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Background	
•  Natural	error	resiliency	of	neural	network	(NN)	[BoVou	
&	Bousquet,	2007].	
–  In	the	presence	of	sta2s2cal	approxima2on	and	es2ma2on	
errors,	high-precision	compu2ng	is	not	necessary	for	DNN.	

•  Large	scale	systems	specialized	for	DNN	do	not	u2lize	
natural	error	resiliency,	except	for	Asynchronous	SGD.	

•  This	paper	shows	a	performance	of	NN	and	a	prototype	
hardware	with	16-bit	fixed	point	number.	
–  Fixed	point	compute	units	are	faster,	consume	less	resources	
and	power.	

–  A	data	is	of	smaller	data	size.	
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Idea	of	system	

	
mi2ga2ng	impacts	of	error	
	
low-precision	fixed	point	
arithme2c	
•  simpler	component	
•  smaller	memory	
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hardware	

applica2on	



Limited	Precision	Arithme2c	
fixed-point	number	type	

This	nota2on	provides	how	long	bit	is	assigned	to	
integer	part	and	frac2on	part	in	a	decimal	number.	
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<IL,	FL>	
bit-length	for	
integer	part	

bit-length	for	
frac2on	part	



Rounding	Mode	
ε			=	2-FL	(minimum	value	in	<IL,	FL>)	
					=	max{	y	|	(y	/	ε	)	is	integer,	y	<=	x}	

•  Round-to-nearest(RtN)	
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n*ε		 (n+1)*ε		

Deep Learning with Limited Numerical Precision

sum IL + FL is referred to as the word length WL. In
this paper, we use the notation hIL, FLi to denote a
fixed-point representation in which IL (FL) correspond
to the length of the integer (fractional) part of the
number. We also employ ✏ to denote the smallest
positive number that may be represented in the given
fixed-point format. Therefore, the hIL, FLi fixed-point
format limits the precision to FL bits, sets the range
to

⇥
�2IL�1

, 2IL�1 � 2�FL
⇤
, and defines ✏ to be equal to

2�FL.

3.1. Rounding Modes

As will be evident in the sections to follow, the
rounding mode adopted while converting a number
(presumably represented using the float or a higher
precision1 fixed-point format) into a lower precision
fixed-point representation turns out to be a matter
of important consideration while performing compu-
tations on fixed-point numbers. Given a number x

and the target fixed-point representation hIL, FLi, we
define bxc as the largest integer multiple of ✏ (= 2�FL)
less than or equal to x and consider the following
rounding schemes:

• Round-to-nearest

Round(x, hIL, FLi) =
8
<

:

bxc if bxc  x  bxc+ ✏

2

bxc+ ✏ if bxc+ ✏

2
< x  bxc+ ✏

• Stochastic rounding: The probability of rounding x

to bxc is proportional to the proximity of x to bxc:

Round (x, hIL, FLi) =

8
><

>:

bxc w.p. 1� x� bxc
✏

bxc+ ✏ w.p.
x� bxc

✏

Stochastic rounding is an unbiased rounding
scheme and possesses the desirable property
that the expected rounding error is zero, i.e.
E (Round (x, hIL, FLi)) = x

Irrespective of the rounding mode used, if x lies outside
the range of hIL, FLi, we saturate the result to either
the lower or the upper limit of hIL, FLi:

Convert (x, hIL, FLi) =
8
><

>:

�2IL�1 if x  �2IL�1

2IL�1 � 2�FL if x � 2IL�1 � 2�FL

Round(x, hIL, FLi) otherwise

(1)

1We call hIL1, FL1i to be a higher precision representa-
tion than hIL2, FL2i i↵ FL1 > FL2

3.2. Multiply and accumulate (MACC) operation

Consider two d-dimensional vectors a and b such
that each component is represented in the fixed-point
format hIL, FLi, and define c0 = a.b as the inner
product of a and b. c0 is also represented in some
fixed-point format h ~IL, ~IFi. We split the computation
of c0 into the following two steps:

1. Compute z =
Pd

i=1 aibi

The product of ai and bi produces a fixed-point
number in the h2 ⇤ IL, 2 ⇤ FLi format. z can be
thought of as a temporary fixed-point register with
enough width (number of bits) to prevent satura-
tion/overflow and avoid any loss of precision while
accumulating the sum over all products aibi. The
requirement on the width of z is log2d+ 2WL in the
worst case. Note that the worst case is extremely
rare and occurs when all ai and bi are saturated to
either the lower or the upper limit of hIL, FLi.

2. Convert: c0 = Convert(z, h ~IL, ~IFi)

This step invokes the Convert() function defined
previously in eq. 1, resulting in either clipping the
value in z to the limits set by h ~IL, ~IFi or rounding
to ~FL bits of fractional precision using the specified
rounding mode.

Adopting this two-step approach has several advan-
tages. Firstly, it closely mimics the behavior of the
hardware implementation of vector inner product us-
ing the the hardware DSP2 units in FPGAs. These
DSP units accept 18-bit inputs and accumulate the
results of the MACC operation in a 48-bit wide reg-
ister. Secondly, by invoking the rounding mode only
after the accumulation of all the sums, we significantly
reduce the hardware overhead in implementing the
stochastic rounding scheme. Lastly, the adoption of
this approach allows us to e�ciently simulate fixed-
point computations using CPUs/GPUs and vendor-
supplied BLAS3 libraries. For instance, matrix multi-
plication of two fixed-point matrices A and B can be
simulated by first converting them into float matri-
ces, calling the hardware-optimized SGEMM routine and
applying the Convert() function to each element of the
resulting float matrix.

2
Digital Signal Processing units are hardware units in

the FPGA fabric that implement fixed-point multiplication
and addition

3
Basic Linear Algebra Subprograms
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sum IL + FL is referred to as the word length WL. In
this paper, we use the notation hIL, FLi to denote a
fixed-point representation in which IL (FL) correspond
to the length of the integer (fractional) part of the
number. We also employ ✏ to denote the smallest
positive number that may be represented in the given
fixed-point format. Therefore, the hIL, FLi fixed-point
format limits the precision to FL bits, sets the range
to

⇥
�2IL�1

, 2IL�1 � 2�FL
⇤
, and defines ✏ to be equal to

2�FL.

3.1. Rounding Modes

As will be evident in the sections to follow, the
rounding mode adopted while converting a number
(presumably represented using the float or a higher
precision1 fixed-point format) into a lower precision
fixed-point representation turns out to be a matter
of important consideration while performing compu-
tations on fixed-point numbers. Given a number x

and the target fixed-point representation hIL, FLi, we
define bxc as the largest integer multiple of ✏ (= 2�FL)
less than or equal to x and consider the following
rounding schemes:

• Round-to-nearest

Round(x, hIL, FLi) =
8
<

:

bxc if bxc  x  bxc+ ✏

2

bxc+ ✏ if bxc+ ✏

2
< x  bxc+ ✏

• Stochastic rounding: The probability of rounding x

to bxc is proportional to the proximity of x to bxc:

Round (x, hIL, FLi) =

8
><

>:

bxc w.p. 1� x� bxc
✏

bxc+ ✏ w.p.
x� bxc

✏

Stochastic rounding is an unbiased rounding
scheme and possesses the desirable property
that the expected rounding error is zero, i.e.
E (Round (x, hIL, FLi)) = x

