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Background - distribution

• Because computers have limited amount of memory, 
when we want to solve larger problems, we need to 
distribute them 

• In MapReduce model, each machines can only 
communicate and exchange data during the shuffle 
phage 
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Background - sub modular functions

• Wide variety of problems in machine learning / image 
clustering / sensor placement can be cast as sub 
modular function maximization 

• These problems sometimes too large to be solved on a 
single machine
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Submodular Maximization

• Submodular function (劣モジュラ関数) 

• A set function                    where 
For every              ,  

• i.e. for all                            , 

• “A set function that the difference in the incremental 
value decreases as the size of the input set increases”
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f : 2V ! R
S, T ✓ V f(S) + f(T ) � f(S [ T ) + f(S \ T )

A ✓ B ✓ V, e 62 B

f(A [ {e})� f(A) � f(B [ {e})� f(B)



Submodular Maximization

• Maximization of Submodular function 

•  
where C is the family of feasible solutions 

• e.g. Sensor Placement Problem 

• Place sensor to measure the temperature of a board
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argmax

A2C✓2V
f(A)

＜



Greedy Algorithm(貪欲法)

• Loop: Add one element which maximizes the function 

• Unable to parallelize because of S’s dependency
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Related work

• GreeDi algorithm 

• for maximizing a monotone sub modular function with 
cardinality constraint 

• partitions data to each machine by block; runs Greedy 
algorithm in each machine; gather results in one 
machine; runs Greedy algorithm for these results 

• very simple and parallel, but worst case approximation 
guarantee is  

• k is cardinality constraint, m is number of machines
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Related work

• Sample and Prune 

• for maximizing a monotone sub modular function with 
matroid constraint 

• runs greedy algorithm with small subset of dataset in 
single machine; prune some of the elements in dataset 
with results and reduce the data size 

• More general than GreeDi, but communication 
overhead is high
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RandGreeDi Algorithm

• Distribute input elements randomly to machines 

• Run Greedy algorithm for each machines 

• Combine them
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Hereditary Constraints

• Consider submodular maximization:
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max{f(s) : S ✓ V, S 2 I}
• where                       is a sub modular function and  
            is a family of subsets of V

f : 2V ! R�0

I ✓ 2V

• Hereditary Constrains: if some set is in   , then all of its 
subsets is in   .

I
I



RandGreeDi Algorithm

• When Greedy algorithm is α-approximation, 
RandGreeDi algorithm is: 

• for monotone submodular function:  
α/2-approximation 

• for non-monotone submodular function:  
α/ (4+2α)-approximation
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Experiments

• Exemplar based clustering 

• Clustering by minimizing 
distances between images 
and ‘exemplar’ 

• Solving k-medoid problem, 
which is sub modular 
function with cardinality 
constraint 

• Better performance than 
Sample & Prune
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Experiments

• Matroid constraints 

• ‘sensor placement problem’ 

• randomized / round-robin 
distribution is better than 
block distribution 

• This is because each machine 
receives elements from several 
distinct partitions; which allows 
them to return a solution which 
is more nearer to optimal
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Conclusion

• RandGreeDi is distributed Greedy algorithm with high 
approximation rate 

• By using randomizing, Greedy algorithm allows each 
machine to return more usable solutions after reduce
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