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Abstraction

* Fault tolerance for Big Data
* erasure code
* Cross—object Redundancy



Back ground -fault tolerance for data

* This paper deals with how to repair the fault
with large amount of data

* Traditional approach is erasure code



Background- Classic erasure codes

* (n,k) erasure code
split data into k blocks of size g
computes m = n-k parity blocks and store
different node

(6,4) erasure code
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Classic Erasure Codes

* data vector o=(0,,..,0,)

Generater matrix G and n-dimentional
codeword

c=(cy..,Cc,)= [O,p] =0 " G
P is parity vector
G=|[l,G’] G’ =k x m matrix



Classic Erasure Codes

* This process stretches the original data by n/k

* Trade—off between storage overhead and
fault tolerance

 MDS has property o can reconstructed from
any k out of total n stored blocks



MDS(Addition)

* Singleton Bound
|C| qn- -d+1

(|C| is number of codewords, nis a code length, d
is minimum distance, a is number of alphabets )

if the left equals the right ,the code is called MDS
(Maximum Distance Separable) code

* Inthiscase, |[C| =29a=2,n=q,d=1



Background - Locally Repairable Codes

* Repairing a single failed block requires to
download an amount of Information

* Reducing the number of blocks needed to
carry out the repair or reconstruction



Locally repairable codes

* If local block ¢, can be expressed
_ ’ ’ ) [
c.=o,c+..+a,c’y (' /=¢)

e Ifd=2, the tolerance is poorer than MDS

* Trade off three properties
— High fault tolerance

— low storage overhead
— efficient repairs and degraded reads



Cross-object redundancy

t objects

Making vertical parity codes



CORE’s product code definition

G.,G, " " generator matrices of (n_k ) & (n,,k,)
G =G, ®G, = [1,1,] ®Il,,H]
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CORE’S product code definition

good reparability (small t)
good storage overhead(large t)
t=k/2

CORE'S product code (n,k,t) uses G



CORE’s algorithmic aspects

* CORE works with matrix of t objects
* Dealing with algorithmic aspects for
implements
— Identifying independent clusters
— Recoverability-checking algorithms
— Repair scheduling algorithms



ldentifying Independent Clusters

* Define disjoint subsets of failed nodes as
independent clusters with single failure

— 2 cluster must not share any common row or
column containing failed nodes

* Torepair parallel
 To recover partially when Full CORE matrix
in not recoverable



ldentifying Independent Clusters

 Merging single failure clusters

if there exists common row or column on which
both clusters have a failure

* Doing this until no mergeable clusters left



ldentifying Independent Clusters

* 10M random generate
 Reduce numbers of clusters greater 6
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Figure 3: The average number of clusters versus the number of
failures for CORE’s code parameters (14,12,5)



Recoverablity —Checking Algorithm

For (n,k,t) code,

* Lower bound of irrecoverablity L
L=2x(n—k+ 1)

 Upper bound of recoverablity U
U=tx(n-k)+(2k—-n)xl

F<L : recoverable
L=<F < U :containing both cases
L<F . irrecoverable  * F: failre number



Recoverablity —Checking Algorithm
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Figure 4: The recoverability likelihood of the scheme (14,12,5)
based on the number of failures.



Repair scheduling algorithm

e Column—first algorithm

higher priority to vertical repairs
 Row-first algorithm

higher priority to horizontal repairs



Repair scheduling algorithm

* Recursively generated schedule algorithm
(RGS)

, k
V= Z manV (Row;) ; h = Z minH (Col;)

i=1 7=1

| N if | X| < (n—k)
minV (Row;) = { 1 X| — (n—k) otherwise
0 if | X]<1

minH (Col;) = { X|—1 otherwise



Repair Scheduling algorithm

[ c(h,dec(v)) +t if v >0

c(h,v) = c(dec(h),v) + k if v =20

or dec(v) is not applicable

\

* dec(v or h) reflect the decreases of vorh
e computing until ¢(0,0)



Repair scheduling algorithms

e RGS and Column-first are better

* For Large failure numbers ,the difference of
three algorithm is less
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Figure 5: Comparing the Column-First, Row-First, and RGS algo-
rithms w.r.t number of blocks required to carry out the repair on
the scheme (14,12,5).



Implementation

* They used HDFS—RAID

— Open sorce module providing basic erasure code
for Apache hadoop file system

* two Optimizations

* Implementation of CORE is used these



HDFS—RAID

e Supporting both Reed-Solomon coding and
XOR parity file
* RaidNode

— a deamon responsible for the creation and
maintenance of parity files

 BlockFixer

— reconstructs missing or corrupt blocks



HDFS-RAID Optimizations

* Optl

HDFS uses all the remaining blocks to repair
missing one, But They used exactly k blocks

 Opt2

Checking multiple failures per row(stripe)



CORE Implementation

* RAIDINng
vertical Coding across files in a given directory
* Repair
they implements all algorithm aspects
— failure dictation and failure matrix population
— clustering

— recoverablity checking
— repair scheduling



Experiments

 Network—Critical cluster
university cluster
one PC and 19 Datanodes
 Computation-Critical cluster
20 node Amazon EC2 cluster

evaluation with completion time and
transferred data



Experiments

CORE VS HDFS-RAID
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Figure 6: Comparing the repair performance of HDFS-RAID,
HDFS-RAID-Optimized, and CORE



Bytes Read

(GB)

[t
4]

e
wn

Experiments

* Repair scheduling algorithms
— CORE has the best results
— Column-first is longer than expected in (b)
— RGS is only slightly better in (C)
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Figure 7: Performances of the repair scheduling algorithms on two different failure patterns.



Conclusion and Future work

Introducing cross object code
Some algorithm about erasurre code
Show better performance than HDFS-RAID

Better performance also during data insertion
and updates

They will carry out trace driven experiments
to study the system dynamics better