Irrespective of the rounding mode used, if x lies outside
the range of hIL, FLi, we saturate the result to either
the lower or the upper limit of hIL, FLi:

Convert (x, hIL, FLi) =
8
><

>:

�2IL�1 if x  �2IL�1

2IL�1 � 2�FL if x � 2IL�1 � 2�FL

Round(x, hIL, FLi) otherwise

(1)

1We call hIL1, FL1i to be a higher precision representa-
tion than hIL2, FL2i i↵ FL1 > FL2

3.2. Multiply and accumulate (MACC) operation

Consider two d-dimensional vectors a and b such
that each component is represented in the fixed-point
format hIL, FLi, and define c0 = a.b as the inner
product of a and b. c0 is also represented in some
fixed-point format h ~IL, ~IFi. We split the computation
of c0 into the following two steps:

1. Compute z =
Pd

i=1 aibi

The product of ai and bi produces a fixed-point
number in the h2 ⇤ IL, 2 ⇤ FLi format. z can be
thought of as a temporary fixed-point register with
enough width (number of bits) to prevent satura-
tion/overflow and avoid any loss of precision while
accumulating the sum over all products aibi. The
requirement on the width of z is log2d+ 2WL in the
worst case. Note that the worst case is extremely
rare and occurs when all ai and bi are saturated to
either the lower or the upper limit of hIL, FLi.

2. Convert: c0 = Convert(z, h ~IL, ~IFi)

This step invokes the Convert() function defined
previously in eq. 1, resulting in either clipping the
value in z to the limits set by h ~IL, ~IFi or rounding
to ~FL bits of fractional precision using the specified
rounding mode.

Adopting this two-step approach has several advan-
tages. Firstly, it closely mimics the behavior of the
hardware implementation of vector inner product us-
ing the the hardware DSP2 units in FPGAs. These
DSP units accept 18-bit inputs and accumulate the
results of the MACC operation in a 48-bit wide reg-
ister. Secondly, by invoking the rounding mode only
after the accumulation of all the sums, we significantly
reduce the hardware overhead in implementing the
stochastic rounding scheme. Lastly, the adoption of
this approach allows us to e�ciently simulate fixed-
point computations using CPUs/GPUs and vendor-
supplied BLAS3 libraries. For instance, matrix multi-
plication of two fixed-point matrices A and B can be
simulated by first converting them into float matri-
ces, calling the hardware-optimized SGEMM routine and
applying the Convert() function to each element of the
resulting float matrix.

2
Digital Signal Processing units are hardware units in

the FPGA fabric that implement fixed-point multiplication
and addition

3
Basic Linear Algebra Subprograms
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sum IL + FL is referred to as the word length WL. In
this paper, we use the notation hIL, FLi to denote a
fixed-point representation in which IL (FL) correspond
to the length of the integer (fractional) part of the
number. We also employ ✏ to denote the smallest
positive number that may be represented in the given
fixed-point format. Therefore, the hIL, FLi fixed-point
format limits the precision to FL bits, sets the range
to

⇥
�2IL�1

, 2IL�1 � 2�FL
⇤
, and defines ✏ to be equal to

2�FL.

3.1. Rounding Modes

As will be evident in the sections to follow, the
rounding mode adopted while converting a number
(presumably represented using the float or a higher
precision1 fixed-point format) into a lower precision
fixed-point representation turns out to be a matter
of important consideration while performing compu-
tations on fixed-point numbers. Given a number x

and the target fixed-point representation hIL, FLi, we
define bxc as the largest integer multiple of ✏ (= 2�FL)
less than or equal to x and consider the following
rounding schemes:

• Round-to-nearest

Round(x, hIL, FLi) =
8
<

:

bxc if bxc  x  bxc+ ✏

2

bxc+ ✏ if bxc+ ✏

2
< x  bxc+ ✏

• Stochastic rounding: The probability of rounding x

to bxc is proportional to the proximity of x to bxc:

Round (x, hIL, FLi) =

8
><

>:

bxc w.p. 1� x� bxc
✏

bxc+ ✏ w.p.
x� bxc

✏

Stochastic rounding is an unbiased rounding
scheme and possesses the desirable property
that the expected rounding error is zero, i.e.
E (Round (x, hIL, FLi)) = x

Irrespective of the rounding mode used, if x lies outside
the range of hIL, FLi, we saturate the result to either
the lower or the upper limit of hIL, FLi:

Convert (x, hIL, FLi) =
8
><

>:

�2IL�1 if x  �2IL�1

2IL�1 � 2�FL if x � 2IL�1 � 2�FL

Round(x, hIL, FLi) otherwise

(1)

1We call hIL1, FL1i to be a higher precision representa-
tion than hIL2, FL2i i↵ FL1 > FL2

3.2. Multiply and accumulate (MACC) operation

Consider two d-dimensional vectors a and b such
that each component is represented in the fixed-point
format hIL, FLi, and define c0 = a.b as the inner
product of a and b. c0 is also represented in some
fixed-point format h ~IL, ~IFi. We split the computation
of c0 into the following two steps:

1. Compute z =
Pd

i=1 aibi

The product of ai and bi produces a fixed-point
number in the h2 ⇤ IL, 2 ⇤ FLi format. z can be
thought of as a temporary fixed-point register with
enough width (number of bits) to prevent satura-
tion/overflow and avoid any loss of precision while
accumulating the sum over all products aibi. The
requirement on the width of z is log2d+ 2WL in the
worst case. Note that the worst case is extremely
rare and occurs when all ai and bi are saturated to
either the lower or the upper limit of hIL, FLi.

2. Convert: c0 = Convert(z, h ~IL, ~IFi)

This step invokes the Convert() function defined
previously in eq. 1, resulting in either clipping the
value in z to the limits set by h ~IL, ~IFi or rounding
to ~FL bits of fractional precision using the specified
rounding mode.

Adopting this two-step approach has several advan-
tages. Firstly, it closely mimics the behavior of the
hardware implementation of vector inner product us-
ing the the hardware DSP2 units in FPGAs. These
DSP units accept 18-bit inputs and accumulate the
results of the MACC operation in a 48-bit wide reg-
ister. Secondly, by invoking the rounding mode only
after the accumulation of all the sums, we significantly
reduce the hardware overhead in implementing the
stochastic rounding scheme. Lastly, the adoption of
this approach allows us to e�ciently simulate fixed-
point computations using CPUs/GPUs and vendor-
supplied BLAS3 libraries. For instance, matrix multi-
plication of two fixed-point matrices A and B can be
simulated by first converting them into float matri-
ces, calling the hardware-optimized SGEMM routine and
applying the Convert() function to each element of the
resulting float matrix.

2
Digital Signal Processing units are hardware units in

the FPGA fabric that implement fixed-point multiplication
and addition

3
Basic Linear Algebra Subprograms
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sum IL + FL is referred to as the word length WL. In
this paper, we use the notation hIL, FLi to denote a
fixed-point representation in which IL (FL) correspond
to the length of the integer (fractional) part of the
number. We also employ ✏ to denote the smallest
positive number that may be represented in the given
fixed-point format. Therefore, the hIL, FLi fixed-point
format limits the precision to FL bits, sets the range
to

⇥
�2IL�1

, 2IL�1 � 2�FL
⇤
, and defines ✏ to be equal to

2�FL.

