High-Performance-Class
“FireCaffe: near-linear acceleration of

deep neural network training on
compute clusters”

2017/10/24

Yashima Keita
Tokyo Institute of Technology at Matsuoka Lab(B4)

What is Deep Neural Network, DNN?

What is DNN?
o nput...Image, Sentence, etc
o output...something like probability

Motivation

DNN architectures have been developed
(GooglLeNet,AlexNet,NiN(Network-in-Network),VGC)

Thanks to cuDNN or maxDNN, GPUs can perform their theoretical
peak computation per second(=flops)

But GoogleNet takes weeks to train on a modern GPU...

Motivation

Long time training is serious problem in research
o The speed and scalability of distributed algorithm is almost always
limited by the overhead of “communication” between servers

This “FireCaffe” focus on “communication-time”

‘0 reduce Communication Time

There are 3 approach to this

o Using high performance network hardware(e.g infiniband,Cray
interconnnect)

o Considering communication algorithm

o |Increasing batch size and identifying hyperparameters

Hardware for scalable DNN training

The speed at which data can be sent between nodes is a key

o The faster the interconnect between nodes is, the more scale we can
achieve without being dominated by communication overhead

Cray, Mellanox and Infiniband (high-bandwidth low-latency) are
faster than typical Ethernet connnection

Considering communication algorithm
Preliminaries and terminology

DNN training is comprised of iterating between two phase

Forward-propagation

o Batch of items is taken from the training set, and DNN attempts to
classify them

Backward-propagation
> Computing gradient with respect to the weights(VI/) and data(VD)

Considering communication algorithm
Preliminaries and terminology

| Input signals >

X 1 y
1
2
X 2 y
2
X w J Wik k y
m
Xy —» I y
Input Hidden Output
layer layer layer

< Error signals |

Considering communication algorithm
Preliminaries and terminology

The total size(in bytes) of the weights in all CNN and full-conn layers
[W| = ﬁl:alyers ch; * numFilt; * filterW, * filterH;* 4
The total size of activation produced by all layers, combined

|ID| = fl:alyers ch; * numkFilt, » dataW, = dataH; * batch * 4

Considering communication algorithm
Parallelism strategies

Two commonly-used methods for parallelizing neural network
training across GPU-Server

Model-Parallelism
o Each GPU gets a subset of the model parameters and GPUs

communicate by exchanging VD and activations D
Data-Parallelism

o Each GPU gets a subset of the batch and each GPUs communicate by
exchanging weight gradient updates VIW/

Considering communication algorithm
Parallelism strategies

g . oo [DD00000
: O N\
] N salsalas
f we00 00 00

Model Parallelism Data Parallelism

Considering communication algorithm
Parallelism strategies

Popular and accurate DNN models(e.g. GooglLeNet) consists
primarily of convolution layers

'
I 8 0 gEgEd {
1 o1 a3 pngna Ritagglgglizl
aIlﬂllﬂliiﬂiiiliiﬂi%iHIiEIEEE__Ef 2 |
TELRN
1]

Convolution
Pooling

Other

Considering communication algorithm
Parallelism strategies

In CNN, data-parallel is typically preferable

Because it requires less communication(VD > VIV)

Table 1. Volumes of data and computation for four widely-used DNN architectures. The batch size impacts all numbers in this table except
for |W |, and we use a batch size of 1024 in this table. Here, TFLOPS is the quantity of computation to perform.

DNN architecture typical use-case data size |D| | weightsize 'W| | data/weight ratio | Forward+Backward TFLOPS/batch
NiN [1] computer vision 5800MB 30MB 195 6.7TF
AlexNet [4] computer vision 1680MB 249MB 10.2 7.0TF
GoogLeNet [+ 1] computer vision 19100MB 54MB 358 9.7TF
VGG-19 [Y] computer vision 42700MB 575MB 71.7 120TF
MSFT-Speech [%] | speech recognition 74MB 151MB 0.49 0.00015TF

Considering communication algorithm
(Data-Parallel)

VD(0:15) | W VD(0: 15)| w VD(0:15)
‘—

GPU 0 / D JER) 7 [

maxpool / conv2 P /conv3 Vel softmax

sum VW <

using a

reduction .
tree

W
l Vix992:1023) | W VIX992:1023)| | w VIX(992:1023)
update GP U 31 D D D

model maxpool conv3 " goftmax
weights convl

Figure 1. Data parallel DNN training in FireCaffe: Each worker (GPU) gets a subset of each batch.

