribution
3 B el o1errors
(@)
o A0 Y R o R
20 oo O - e
o] & e Y e I
I I I
address row column
repetition repetition repetition

Fig. 3. Probability of observing a Chipkill event based on spatial and temporal

distribution of repeated correctable errors for all jobs.

17

90

80

70

60

50F

40t

Coverage (%)

30}

201

10

Fig. 5.

Prediction Coverage of CK Occurrence

-------------------- Hl Spatfal distribfition .
Bl Spatfal & temporal distribution

address row column
repetition repetition repetition

Coverage of Chipkill prediction based on spatial and temporal

distribution of repeated correctable errors for all jobs.

18

Error Count per Job
70000 T T T T

SSE —+—

DSE -

| v o+ T 4 OK X
60000 v e e .
BOOOQ - ——— o - R .

40000 I e o e I | W e — .

30000 B R o} 1 o | S e .

Corrected Error count

20000

10000 |- T .

2.5e+07

Fig. 6. Example showing correlation of correctable error counts: total error
counts for all jobs run on node R04-M1-NO1-J17.

TABLE II. TIME ELAPSED BETWEEN FIRST SINGLE-SYMBOL ERROR OBSERVED
AND FIRST CHIPKILL CORRECTION.

< 1Is Is—>1m 1m — 1h 1h — 1 day
26.21% 63.57% 9.51% 0.69%

19

C. Chipkill and
Uncorrected Errors(1/2)

- In our analysis we focus on relating single-
symbol error and Chipkill for two reasons.

1. The majority of uncorrectable errors cause
multiple failures that corrupt the error
reporting, making it difficult to accurately time
uncorrectable memory errors and calculate
latency.

2. Repeated Chipkills are strongly correlated with
subsequent failure.

20

C. Chipkill and
Uncorrected Errors(2/2)

The anticipation and avoidance of repeated
non-trivial error correction has multiple
benefits.

1. It allows us to avoid faulty memory before it is
too late to prevent a failure.

2. the repeated activation of a costly and

complex error correction can be seen as an
efficiency problem in itself.

21

lll. PROACTIVE MEMORY
MANAGEMENT

- Approach
- monitoring memory degradation

- reallocating memory proactively to avoid faulty
memory

- Goal

- Dynamically migrate data residing in memory
pages

22

A. Design

Y.

Failure Prediction
Algorithm

PFN
Health state

Operating System Memory health monitor

Failure Prediction
Policies

Fig. 7. Memory health monitoring mechanism.

23

Require: physical address, last occurrence of error, error type

I: addr <« physical address
2: Get PFN for addr
3: Search PFN in pages hash table (PHT)
4: if PEN € PHT then
5: Get time and error type i i
> Get time and emmor typ P PHT
7: Add addr to address hash table (AHT)
8: else
9 Search addr in AHT
10: if addr € AHT then
11: Increment current repetition count
12: Get current time and last occurrence in PFN
13: Calculate error rate E,
14: if £/, > error threshold then o
15: Update health state of PFN to fatal NN e
16: else
17: Update health state of PFN to unhealthy S e SN
18: end if e ’
19: else AHT S .
20: Update health state of PFN to healthy Fig. 9. Mechanism to monitor the health states of memory pages.
21: Add addr to AHT
22: end if
23: end if

Fig. 8. Algorithm for failure prediction.

24

B. Implementation and
Prototype

- Target
- Linux kernel that runs on BG/Q nodes.

- a BG/Q node

- processor: 17 core, 4 threads

- memory: 16GB

25

Components of the
prototype

1) Interrupt Controller Reconfiguration
2) Interrupt Handler and Health Monitor
3) Page Migration in Linux

4) Error Emulation Through BG/Q Firmware

26

2) Interrupt Handler and
Health Monitor

Fig. 10. BG/Q firmware modifications for health monitoring.

27

3) Page Migration in Linux

process n process m

PTE

radix tree

invalidate

...............] allocate
de|fy . WY] §
R old new :
------------- » SRR
page page
memcpy

Fig. 11. Page migration in the Linux kernel.

28

IV. EXPERIMENTAL
EVALUATION

29

A. Benchmark and Parallel

Execution Environment
- LAMMPS

- is a classical molecular dynamics code, and an
acronym for Large-scale Atomic/Molecular

Massively Parallel Simulator

- version: TFeb14

- Goal

- predict parallel efficiency for large systems

30

B. Error Injection and
Reproduction of Error Patterns

- Base
- ldealistic case(no error)
- Case 1

- Node with unhealthy memory with several and widespread repeated
errors, including repeated Chipkill correction.

- Case 2

- Node with unhealthy memory with several errors concentrated in
few rows.