3.1. Rounding Modes

As will be evident in the sections to follow, the
rounding mode adopted while converting a number
(presumably represented using the float or a higher
precision1 fixed-point format) into a lower precision
fixed-point representation turns out to be a matter
of important consideration while performing compu-
tations on fixed-point numbers. Given a number x

and the target fixed-point representation hIL, FLi, we
define bxc as the largest integer multiple of ✏ (= 2�FL)
less than or equal to x and consider the following
rounding schemes:

• Round-to-nearest

Round(x, hIL, FLi) =
8
<

:

bxc if bxc  x  bxc+ ✏

2

bxc+ ✏ if bxc+ ✏

2
< x  bxc+ ✏

• Stochastic rounding: The probability of rounding x

to bxc is proportional to the proximity of x to bxc:

Round (x, hIL, FLi) =

8
><

>:

bxc w.p. 1� x� bxc
✏

bxc+ ✏ w.p.
x� bxc

✏

Stochastic rounding is an unbiased rounding
scheme and possesses the desirable property
that the expected rounding error is zero, i.e.
E (Round (x, hIL, FLi)) = x

Irrespective of the rounding mode used, if x lies outside
the range of hIL, FLi, we saturate the result to either
the lower or the upper limit of hIL, FLi:

Convert (x, hIL, FLi) =
8
><

>:

�2IL�1 if x  �2IL�1

2IL�1 � 2�FL if x � 2IL�1 � 2�FL

Round(x, hIL, FLi) otherwise

(1)

1We call hIL1, FL1i to be a higher precision representa-
tion than hIL2, FL2i i↵ FL1 > FL2

3.2. Multiply and accumulate (MACC) operation

Consider two d-dimensional vectors a and b such
that each component is represented in the fixed-point
format hIL, FLi, and define c0 = a.b as the inner
product of a and b. c0 is also represented in some
fixed-point format h ~IL, ~IFi. We split the computation
of c0 into the following two steps:

1. Compute z =
Pd

i=1 aibi

The product of ai and bi produces a fixed-point
number in the h2 ⇤ IL, 2 ⇤ FLi format. z can be
thought of as a temporary fixed-point register with
enough width (number of bits) to prevent satura-
tion/overflow and avoid any loss of precision while
accumulating the sum over all products aibi. The
requirement on the width of z is log2d+ 2WL in the
worst case. Note that the worst case is extremely
rare and occurs when all ai and bi are saturated to
either the lower or the upper limit of hIL, FLi.

2. Convert: c0 = Convert(z, h ~IL, ~IFi)

This step invokes the Convert() function defined
previously in eq. 1, resulting in either clipping the
value in z to the limits set by h ~IL, ~IFi or rounding
to ~FL bits of fractional precision using the specified
rounding mode.

Adopting this two-step approach has several advan-
tages. Firstly, it closely mimics the behavior of the
hardware implementation of vector inner product us-
ing the the hardware DSP2 units in FPGAs. These
DSP units accept 18-bit inputs and accumulate the
results of the MACC operation in a 48-bit wide reg-
ister. Secondly, by invoking the rounding mode only
after the accumulation of all the sums, we significantly
reduce the hardware overhead in implementing the
stochastic rounding scheme. Lastly, the adoption of
this approach allows us to e�ciently simulate fixed-
point computations using CPUs/GPUs and vendor-
supplied BLAS3 libraries. For instance, matrix multi-
plication of two fixed-point matrices A and B can be
simulated by first converting them into float matri-
ces, calling the hardware-optimized SGEMM routine and
applying the Convert() function to each element of the
resulting float matrix.

2
Digital Signal Processing units are hardware units in

the FPGA fabric that implement fixed-point multiplication
and addition

3
Basic Linear Algebra Subprograms

3

If	a	calculated	result	is	outside	the	range	of	<IL,	FL>,	
then		we	saturate	it	to	upper	or	lower	bound	of	<IL,	FL>.	



Mul2ply	and	accumulate	(MACC)	opera2on		

Calcula2ng	c0	=	a・b	by	2	steps.	
– a,	b	:	<IL,	FL>	fixed-point	number	d-dimension	vector	
– c0				:															fixed-point	number	

– ai bi  : <2 IL, 2 FL> fixed-point	

– z      : {log2d + 2 (IL + FL)} bit length fixed-point	
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sum IL + FL is referred to as the word length WL. In
this paper, we use the notation hIL, FLi to denote a
fixed-point representation in which IL (FL) correspond
to the length of the integer (fractional) part of the
number. We also employ ✏ to denote the smallest
positive number that may be represented in the given
fixed-point format. Therefore, the hIL, FLi fixed-point
format limits the precision to FL bits, sets the range
to

⇥
�2IL�1

, 2IL�1 � 2�FL
⇤
, and defines ✏ to be equal to

2�FL.

3.1. Rounding Modes

As will be evident in the sections to follow, the
rounding mode adopted while converting a number
(presumably represented using the float or a higher
precision1 fixed-point format) into a lower precision
fixed-point representation turns out to be a matter
of important consideration while performing compu-
tations on fixed-point numbers. Given a number x

and the target fixed-point representation hIL, FLi, we
define bxc as the largest integer multiple of ✏ (= 2�FL)
less than or equal to x and consider the following
rounding schemes:

• Round-to-nearest

Round(x, hIL, FLi) =
8
<

:

bxc if bxc  x  bxc+ ✏

2

bxc+ ✏ if bxc+ ✏

2
< x  bxc+ ✏

• Stochastic rounding: The probability of rounding x

to bxc is proportional to the proximity of x to bxc:

Round (x, hIL, FLi) =

8
><

>:

bxc w.p. 1� x� bxc
✏

bxc+ ✏ w.p.
x� bxc

✏

Stochastic rounding is an unbiased rounding
scheme and possesses the desirable property
that the expected rounding error is zero, i.e.
E (Round (x, hIL, FLi)) = x

Irrespective of the rounding mode used, if x lies outside
the range of hIL, FLi, we saturate the result to either
the lower or the upper limit of hIL, FLi:

Convert (x, hIL, FLi) =
8
><

>:

�2IL�1 if x  �2IL�1

2IL�1 � 2�FL if x � 2IL�1 � 2�FL

Round(x, hIL, FLi) otherwise

(1)

1We call hIL1, FL1i to be a higher precision representa-
tion than hIL2, FL2i i↵ FL1 > FL2

3.2. Multiply and accumulate (MACC) operation

Consider two d-dimensional vectors a and b such
that each component is represented in the fixed-point
format hIL, FLi, and define c0 = a.b as the inner
product of a and b. c0 is also represented in some
fixed-point format h ~IL, ~IFi. We split the computation
of c0 into the following two steps:

1. Compute z =
Pd

i=1 aibi

The product of ai and bi produces a fixed-point
number in the h2 ⇤ IL, 2 ⇤ FLi format. z can be
thought of as a temporary fixed-point register with
enough width (number of bits) to prevent satura-
tion/overflow and avoid any loss of precision while
accumulating the sum over all products aibi. The
requirement on the width of z is log2d+ 2WL in the
worst case. Note that the worst case is extremely
rare and occurs when all ai and bi are saturated to
either the lower or the upper limit of hIL, FLi.

2. Convert: c0 = Convert(z, h ~IL, ~IFi)

This step invokes the Convert() function defined
previously in eq. 1, resulting in either clipping the
value in z to the limits set by h ~IL, ~IFi or rounding
to ~FL bits of fractional precision using the specified
rounding mode.

