
The Power of Randomization:
Distributed Submodular Maximization

on Massive Datasets
11/08/2016
Sekiya Akira

1

Selected Paper

• ICML, 2015

2

Background - distribution

• Because computers have limited amount of memory,
when we want to solve larger problems, we need to
distribute them

• In MapReduce model, each machines can only
communicate and exchange data during the shuffle
phage

3

Background - sub modular functions

• Wide variety of problems in machine learning / image
clustering / sensor placement can be cast as sub
modular function maximization

• These problems sometimes too large to be solved on a
single machine

4

Submodular Maximization

• Submodular function (劣モジュラ関数)

• A set function where 
For every ,

• i.e. for all , 

• “A set function that the difference in the incremental
value decreases as the size of the input set increases”

5

f : 2V ! R
S, T ✓ V f(S) + f(T) � f(S [T) + f(S \ T)

A ✓ B ✓ V, e 62 B

f(A [{e})� f(A) � f(B [{e})� f(B)

Submodular Maximization

• Maximization of Submodular function

•  
where C is the family of feasible solutions

• e.g. Sensor Placement Problem

• Place sensor to measure the temperature of a board

6

argmax

A2C✓2V
f(A)

＜

Greedy Algorithm(貪欲法)

• Loop: Add one element which maximizes the function

• Unable to parallelize because of S’s dependency

7

S S [{e}

Greedy Algorithm(貪欲法)

• Loop: Add one element which maximizes the function

• Unable to parallelize because of S’s dependency

8

Greedy Algorithm(貪欲法)

• Loop: Add one element which maximizes the function

• Unable to parallelize because of S’s dependency

9

Greedy Algorithm(貪欲法)

• Loop: Add one element which maximizes the function

• Unable to parallelize because of S’s dependency

10

Greedy Algorithm(貪欲法)

• Loop: Add one element which maximizes the function

• Unable to parallelize because of S’s dependency

11

Related work

• GreeDi algorithm

• for maximizing a monotone sub modular function with
cardinality constraint

• partitions data to each machine by block; runs Greedy
algorithm in each machine; gather results in one
machine; runs Greedy algorithm for these results

• very simple and parallel, but worst case approximation
guarantee is

• k is cardinality constraint, m is number of machines

12

Related work

• Sample and Prune

• for maximizing a monotone sub modular function with
matroid constraint

• runs greedy algorithm with small subset of dataset in
single machine; prune some of the elements in dataset
with results and reduce the data size

• More general than GreeDi, but communication
overhead is high

13

RandGreeDi Algorithm

• Distribute input elements randomly to machines

• Run Greedy algorithm for each machines

• Combine them

14

Greedy Algorithm(貪欲法)

• Loop: Add one element which maximizes the function

• Unable to parallelize because of S’s dependency

15

Greedy Algorithm(貪欲法)

• Loop: Add one element which maximizes the function

• Unable to parallelize because of S’s dependency

16

Greedy Algorithm(貪欲法)

• Loop: Add one element which maximizes the function

• Unable to parallelize because of S’s dependency

17

Greedy Algorithm(貪欲法)

• Loop: Add one element which maximizes the function

• Unable to parallelize because of S’s dependency

18

Hereditary Constraints

• Consider submodular maximization:

19

max{f(s) : S ✓ V, S 2 I}
• where is a sub modular function and  
 is a family of subsets of V

f : 2V ! R�0

I ✓ 2V

• Hereditary Constrains: if some set is in , then all of its
subsets is in .

I
I

RandGreeDi Algorithm

• When Greedy algorithm is α-approximation,
RandGreeDi algorithm is:

• for monotone submodular function:  
α/2-approximation

• for non-monotone submodular function:  
α/ (4+2α)-approximation

20

Experiments

• Exemplar based clustering

• Clustering by minimizing
distances between images
and ‘exemplar’

• Solving k-medoid problem,
which is sub modular
function with cardinality
constraint

• Better performance than
Sample & Prune

21

Experiments

• Matroid constraints

• ‘sensor placement problem’

• randomized / round-robin
distribution is better than
block distribution

• This is because each machine
receives elements from several
distinct partitions; which allows
them to return a solution which
is more nearer to optimal

22

Conclusion

• RandGreeDi is distributed Greedy algorithm with high
approximation rate

• By using randomizing, Greedy algorithm allows each
machine to return more usable solutions after reduce

23