- Case3

- Node with healthy memory, with early signs of degradation.
Correctable errors are experienced, but no repetition is observed.
31

C. Survivability

Virtual Address Physical Address
kernel space e |
77 |+ Hard offline
stack Softoffine ...
S N L TN L
Y e Injection
LAMMPS A i
SLURM/
MVAPICH2 heap S .
Process = | ke
BSS segment ,
Data segment |
Text segment (ELF) : i 1
N N o
Error patterns /prog/p!d/maps
S| o (o To7 ol o oX=To [Ty T)
R34-M0-N13-J24 : —

R20-M0-N14-J24
R21-M0-N10-J30

R44-M1-NO1-J26 1] i

NODEn |+
/.

1030415; 1681252; 0x03ff4d400; 250; 874; 65535
1681252; 2163075; 0x03ff43c00; 3; 11; 880
2226994; 2765782; 0x03feb6620; 125; 498; 65535

32

D. Performance Overhead

- We evaluated the impact of tracking errors
and performing page migration on resource
utilization and execution time.

1) Single-Node Scenario
2) Multi-Node Scenario

3) Considerations on Memory Locality and
Large Page

33

D. Performance Overhead

1) Single-Node Scenario
- a single-node run of LAMMPS

TABLE III. RESOURCE UTILIZATION OF LAMMPS IN A SHORT
SINGLE-NODE (4 OPENMP THREADS) RUN WITH PAGE MIGRATION.
scenario real user Sys Sys
incr. (%)
baseline 23m 26.18s 1h 33m 40s Om 3.02s
case 1 23m 27.55s 1h 33m 42ss Om 3.63s 20.20
case 2 23m 27.83s 1h 33m 45s Om 3.66s 21.19
case 3 23m 26.22s 1h 33m 40s Om 2.96s -1.99
TABLE IV. RESOURCE UTILIZATION OF LAMMPS IN A LONG
SINGLE-NODE (4 OPENMP THREADS) RUN WITH PAGE MIGRATION.
scenario real user Sys Sys
incr. (%)
baseline 3h 55m 05s 15h 39m 41s 31.54s
case 1 3h 55m 05s 15h 39m 41s 32.05s 1.62
case 2 3h 55m 06s 15h 39m 46s 30.73s -2.57
case 3 3h 55m 06s 15h 39m 47s 31.56s 0.06

34

D. Performance Overhead
2)Multi-Node Scenario

- a multi-node run of LAMMPS

TABLE V. SUMMARY OF RESOURCE UTILIZATION ACROSS MULTIPLE
NODES: BASELINE AND PAGE MIGRATION COMPARISON FOR LONG RUN OF
LAMMPS ON 64 NODES, 6 DIFFERENT RUNS.

incr. mean incr. mean incr.
real time (%) user time (%) sys time (%)
(ticks 10%) (ticks 10%)
baseline 293m46.131s 1736.48 8.424
avg. with 292m58.317s -0.27 1733.74 -0.16 8.437 0.14
page migration

35

E. Effectiveness

- compare the number of errors avoided to
the total number of errors

36

E. Effectiveness
1) Single-Node Scenario

TABLE VI EFFECTIVENESS AND MEMORY OVERHEAD WITH PAGE
MIGRATION: SINGLE-NODE SHORT RUN.

scenario SSE DSE CK memory % of app.
avoid.(%) avoid.(%) avold.(%) retired memory

case 1 27.3 23.9 71.5 512 KB 2.52

case 2 86.69 91.97 91.87 832 KB 4.10

case 3 0 n/a n/a 0 0

37

E. Effectiveness
2)Multi-Node Scenario

TABLE VII. EFFECTIVENESS AND MEMORY OVERHEAD WITH PAGE
MIGRATION: 64 NODES, 6 DIFFERENT RUNS.

SSE DSE CK memory % of app.
avoid.(%) avoid.(%) avoid.(%) retired memory
best average 76.34 71.42 80.42 max. 1152 KB 0.6
worst average 71.28 63.39 74.80 min. 64K KB 0.03
avg. run 76.07 68.65 76.42

38

E. Effectiveness

3) Memory Availability

Their solution can avoid the majority of memory
errors using a very small amount of reserved memory

4) Error Rate Threshold and Effectiveness

A lower threshold would potentially provide higher
coverage

5) Overall Resilience Improvement

the avoidance of 63.43% of memory failures

39

V1. CONCLUSION AND
FUTURE WORK

- Conclusion
- They have shown how correctable error
information can be used by the OS to avoid
repeated memory error and failure.

- They have implemented a prototype.

- They have evaluate the prototype on some
environment.

40

V1. CONCLUSION AND
FUTURE WORK

- future work

- the impact of repeated error avoidance on
performance and power consumption

- deploy and evaluate there mechanismin a
production system

41