Adopting this two-step approach has several advan-
tages. Firstly, it closely mimics the behavior of the
hardware implementation of vector inner product us-
ing the the hardware DSP2 units in FPGAs. These
DSP units accept 18-bit inputs and accumulate the
results of the MACC operation in a 48-bit wide reg-
ister. Secondly, by invoking the rounding mode only
after the accumulation of all the sums, we significantly
reduce the hardware overhead in implementing the
stochastic rounding scheme. Lastly, the adoption of
this approach allows us to e�ciently simulate fixed-
point computations using CPUs/GPUs and vendor-
supplied BLAS3 libraries. For instance, matrix multi-
plication of two fixed-point matrices A and B can be
simulated by first converting them into float matri-
ces, calling the hardware-optimized SGEMM routine and
applying the Convert() function to each element of the
resulting float matrix.

2
Digital Signal Processing units are hardware units in

the FPGA fabric that implement fixed-point multiplication
and addition
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3

Deep Learning with Limited Numerical Precision

sum IL + FL is referred to as the word length WL. In
this paper, we use the notation hIL, FLi to denote a
fixed-point representation in which IL (FL) correspond
to the length of the integer (fractional) part of the
number. We also employ ✏ to denote the smallest
positive number that may be represented in the given
fixed-point format. Therefore, the hIL, FLi fixed-point
format limits the precision to FL bits, sets the range
to

⇥
�2IL�1

, 2IL�1 � 2�FL
⇤
, and defines ✏ to be equal to

2�FL.

3.1. Rounding Modes

As will be evident in the sections to follow, the
rounding mode adopted while converting a number
(presumably represented using the float or a higher
precision1 fixed-point format) into a lower precision
fixed-point representation turns out to be a matter
of important consideration while performing compu-
tations on fixed-point numbers. Given a number x

and the target fixed-point representation hIL, FLi, we
define bxc as the largest integer multiple of ✏ (= 2�FL)
less than or equal to x and consider the following
rounding schemes:

• Round-to-nearest

Round(x, hIL, FLi) =
8
<

:

bxc if bxc  x  bxc+ ✏

2

bxc+ ✏ if bxc+ ✏

2
< x  bxc+ ✏

• Stochastic rounding: The probability of rounding x

to bxc is proportional to the proximity of x to bxc:

Round (x, hIL, FLi) =

8
><

>:

bxc w.p. 1� x� bxc
✏

bxc+ ✏ w.p.
x� bxc

✏

Stochastic rounding is an unbiased rounding
scheme and possesses the desirable property
that the expected rounding error is zero, i.e.
E (Round (x, hIL, FLi)) = x

Irrespective of the rounding mode used, if x lies outside
the range of hIL, FLi, we saturate the result to either
the lower or the upper limit of hIL, FLi:

Convert (x, hIL, FLi) =
8
><

>:

�2IL�1 if x  �2IL�1

2IL�1 � 2�FL if x � 2IL�1 � 2�FL

Round(x, hIL, FLi) otherwise

(1)

1We call hIL1, FL1i to be a higher precision representa-
tion than hIL2, FL2i i↵ FL1 > FL2

3.2. Multiply and accumulate (MACC) operation

Consider two d-dimensional vectors a and b such
that each component is represented in the fixed-point
format hIL, FLi, and define c0 = a.b as the inner
product of a and b. c0 is also represented in some
fixed-point format h ~IL, ~IFi. We split the computation
of c0 into the following two steps:

1. Compute z =
Pd

i=1 aibi

The product of ai and bi produces a fixed-point
number in the h2 ⇤ IL, 2 ⇤ FLi format. z can be
thought of as a temporary fixed-point register with
enough width (number of bits) to prevent satura-
tion/overflow and avoid any loss of precision while
accumulating the sum over all products aibi. The
requirement on the width of z is log2d+ 2WL in the
worst case. Note that the worst case is extremely
rare and occurs when all ai and bi are saturated to
either the lower or the upper limit of hIL, FLi.

2. Convert: c0 = Convert(z, h ~IL, ~IFi)

This step invokes the Convert() function defined
previously in eq. 1, resulting in either clipping the
value in z to the limits set by h ~IL, ~IFi or rounding
to ~FL bits of fractional precision using the specified
rounding mode.

Adopting this two-step approach has several advan-
tages. Firstly, it closely mimics the behavior of the
hardware implementation of vector inner product us-
ing the the hardware DSP2 units in FPGAs. These
DSP units accept 18-bit inputs and accumulate the
results of the MACC operation in a 48-bit wide reg-
ister. Secondly, by invoking the rounding mode only
after the accumulation of all the sums, we significantly
reduce the hardware overhead in implementing the
stochastic rounding scheme. Lastly, the adoption of
this approach allows us to e�ciently simulate fixed-
point computations using CPUs/GPUs and vendor-
supplied BLAS3 libraries. For instance, matrix multi-
plication of two fixed-point matrices A and B can be
simulated by first converting them into float matri-
ces, calling the hardware-optimized SGEMM routine and
applying the Convert() function to each element of the
resulting float matrix.

2
Digital Signal Processing units are hardware units in

the FPGA fabric that implement fixed-point multiplication
and addition

3
Basic Linear Algebra Subprograms
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sum IL + FL is referred to as the word length WL. In
this paper, we use the notation hIL, FLi to denote a
fixed-point representation in which IL (FL) correspond
to the length of the integer (fractional) part of the
number. We also employ ✏ to denote the smallest
positive number that may be represented in the given
fixed-point format. Therefore, the hIL, FLi fixed-point
format limits the precision to FL bits, sets the range
to

⇥
�2IL�1

, 2IL�1 � 2�FL
⇤
, and defines ✏ to be equal to

2�FL.

3.1. Rounding Modes
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precision1 fixed-point format) into a lower precision
fixed-point representation turns out to be a matter
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and the target fixed-point representation hIL, FLi, we
define bxc as the largest integer multiple of ✏ (= 2�FL)
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Round(x, hIL, FLi) =
8
<

:

bxc if bxc  x  bxc+ ✏

2

bxc+ ✏ if bxc+ ✏

2
< x  bxc+ ✏

• Stochastic rounding: The probability of rounding x

to bxc is proportional to the proximity of x to bxc:

Round (x, hIL, FLi) =

8
><

>:

bxc w.p. 1� x� bxc
✏

bxc+ ✏ w.p.
x� bxc

✏
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E (Round (x, hIL, FLi)) = x
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the lower or the upper limit of hIL, FLi:

Convert (x, hIL, FLi) =
8
><

>:

�2IL�1 if x  �2IL�1

2IL�1 � 2�FL if x � 2IL�1 � 2�FL

Round(x, hIL, FLi) otherwise

(1)

1We call hIL1, FL1i to be a higher precision representa-
tion than hIL2, FL2i i↵ FL1 > FL2

3.2. Multiply and accumulate (MACC) operation

Consider two d-dimensional vectors a and b such
that each component is represented in the fixed-point
format hIL, FLi, and define c0 = a.b as the inner
product of a and b. c0 is also represented in some
fixed-point format h ~IL, ~IFi. We split the computation
of c0 into the following two steps:

1. Compute z =
Pd

i=1 aibi

The product of ai and bi produces a fixed-point
number in the h2 ⇤ IL, 2 ⇤ FLi format. z can be
thought of as a temporary fixed-point register with
enough width (number of bits) to prevent satura-
tion/overflow and avoid any loss of precision while
accumulating the sum over all products aibi. The
requirement on the width of z is log2d+ 2WL in the
worst case. Note that the worst case is extremely
rare and occurs when all ai and bi are saturated to
either the lower or the upper limit of hIL, FLi.