Considering communication algorithm
Choosing DNN architecture to accelerate

VIV is the data sent by each GPUs, so DNN architecture with fewer
parameters require less communication

100
G Net
o:g%e e 8 @
VGG_19
> — e VGG_11 -
g 8Ol AlexNet
>
%
w 60 Deep Neural Networks can achieve high
8 accuracy with relatively few parameters
-
1
JORRE 1) —
2 < more scalable training |
&
£ 20
o " "
0 100 200 300 400 5S00 600 700 800
MB of parameters in model

Figure 2. Deep neural network architectures with more parameters do not necessarily deliver higher accuracy.

Considering communication algorithm
Choosing DNN architecture to accelerate

What are the architecture choices that led to NiN and GooglLeNet
having 8-10x fewer parameters than AlexNet and VGG?
o Many of filter in (GooglLeNet,NiN) are more small (1x1) than others(3x3)
o GooglLeNet has smaller full-connected layers than AlexNet VGG(more
than 150MB) and NiN does not have full-connected layer

This FireCaffe focus on accelerating the training of models with fewer
parameters(e.g. NiN or GooglLeNet) while maintaining high accuracy

Implementing efficient
Data-parallel training

Forward-propagation
> No communication among GPUs
Backward-propagation
> To sum the weight gradients over all images, have to communicate
among GPUs

Next task is to find an efficient way to sum up VI among GPUs

How to sum up VW among GPUs
1.Parameter server

One node is used as a parameter server to control VW

height: J - :E|:‘i;
-I J

T
senalized
communication: p

(2) parameler server

What is a communication overhead of a parameter server and how it
behave as we increase the number of GPUs?

How to sum up VW among GPUs
1.Parameter server

If there are p GPUs, the parameter server is responsible for sending
and receiving |VIW| = p bytes of data.

When each GPU can send and receive data at rate of BW(bytes/s)

))) VW |*p
parame ter _serever_communication _time= B

(sec)

The parameter server’s communication time scales linearly as we
increase the number of GPU:s...

How to sum up VW among GPUs
2.Reduction tree

Frequently occurring one is allreduce
> This pattern occurs when each GPU produces one or more data value
to produce a single value and then this single value must be broadcast
to all GPU before they can continue

In this work(sum up VW)

o Each GPU produces a single vector of length |VI/ | and it is reduced to
update models

How to sum up VW among GPUs
2.Reduction tree

Allreduce algorithm use binomial reduction tree

height:
log,(p)

senalized
communication: 2

(b) reduction tree

How to sum up VW among GPUs
2.Reduction tree

If there are p GPUs and binary tree with a branding factor of 2 and a
depth of log, p, in this case the serialized communication is 2log, p

. . . . VW |*2 log, p
reduction_tree_communication_time= 7 o2 (sec)

Reduction tree scales logarithmically as O (log(p))

How to sum up VW among GPUs
Parameter server vs Reduction tree

.

083885883888

reduction tree — -

Measuring communication only
(if computation were free)

A L ' 1 A ' A A '

L L L L L} | 1 L L

Weight gradient updates per second

2 4 8 16 32 64 128
Number of worker nodes

Figure 4. Comparing communication overhead with a parameter server vs. a reduction tree. This is for the Network-in-Network DNN
architecture, so cach GPU worker coatributes 30MB of gradient updates.

Evaluation of FireCaffe-acceleration
training in ImageNet

Train GooglLeNet and Network-in-Network on up to 128 GPU
server(NVIDIA Kepler-based K20x with Cray Gemini interconnect)
Cray Gemini

o 3D Torus network

> 168GB/sec routing capacity

K20x

o Memory size: 6GB

o Peak Single Precision: 3.95TF

o Cuda cores: 2688

Evaluation of FireCaffe-acceleration
training in ImageNet

The accuracy of DNN depends highly on the specifics of the
application and dataset to which they are applied.

