The Power of Randomization:
Distributed Submodular Maximization
on Massive Datasets

11/08/2016
Sekiya Akira

Selected Paper

The Power of Randomization
Distributed Submodular Maximization on Massive Datasets™

Rafael da Ponte Barbosa!, Alina Ene', Huy L. Nguyén?, and Justin Ward!!

'Department of Computer Science and DIMAP
University of Warwick
{rafael, A.Ene, J.D.Ward}@dcs.warwick.ac.uk
2Simons Institute

University of California, Berkeley
hlnguyen@cs.princeton.edu

April 23, 2015

ICML, 2015

Background - distribution

- Because computers have limited amount of memory,
when we want to solve larger problems, we need to
distribute them

- In MapReduce model, each machines can only
communicate and exchange data during the shuffle
phage

Background - sub modular functions

- Wide variety of problems in machine learning / image
clustering / sensor placement can be cast as sub
modular function maximization

- These problems sometimes too large to be solved on a
single machine

Submodular Maximization

. Submodular function (£ EY 1 %)

. A set function f:2" = R where
Forevery SST CV, f(S)+ f(T) > f(SUT)+ f(SNT)

. je.foral ACBCV,e¢ B,
f(AU{e}) — f(A) > f(BU{e}) — f(B)

- "A set function that the difference in the incremental
value decreases as the size of the Input set increases”

Submodular Maximization

- Maximization of Submodular function
argmax f(A)
AcCC2V
where C Is the family of feasible solutions
- e.g. Sensor Placement Problem

- Place sensor to measure the temperature of a board

Greedy Algorithm(S#5%)

- Loop: Add one element which maximizes the function

- Unable to parallelize because of S's dependency

Algorithm 1 The standard greedy algorithm GREEDY

S+0
loop
Let C={eecV\S:SU{e} eI}
Let e = argmax.cc{f(SU {e}) — f(5)}
if C=0or f(SU{e})— f(S) <0 then
return S

end if { S« SU{e)

end loop

Greedy Algorithm(S#5%)

- Loop: Add one element which maximizes the function

- Unable to parallelize because of S's dependency

Greedy Algorithm(S#5%)

- Loop: Add one element which maximizes the function

- Unable to parallelize because of S's dependency

Greedy Algorithm(S#5%)

- Loop: Add one element which maximizes the function

- Unable to parallelize because of S's dependency

Greedy Algorithm(S#5%)

- Loop: Add one element which maximizes the function

- Unable to parallelize because of S's dependency

Related work

GreeDi algorithm

- for maximizing a monotone sub modular function with
cardinality constraint

partitions data to each machine by block; runs Greedy
algorithm in each machine; gather results in one
machine; runs Greedy algorithm for these results

- very simple and parallel, but worst case approximation
guarantee is 1/6 (min {\/E,m})

K Is cardinality constraint, m is number of machines

Related work

Sample and Prune

- for maximizing a monotone sub modular function with
matroid constraint

runs greedy algorithm with small subset of dataset in
single machine; prune some of the elements in dataset
with results and reduce the data size

More general than GreeDi, but communication
overhead Is high

RandGreeDi Algorithm

Distribute input elements randomly to machines
Run Greedy algorithm for each machines

Combine them

Algorithm 2 The distributed algorithm RANDGREEDI
fore e V do
Assign e to a machine ¢ chosen uniformly at random
end for
Let V; be the elements assigned to machine i
Run GREEDY(V;) on each machine i to obtain S;
Place S = | J; S; on machine 1
Run ALG(S) on machine 1 to obtain T’
Let § = arg max,{f(S:)}
return arg max{f(7T"), f(5')}

Greedy Algorithm(S#5%)

- Loop: Add one element which maximizes the function

- Unable to parallelize because of S's dependency

Greedy Algorithm(S#5%)

- Loop: Add one element which maximizes the function

- Unable to parallelize because of S's dependency

Oa

Greedy Algorithm(S#5%)

- Loop: Add one element which maximizes the function

- Unable to parallelize because of S's dependency

Greedy Algorithm(S#5%)

- Loop: Add one element which maximizes the function

- Unable to parallelize because of S's dependency

Hereditary Constraints

. Consider submodular maximization:
max{ f(s): S CV,SeT}

- where f.2" R, is a sub modular function and
7 C 2V is a family of subsets of V

- Hereditary Constrains: if some set is in Z, then all of Its
subsets isin 7.

RandGreeDi Algorithm

When Greedy algorithm is a-approximation,
RandGreeDi algorithm is:

for monotone submodular function:
a /Z2-approximation

for non-monotone submodular function:
a/ (4+2 a)-approximation

Constraint o monotone approx. (g) non-monotone approx. (E%Tx)
cardinality | 1 -} =~ 0.632 ~ 0.316 ~ 0.12
matroid : i ﬁ
knapsack ~ (.35 ~0.17 ~ 0.074
p-system = D) AT

Table 1: New approximation results for randomized GREEDI for constrained monotone and non-
monotone submodular maximization®

Experiments

Exemplar based clustering

Clustering by minimizing
distances between images
and ‘exemplar’

Solving k-medoid problem,
which 1s sub modular
function with cardinality
constraint

Better performance than
Sample & Prune

Q 0.9994

g 0.9992

E 0.9990

Gt

O 09988

-~ -~ GREEDI
0.9986 F RANDGREEDI

0 50 100 150 200
k=m

(c) 10K tiny images

- SAMPLE&PRUNE |
- RANDGREEDI

30 100 150 200
k=m

g

o
&

o
$

Performance/Centralized

o
L

o

(f) 10K tiny images

Experiments

Matroid constraints
'sensor placement problem’

randomized / round-robin
distribution Is better than
block distribution

This I1s because each machine
receives elements from several
distinct partitions; which allows
them to return a solution which
IS more nearer to optimal

1.01

E 100l \w\(\k’___‘
= .
B X
= .
O 0.99} -~ GREEDI (block) | |
? GREEDI (rr)
- - RANDGREEDI
£ 0.98+ ‘
5
5
- 0.97
0 30 100 150 200 250
k=m

(j) matroid coverage (n = 900, = 5)

1.05 T

E lcm ~ - -
5 W
S -
§ 0.95| .
~
&
5 0.90}
£
% oss|| - GREEDI (block)
a® -~ GREEDI (rr)
| RANDGReEDI
4% 20 10 60 80 100
k=m

(k) matroid coverage (n = 100, = 100)

Conclusion

- RandGreeDi is distributed Greedy algorithm with high
approximation rate

- By using randomizing, Greedy algorithm allows each
machine to return more usable solutions after reduce