2. Convert: c0 = Convert(z, h ~IL, ~IFi)

This step invokes the Convert() function defined
previously in eq. 1, resulting in either clipping the
value in z to the limits set by h ~IL, ~IFi or rounding
to ~FL bits of fractional precision using the specified
rounding mode.

Adopting this two-step approach has several advan-
tages. Firstly, it closely mimics the behavior of the
hardware implementation of vector inner product us-
ing the the hardware DSP2 units in FPGAs. These
DSP units accept 18-bit inputs and accumulate the
results of the MACC operation in a 48-bit wide reg-
ister. Secondly, by invoking the rounding mode only
after the accumulation of all the sums, we significantly
reduce the hardware overhead in implementing the
stochastic rounding scheme. Lastly, the adoption of
this approach allows us to e�ciently simulate fixed-
point computations using CPUs/GPUs and vendor-
supplied BLAS3 libraries. For instance, matrix multi-
plication of two fixed-point matrices A and B can be
simulated by first converting them into float matri-
ces, calling the hardware-optimized SGEMM routine and
applying the Convert() function to each element of the
resulting float matrix.
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Mul2ply	and	accumulate	(MACC)	opera2on		
•  advantage	of	this	2-steps	methodology	
– easy	to	implement	with	FPGA	
– one	rounding	per	one	mul2plying	opera2on	
– easy	to	simulate	in	CPU/GPU,	BLAS	library	

9	



Evalua2on	
Going	to	evaluate	error	of	network	with	16-bit	
fixed	point	arithme2c	by	comparing	with	32-bit	
floa2ng	point	one.	

•  Network		
– DNN	
– Convolu2onal	Neural	Network(CNN)	

•  Data	set	
– MNIST	
– CIFAR10	
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Evalua2on	
•  Weights	and	Biases	in	network	are	to	be	
ini2alized	randomly.	

•  HyperParameters	(e.g.	number	of	layer,	
momentum,		learning	rate,	...)	is	the	same	
between	baseline	experiment	and	16-bit	fixed	
point	one.	

•  Fixed-point	number	is	represented	in	16	bits.	
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error	in	DNN	for	MNIST	
MNIST	
•  60,000	training	images/	10,000	test	images	
•  28	×	28	pixels	in	a	image	
•  Each	pixel	in	the	images	has	a value	in	[0,1].	

12	from	テストの実行 -	MNIST	画像認識データ セットに取り組む	
(hVps://msdn.microsor.com/ja-jp/magazine/dn745868.aspx)	



error	in	DNN	for	MNIST	
DNN	
•  Fully	connected	network	
•  2	hidden	layers	containing	1000	units	with	ReLU	
ac2va2on	func2on	

•  Each	weight	is	ini2alized	randomly	from		N(0,	
0.01).	The	bias	vector	ini2alized	to	0.	

•  Training	using	minibatch	SGD	to	minimize	the	
cross	entropy	objec2ve	func2on.	
– a minibatch	size	is	100.	

13	



error	in	DNN	for	MNIST		
•  Precision	of	fixed	point	in	
which	test	error	is	close	to	
the	one	with	float	is	
<2,14>	in	RtN	scheme,	or	
<8,8>	in	Stochas2c	
rounding	scheme.	
–  RtN	lose	gradient	
informa2on	more	readily,	
then	some	weights	are	not	
updated.	

14	
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Figure 1. MNIST dataset using fully connected DNNs: Training error (a, c) and the test error (b, d) for training using
fixed-point number representation and rounding mode set to either “Round to nearest” (top) or “Stochastic rounding”
(bottom). The word length for fixed-point numbers WL is kept fixed at 16 bits and results are shown for three di↵erent
fractional (integer) lengths: 8(8), 10(6), and 14(2) bits. Results using float are also shown for comparison.

4. Training Deep Networks

In this section, we present the results of our in-
vestigation into the e↵ect of employing limited pre-
cision data representation during the training of
deep neural networks. We consider both fully con-
nected deep neural networks (DNN) as well as
convolutional neural networks (CNN) and present
results for the MNIST(Lecun & Cortes) and the
CIFAR10(Krizhevsky & Hinton, 2009) datasets. As a
baseline for comparison, we first evaluate the network
performance (in terms of the rate of reduction of both
the training error and the error on the test set) using
the conventional 32-bit floating-point arithmetic. Sub-
sequently, we constrain the neural network parameters
(weights W l, biases Bl), as well as the other interme-
diate variables generated during the back-propagation
algorithm (layer outputs Y

l, back-propagated error
�

l, weight updates �W

l, bias updates �B

l) to be
represented in the fixed-point format and train the
network again starting from random initialization of
the parameters. While training using fixed-point, the
di↵erent model hyperparameters such as weight ini-
tialization, regularization parameters, learning rates
etc. are kept unchanged from the ones used during the

baseline evaluation. The word length WL for the fixed-
point format is set to 16 bits i.e. the number of bits
allocated to represent the integer and the fractional
parts add up to 16.

This fairly restrictive choice of number representation
has some important implications. From the perspec-
tive of neural network training, an aggressive reduction
of the precision with which the parameter updates are
computed and stored may result in the loss of the
gradient information if the updates are significantly
smaller than the ✏ for the given fixed-point format. As
a consequence, this may impede the progress of the
gradient descent algorithm, or worse, introduce insta-
bilities during the training procedure. Note that in the
round-to-nearest scheme, any parameter update in the
range

�
� ✏

2 ,
✏
2

�
is always rounded to zero, as opposed to

the stochastic rounding scheme which maintains a non-
zero probability of small parameter updates to round
to ±✏. Secondly, since the fixed-point format o↵ers
only a limited range, outputs of the ReLU activation
function may get clipped to the upper limit set by
hIL, FLi. From a hardware perspective, the use of 16-
bits for data storage (instead of float) corresponds to
a factor 2 reduction in the amount of memory needed

4
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Figure 1. MNIST dataset using fully connected DNNs: Training error (a, c) and the test error (b, d) for training using
fixed-point number representation and rounding mode set to either “Round to nearest” (top) or “Stochastic rounding”
(bottom). The word length for fixed-point numbers WL is kept fixed at 16 bits and results are shown for three di↵erent
fractional (integer) lengths: 8(8), 10(6), and 14(2) bits. Results using float are also shown for comparison.

4. Training Deep Networks

In this section, we present the results of our in-
vestigation into the e↵ect of employing limited pre-
cision data representation during the training of
deep neural networks. We consider both fully con-
nected deep neural networks (DNN) as well as
convolutional neural networks (CNN) and present
results for the MNIST(Lecun & Cortes) and the
CIFAR10(Krizhevsky & Hinton, 2009) datasets. As a
baseline for comparison, we first evaluate the network
performance (in terms of the rate of reduction of both
the training error and the error on the test set) using
the conventional 32-bit floating-point arithmetic. Sub-
sequently, we constrain the neural network parameters
(weights W l, biases Bl), as well as the other interme-
diate variables generated during the back-propagation
algorithm (layer outputs Y

l, back-propagated error
�

l, weight updates �W

l, bias updates �B

l) to be
represented in the fixed-point format and train the
network again starting from random initialization of
the parameters. While training using fixed-point, the
di↵erent model hyperparameters such as weight ini-
tialization, regularization parameters, learning rates
etc. are kept unchanged from the ones used during the

baseline evaluation. The word length WL for the fixed-
point format is set to 16 bits i.e. the number of bits
allocated to represent the integer and the fractional
parts add up to 16.