ImageNet-1k (which contains more than 1 million training images) is
widely-studied dataset

This paper use ImageNet-1k

Report hyperparameter setting such as weight
initialization, momentum, batch size, and learning

rate

Hyperparameter setting such as weight initialization can have a big impact
on the speed and accuracy produced in DNN training

NiN
o weight: gaussian distribution centered at O, std = 0.01 for 1x1 CN-layer
and std = 0.05 for other layer
° bias: initialize O
o weight decay: 0.0005
> momentum: 0.9

These settings are consistent with Caffe configuration files released by the
NiN auther

Report hyperparameter setting such as weight
initialization, momentum, batch size, and

earning rate

GoogleNet
°cmomentum: 0.9

> weight decay: 0.0002
° bias: initialize 0.2

o weight: xavier initializetion w,,~u(_j - j -)

My +Mpsy |[My+ Myiy

Benchmark-Midsized deep models
(AlexNet,NiN)

Table 2. Accelerating the training of midsized deep models on ImageNet-Ik.

‘Hardware Net ~ Epochs Batch Initial Learning Train | Speedup “Top-1
size Rate time Accuracy
Caffe [27] 1 NVIDIA K20 AlexNet 100 256 0.01 6.0 days Ix S8.9%
[29]
Caffe 1 NVIDIA K20 NiN [3]] 47 | 256 0.01 5.8 days Ix S8.9%
Google cuda-convnet2 | 8 NVIDIA K20s (1 node) AlexNet 100 varics 0.02 16 hours T.7x 57.1%
[24]
FireCaffe (ours) 32 NVIDIA K20s (Titan NiN 47 256 0.01 11 hours 13x 58.9%
supercomputer)
FireCafte-batch1024 32 NVIDIA K20s (Titan NiN 47 1024 0.04 6 hours 23x 58.6%
(ours) supercomputer)
FireCaffe-batch1024 128 NVIDIA K20s (Titan NIN 47 1024 0.04 3.6 39x 58.6%
(ours) supcrcomputer) hours

Benchmark-Midsized deep models
(AlexNet,NiN)

> Using data-parallelism in convolutional layers and model parallelism in
fully-connected layers

> 8 GPU achieved 7.7 times fast
° For reasons that accuracy drop by 1.8% is not clear...

> As in when we increase the batch size, we increase learning-rate to
0.4(32-128GPU)

o 23x speed-up on 32 GPUs and 39 speed-up on 128 GPUs

Benchmark-Ultra deep models
(GooglLeNet)

Table 3. Accelerating the training of ultra-deep, computationally intensive models on ImageNet- 1k.

Hardware Net Epochs, Batch Initial Learning Train Speedup Top-1 Top-5
size Rate time Accuracy Accuracy
Cafte 1 NVIDIA K20 GoogLeNet -3 32 0.01 21 days Ix 68.3% 88.7%
[+1]

FireCaffe 32 NVIDIA K20s (Titan | GoogLeNet 72 1024 0.08 234 20x 68.3% 88.7%
(ours) supcrcomputer) hours
FireCaffe 128 NVIDIA K20s (Titan | GoogLeNet 72 1024 0.08 105 47x 68.3% 88.7%
(ours) supcrcomputer) hours

Benchmark-Ultra deep models
(GooglLeNet)

o Using a polynomial learning rate — that is, the learning rate is gradually
reduced after every iteration of training
initialLearningrate = (1 — iter /maxiter)P°"¢" (power = 0.5)

o trained 5 separeate version of GooglLeNet, learnin-
rate{0.02,0.04,0.08,0.16,0.32} and batch_size =1024
When 0.32 and 0.16, GooglLeNet failed to learn and 0.08 achieved most
high accuracy 68.3%

> 20x speed-up on 32 GPUs and 47x speed-up on 128 GPUs

Conclusions

Accelerating DNN training has several benefits
° Increasing dataset sizes in a tractable amount of time

o Accelerating DNN enable product teams to bring DNN-based product to
market more rapidly

> There are a number of compelling use-cases for real-time DNN training
(robot self-learning)

Conclusions

This paper has three key pillars to accelerating DNN training

o Select network hardware which is high bandwidth between GPU server
(infiniband, Cray interconnects)

> Found that reduction tree are more efficient and scalable than the
traditional parameter server approach

° Increase the batch size to reduce the total quantity of communication
during DNN training and identify hyperparameters that allow us to
reproduce the small-batch accuracy while training with large batch size

Thank you for listening!!!