This fairly restrictive choice of number representation
has some important implications. From the perspec-
tive of neural network training, an aggressive reduction
of the precision with which the parameter updates are
computed and stored may result in the loss of the
gradient information if the updates are significantly
smaller than the ✏ for the given fixed-point format. As
a consequence, this may impede the progress of the
gradient descent algorithm, or worse, introduce insta-
bilities during the training procedure. Note that in the
round-to-nearest scheme, any parameter update in the
range

�
� ✏

2 ,
✏
2

�
is always rounded to zero, as opposed to

the stochastic rounding scheme which maintains a non-
zero probability of small parameter updates to round
to ±✏. Secondly, since the fixed-point format o↵ers
only a limited range, outputs of the ReLU activation
function may get clipped to the upper limit set by
hIL, FLi. From a hardware perspective, the use of 16-
bits for data storage (instead of float) corresponds to
a factor 2 reduction in the amount of memory needed

4



error	in	CNN	for	MNIST	

16	

convolu2onal		layer		
w/	8	feature	maps	

convolu2onal	layer	
w/	16	feature	maps	

pooling	layer	
pooling	layer	

10-way	sormax	
output	layer	

fully	connected		

128	ReLU		
neurons	

The	network	is	similar	to	LeNet-5.	
•  5×5	filter,	2×2	non-overlapped	max	pooling	



error	in	CNN	for	MNIST	
•  hyper	parameter		
–  learning	rate		=	0.1	*	(0.95)(#	of	completed	epoch)	

– momentum			=	0.9	
– weight	decay	=	0.0005	

•  Output	from	the	convolu2onal	layers	is	
represented	in	<6,10>	fixed-point.	
–  If	IL	<	6,	the	outputs	are	lower	than	a	range	the	fixed-
point	can	represent.	

17	
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Figure 2. MNIST dataset using CNNs: Training error (a) and the test error (b) for training using fixed-point number
representation and rounding mode set to either “Round to nearest” or “Stochastic rounding”. The word length for fixed-
point numbers WL is kept fixed at 16 bits and results are shown for di↵erent fractional (integer) lengths for weights and
weight updates: 12(4), and 14(2) bits. Layer outputs use h6, 10i format in all cases. Results using float are also shown
for comparison.

for training a given network. Moreover, the use of the
same word length for all network variables carries with
it the added advantage of simplifying the hardware
implementation.

4.1. MNIST

4.1.1. Fully connected DNN

In the first set of experiments, we construct a fully
connected neural network with 2 hidden layers, each
containing 1000 units with ReLU activation function
and train this network to recognize the handwritten
digits from the MNIST dataset. This dataset comprises
of 60, 000 training images and 10, 000 test images –
each image is 28 x 28 pixels containing a digit from
0 to 9. The pixel values are normalized to lie in
the [0, 1] range. No other form of data pre-processing
or augmentation is performed. The weights in each
layer are initialized by sampling random values from
N (0, 0.01) while the bias vectors are initialized to
0. The network is trained using minibatch stochastic
gradient descent (SGD) with a minibatch size of 100
to minimize the cross entropy objective function. The
float baseline achieves a test error of 1.4%.

Next, we retrain the network using fixed-point com-
putations and set WL to 16 bits. Figure 1 shows the
results for the two rounding modes: Round-to-nearest
and Stochastic rounding. In both cases, allocating 14
bits to the fractional part4 produces no noticeable

4Using up 14 bits for the fractional part leaves only 2
bits (including the sign bit) for representing the integer
portion of the number. This does not seem to adversely
a↵ect the network performance.

degradation in either the convergence rate or the clas-
sification accuracy. A reduction in the precision below
14 bits begins to negatively impact the network’s
ability to learn when the round-to-nearest scheme is
adopted. This is primarily because at reduced frac-
tional precision, most of the parameter updates are
rounded down to zero. In contrast, the stochastic
rounding preserves the gradient information, atleast
statistically, and the network is able to learn with as
few as 8 bits of precision without any significant loss in
performance. Note, however, at a precision lower than
8 bits, even the stochastic rounding scheme is unable
to fully prevent the loss of gradient information.

4.1.2. CNN

Using the MNIST dataset, we also evaluate a CNN
with an architecture similar to LeNet-5 (LeCun et al.,
1998). It comprises of 2 convolutional layers with 5x5
filters and ReLU activation function. The first layer
has 8 feature maps while the second convolutional
layer produces 16 feature maps. Each convolutional
layer is followed by a pooling/subsampling layer. The
pooling layers implement the max pooling function
over non-overlapping pooling windows of size 2x2. The
output of the second pooling layer feeds into a fully
connected layer consisting of 128 ReLU neurons, which
is then connected into a 10-way softmax output layer.

For training this network, we adopt an exponentially
decreasing learning rate – scaling it by a factor of 0.95
after every epoch of training. The learning rate for
the first epoch is set to 0.1. Momentum (p = 0.9)
is used to speed up SGD convergence. The weight
decay parameter is set to 0.0005 for all layers. When

5
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RtN	scheme	results	
in	divergence	



error	in	CNN	for	CIFAR10	
•  The	CIFAR-10	dataset	consists	of	60000	32x32	
color	images	in	10	classes,	with	6000	images	per	
class.	There	are	50000	training	images	and	10000	
test	images.		

•  The	image	RGB	values	
are	scaled	to	[0,1]	for		
the	evalua2on.	
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error	in	CNN	for	CIFAR10	
•  3	convolu2onal	layers,	each	contains	64	5×5	
filters	

•  max	pooling	func2on	over	3×3	window	using	a	
stride	of	2	

20	

10-way	
output	layer	



error	in	CNN	for	CIFAR10	
•  Parameter	
– The	learning	rate	is	0.01	(at	begin),	0.005(arer	50	
epoch),	0.0025(arer	75	epoch),	0.00125(arer	100	
epoch).	

•  Outputs	from	layers	are	represented	in	the	
<4,12>	format.	
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Figure 3. CIFAR10 dataset using CNNs:Training error (a) and the test error (b) for training using fixed-point number
representation and rounding mode set to either “Round to nearest” or “Stochastic rounding”. The word length for fixed-
point numbers WL is kept fixed at 16 bits and results are shown for di↵erent fractional (integer) lengths for weights and
weight updates: 12(4), and 14(2) bits. The black arrows indicate the epoch after which the training is carried out using
WL = 20 bits. Results using float are also shown for comparison.

trained using float, the network achieves a test error
of 0.77%. As was done previously for DNNs, we retrain
the network using fixed-point computations with WL

set to 16 bits. However, in this case, saturating the out-
put of the convolutional layers to a low integer value
created some di�culty in jump-starting the training
procedure. As a result, we increase the number of
bits allocated for the integer part at the expense of
reducing the precision and choose the h6, 10i format
for representing the layer outputs. Figure 2 compiles
the results obtained using the two di↵erent rounding
modes. Unlike in the case of DNNs, when the round-to-
nearest scheme is adopted during fixed-point computa-
tions, the training procedure fails to converge. When
stochastic rounding is used, we achieve a test error
of 0.83% and 0.90% for 14-bit and 12-bit precision, re-
spectively – corresponding to only a slight degradation
from the float baseline.

4.2. CIFAR10

To further test the validity of the stochastic rounding
approach, we consider another commonly used image
classification benchmark: CIFAR10. The training set
consists of 50, 000 RGB images of size 32x32 pixels.
The images are divided into 10 classes, each containing
5, 000 images. The test set has 10, 000 images. We
scale the image RGB values to [0,1] range and do
not perform any other form of data pre-processing or
augmentation. For this dataset, we construct a CNN
with 3 convolutional layers each followed by a subsam-
pling/pooling layer. The convolutional layers consist
of 64 5x5 filters and the subsampling layers implement
the max pooling function over a window of size 3x3
using a stride of 2. The 3rd pooling layer connects to

a 10-way softmax output layer. This architecture is
similar to the one introduced in (Hinton et al., 2012)
with the exception that it does not implement local
response normalization or dropout layers.

The network training starts o↵ with a learning rate
of 0.01 and reduced by a factor of 2 after 50, 75,
and 100 epochs. Using 32-bit floating point numbers
for training, this network configuration misclassifies
approximately 24.6% of the images in the test set. This
serves as the baseline for comparing the results ob-
tained while training the network using fixed-point
computations. Similar to earlier experiments, we set
the WL for fixed-point number to 16 and test the
di↵erent rounding modes and fractional precision. The
layer outputs are represented in the h4, 12i format. As
observed previously and as shown in Figure 3, training
using fixed-point with round-to-nearest scheme begins
to collapse after only a few epochs. On the contrary,
the stochastic rounding scheme appears to bestow
upon the training procedure a significantly higher
degree of stability. For 14 bits of fractional precision
and the stochastic rounding scheme, the network’s
behavior is quite similar to that observed during the
baseline evaluation and achieves a test error of 25.4%.

If the precision is reduced further (to 12 bits) the
convergence rate degrades as the learning proceeds
and after a point, SGD stops making progress. This
is expected since at reduced precision, the parameter
updates tend to become sparser (despite stochastic
rounding) due to the perilous combination of smaller
gradients and diminished learning rates. The network’s
performance su↵ers as a result and the minimum
achievable test error saturates at 28.8%. Fortunately,
this damage is reversible as shown in Figure 3. After

6

RtN	scheme	results	
in	divergence	

Changing	the	precision	to	
<4,	16>	improves	the	
network	performance	



Hardware	Prototyping	
•  FPGA-based	hardware	accelerator	for	matrix-
matrix	mul2plica2on	
– FPGA	contains	DSP	units	that	are	well-suit	to	
implement	fixed	point	arithme2c.	

– FPGA	has	poten2al	in	performance	and	power	
efficiency.	
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Components	of	the	prototype	
•  Xilinx	Kintex325T	FPGA	
– 840	DSP	mul2ply-accumulate	unit	
– 2MB	on-chip	lock	RAM		

•  8GB	DDR3	
•  PCIe	Bus	between	the	FPGA	and	the	Host	
– The	bandwidth	between	the	off-chip	DDR3	memory	
and	the	FPGA	is	6.4	(GB/s)	.	
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Inside	of	the	accelerator	
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training for 100 epochs using the h4, 12i format, we
relax the constraint on WL slightly and increase WL by
4 bits to 20 bits. This increases the fractional precision
to 16 bits (h4, 16i format) and subsequent training
results in a rapid improvement in the network’s per-
formance. After an additional 15-20 epochs of training
using the higher precision representation, the test error
approaches that obtained using float.

This result reveals a promising (and possibly more
robust) strategy for deep neural network training in
which the network is first trained using low-precision
fixed-point arithmetic and stochastic rounding. At the
point where learning shows stagnation, the network
can be “fine-tuned” using only a few epochs of higher-
precision fixed-point computations. Such a concept
of employing mixed-precision computations has been
explored previously in the context of floating point
arithmetic (Baboulin et al., 2009), motivated largely
by the fact that most modern processors achieve a
factor 2 to 4 higher computational throughput for
single-precision (32-bit) floating-point as compared
with double-precision (64-bit) floating-point. Similar
concepts, in conjunction with stochastic rounding, can
be extended to perform mixed-precision fixed-point
arithmetic.5

5. Hardware Prototyping

The execution time of the mini-batch stochastic gradi-
ent descent algorithm is dominated by a series of GEMM
operations in the feed-forward, error back-propagation
and weight update calculation steps6. As a result,
an improvement in the computational throughput of
the GEMM operation translates into an improvement in
the training time. GPUs o↵ering a large number of
parallel vector processors and high memory bandwidth
have therefore been very e↵ective in accelerating these
workloads.

In this section we describe a FPGA-based hardware ac-
celerator for matrix-matrix multiplication. Our choice
of using FPGAs as the hardware substrate is mo-
tivated by two factors. Firstly, FPGAs enable fast
hardware development times and significantly lower
costs when compared to ASICs7. Secondly, modern

5While preparing this paper, we became aware of a very
recent work (Courbariaux et al., 2014) that shares our mo-
tivations but adopts an orthogonal approach. The authors
propose the use of dynamic fixed-point (a hybrid of the
fixed-point and the conventional floating-point arithmetic)
for training deep neural networks. However, hardware
implications of this approach are not immediately obvious.

6Convolution may also be rewritten as a GEMM operation
7
Application Specific Integrated Circuits

FPGAs have a large number of hard-wired fixed-point
DSP units that are well-suited to implementing the
fixed-point arithmetic described in the earlier sections,
and can potentially yield gains in performance and
power e�ciency. However, limited memory bandwidth
must still be carefully managed through various design
choices.

Figure 4. Block diagram of the FPGA-based fixed-point
matrix multiplier.

Our prototype is implemented on an o↵-the-shelf
FPGA card featuring a Xilinx Kintex325T FPGA and
8 GB DDR3 memory, and communicating with the
host PC over a PCIe bus. This FPGA has 840 DSP
multiply-accumulate units and almost 2 MB of on-chip
block RAM. The data bandwidth between the o↵-chip
DDR3 memory and the FPGA is 6.4 GB/s. The typical
dimensions of the input matrices preclude storing
entire matrices in on-chip RAM. Thus, these matrices
are stored in the DDR3 memory and parts of the ma-
trices are brought into the FPGA for performing the
computations. The o↵-chip communication bandwidth
limitation necessitates that we reuse the on-chip data
to the highest extent possible to make the achievable
throughput, measured in giga-operations/second (G-
ops/s), compute-bound.

5.1. System Description

Figure 4 presents a block diagram of the our fixed-
point matrix multiplier. The DSP units within
the FPGA are organized as a massively parallel 2-
dimensional systolic array (SA) (Kung, 1982) of size
n such that n

2
< 840. This forms the core of the

multiplier and will be described in greater detail in
the next subsection. Most of the block RAM on the
FPGA is designated as the L2 cache where a fraction
of the input matrices are stored. The READ logic sends
data requests to the DDR3 memory and organizes
the incoming data into the L2 cache. The WRITE

logic sends back computed results to the external
memory. The L2-to-SA circuit moves relevant rows
and columns from the L2 cache to the array. The TOP
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Systolic	Array(SA)	Architecture	
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controller coordinates the entire process. The FPGA
also contains Xilinx-supplied IP blocks that interface
to the DDR3 memory.

The operation sequence of the multiplier is as fol-
lows. Assume the first input matrix A has dimensions
l x k and the second input matrix B has dimensions
k x m. Initially n columns of matrix B and pn rows
of matrix A, where p is the largest integer we can
choose based on on-chip memory capacity constraints,
are brought into the FPGA to compute pn

2 elements
of the result matrix. The next n columns of matrix B

are then brought it and processed. This continues until
all m columns of matrix B have been multiplied with
the first pn rows of matrix A. This entire sequence
is repeated l/pn times to process all rows of matrix
A. Double bu↵ering is employed to hide the latency
of bringing in new subsets of the matrices in to the
chip. This sequence of operation ensures that elements
of matrix A are reused m times once brought into
the FPGA while those of matrix B are reused pn

times. This reuse allows e�cient use of the bandwidth
between the FPGA and the DDR3 memory.

5.2. Systolic Array Architecture
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Figure 5. Schematic of the systolic core for matrix multi-
plication.

Figure 5 shows the logical organization of the systolic
array. Each node of the systolic array (DSP MACC) has
a DSP unit that implements two operations (multiply
and accumulate) in every clock cycle. Elements of
input matrices A and B brought in from L2-cache
are staged in local block RAM units configured as
FIFO (First In First Out) queues. Each FIFO contains
elements from either a row of A or a column of B. In
each clock cycle, one element is read out from the

FIFO. Elements from earlier cycles are cascaded right
(for A) or down (for B) and the corresponding partial
products are accumulated at the DSP units. After
accumulation of all partial products, output data is
cascaded out to stochastic rounding units (DSP ROUND)
that are also implemented with DSP units. Rounded
results are stored in output FIFOs (one per column)
before final readout to external memory. Throughput
of the array depends on the number of DSPs available
and the maximum operating frequency at which the
system can be operated without timing errors. This is
an example of a wavefront-type systolic array where
all connections are local, i.e. only between neighbor-
ing DSPs and edge FIFOs, which limits interconnect
delays and improves maximum operating frequency.

Bk1 Bkk

MACC MACC MACC

k1

A1k

kk

11 12 1n

MACC
21

MACC
2n

MACC
1

MACC
2

MACCAkk
n1 n2 nn

Figure 6. Wavefront systolic array operation.

In a wavefront array, as depicted in Figure 6, at the
end of k cycles, where k corresponds to the inner
dimension of the matrix multiplication, MACC unit “11”
has accumulated all of its partial products. At this
point, the accumulated result is transferred to a local
register and the DSP is reset. This frees it up to receive
data from the next matrix multiplication operation,
even before other elements have completed. This
achieves high throughput for the systolic array so long
as the pipeline is fed with new incoming data. At the
end of (k+2n� 2) cycles, the matrix multiplication is
complete, and data from the last DSP unit can be read
out. Output paths from local registers to the edge of
the array are also cascaded.

Word length of the result elements after MACC oper-
ations are much larger (typically 48 bits if using 7-
series DSPs) than word length of the inputs (typi-
cally 18 bits or less). Before transferring to output
FIFOs, result elements must be trimmed through
the stochastic rounding of least signficant bits (LSB)
and truncation of excess MSB bits (after detection of
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Evalua2ng	the	prototype	
•  28×28	SA	is	implemented	on	the	FPGA.	
– A	maximum	circuit	opera2on	frequency	of	166MHz	
and	a	power	consump2on	of	7W	are	es2mated.	
=>	The	throughput	is	260	G-ops/s.	
=>	The	power	efficiency	is	37	G-ops/s/W.	
•  The	range	of	power	efficiency	of	NVIDIA	GT650m	and	
GTX780,	the	Intel	i7-3720QM	is	1~5	G-ops/s/W	
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overflow/underflow). Both operations can be e�ciently
achieved using a single DSP unit per output. At each
column, linear feedback shift register (LFSR) is used
to generate a random number whose width is equal
to the number of LSB bits being rounded o↵. The
DSP unit adds the random number to the incoming
result and drops rounded o↵ LSB bits. Pattern-detect
capabilities built into the DSP are used to determine
if excess MSB bits are identical (all “0s” or all “1s”). If
not, an overflow/underflow condition is detected, and
result values are saturated to the max/min 2’s com-
plement values8. The result is then transferred to
output column FIFOs awaiting writeback to external
memory. The overhead of stochastic rounding is thus
the logic occupied by DSP ROUND units, which in our
case is 28 DSP units – corresponding to less than 4%
overhead in hardware resources.

5.3. Results

For a 28x28 systolic array implemented on the
KintexK325T FPGA, Xilinx’s Vivado synthesis and
place-and-route tool estimated a maximum circuit
operation frequency of 166 MHz and a power consump-
tion of 7 W. This translates to a throughput of 260 G-
ops/s at a power e�ciency of 37 G-ops/s/W. This
compares very favorably against the Intel i7-3720QM
CPU, the NVIDIA GT650m and the GTX780 GPUs,
all of which achieve power e�ciency in the range of 1-5
G-ops/s/W (Gokhale et al., 2014). Table 1 presents a
summary of the utilization of various resources in the
FPGA. Throughput numbers can benefit from migra-
tion to newer Xilinx FPGAs, such as the Ultrascale
series, that have much higher number of DSP units
and can potentially operate at higher frequencies.

Table 1. FPGA resource utilization.

Resource Usage

Available on

XCVK325T
Utilization

Ratio

LUTs 62922 203800 31%

Flip-flops 146510 407600 36%

DSP 812 840 97%

Block RAM 334 445 75%

8A more direct stochastic rounding approach is multi-
bit magnitude comparison of result LSB vs. a random
number, followed by a conditional addition and examining
excess MSBs. The approach in this section achieves the
same result but removes the first full multi-bit comparison,
enabling compact implementation on a single DSP unit.

6. Conclusion

In this paper, we embrace a top-down approach ex-
ploiting the noise-tolerance of deep neural networks
and their training algorithms to influence the design
of low-level compute units. Specifically, the substitu-
tion of floating-point units with fixed-point arithmetic
circuits comes with significant gains in the energy
e�ciency and computational throughput, while poten-
tially risking the neural network’s performance. For
low-precision fixed-point computations, where con-
ventional rounding schemes fail, adopting stochastic
rounding during deep neural network training deliv-
ers results nearly identical as 32-bit floating-point
computations. Additionally, we implement a high-
throughput, energy-e�cient architecture for matrix
multiplication that incorporates stochastic rounding
with very little overhead. Extrapolating, we envision
the emergence of hardware-software co-designed sys-
tems for large-scale machine learning based on re-
laxed, inexact models of computing running on non-
deterministic components all across the stack, right
down to low-level hardware circuitry.
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Related	work	
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Conclusion	
•  They envision	the	emergence	of	hardware-
sorware	co-designed	systems	for	large-scale	
machine	learning	based	on	relaxed,	inexact	
models	of	compu2ng.	
– The	Stochas2c	rounding	may	result	in	beVer	
performance	of	a	neural	network	than	the	
conven2onal	rounding.	

– They	implemented	the	high-throughput,	energy-
efficient	prototype	for	matrix	mul2plica2on	with	16-
bit	fixed	point	representa2on.	
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