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Abstract—PATUS is a code generation and auto-tuning frame-
work for stencil computations targeted at modern multi- and
many-core processors, such as multicore CPUs and graphics
processing units. Its ultimate goals are to provide a means
towards productivity and performance on current and future
multi- and many-core platforms. The framework generates the
code for a compute kernel from a specification of the stencil
operation and a Strategy: a description of the parallelization and
optimization methods to be applied. We leverage the auto-tuning
methodology to find the optimal hardware architecture-specific
and Strategy-specific parameter configuration.

Index Terms—stencil computations; code generation; auto-
tuning; high performance computing

I. INTRODUCTION

The class of nearest neighbor computations or stencil
computations captures a computational pattern which can be
encountered in many numerical codes, ranging from simple
PDE solvers to complex AMR and multigrid solvers, as well
as in discrete simulations modeled by cellular automata, or in
image processing filters.

Oftentimes, stencil computations comprise a dominant part
of the compute time. Therefore, in order to minimize the time
to solution, it is crucial that the stencil kernels make use of the
available computing resources as efficiently as possible. How-
ever, as microarchitectures are becoming increasingly complex
and concurrency is explicitly exposed to the programmer, both
parallelization and meticulous architecture- and application-
specific tuning is required to elicit the machine’s full compute
power. This not only requires deeper understanding of the
architecture, but is also both a time consuming and error-prone
process.

The PATUS framework [1] is a code generation and auto-
tuning tool for the class of stencil computations striving for
both programmer productivity and performance. Using a small
domain specific language (DSL), the user defines the stencil
kernel using a C-like syntax. The code generation is driven
by a Strategy — the implementation of the parallelization
and code optimization method — formulated in another DSL.
Strategies are designed to be independent both of the stencil
specification and the hardware platform, thus PATUS’s pro-
ductivity and portability aspects are ensured by separating
the point-wise computation from the algorithmic implementa-
tion. They incorporate domain-specific knowledge that enables
optimizing the code beyond the abilities of current general

purpose compilers. As the performance of stencil computations
typically is limited by the available bandwidth to the memory
subsystem because of their low arithmetic intensity, i.e., the
low number of floating point operations per transferred data
element, it is important to make efficient use of caches or
scratch pad memory by optimizing spatial and temporal data
locality. Candidates for bandwidth-saving schemes include
cache blocking techniques [2], [3] and methods to block
across multiple time steps [4], [5], [6], [7], which effectively
increase the arithmetic intensity. Complementary hardware-
aware programming techniques such as NUMA-aware data
initialization, software prefetching, or cache bypassing help
to reduce bandwidth usage further.

The framework comes with pre-implemented Strategies
from which the user can choose — or, if desired, own Strate-
gies can be implemented. The auto-tuning methodology is the
means chosen to enable performance portability: Strategies are
typically parameterized, and auto-tuning is used to select an
optimal or near-optimal parameter configuration with respect
to the chosen stencil kernel, Strategy, and hardware platform.

By adapting the hardware architecture specification and
the code generation back-end, PATUS is be able to sup-
port future hardware microarchitectures and programming
paradigms. Currently we support traditional CPU architec-
tures using OpenMP for parallelization and NVIDIA CUDA-
capable GPUs.

Recently, other frameworks specifically dealing with sten-
cil computations have been proposed, although their focus
is slightly different from the one of PATUS. In particular,
Panorama [8], [9] was a research compiler for tiling iterative
stencil computations in order to minimize cache misses. The
Berkeley stencil auto-tuner [10] seeks to substitute an anno-
tated stencil computation in Fortran95 automatically by an
optimized version. The Pochoir stencil compiler [11] applies
the cache oblivious ideas initially formulated by Frigo and
Strumpen [12] to stencil codes with ideally many time steps.
Another framework in this spirit is CORALS [13] by Strzodka
et al. Mint [14] targets NVIDIA GPUs as hardware platforms
and translates traditional, but annotated, C code to CUDA
C and applies hardware-specific optimizations specifically
tailored for stencil computations.

More general approaches, not only limited to stencil com-
putations, consider tiling of perfectly and imperfectly nested
loops in the polyhedral model [15]. Loop transformation



and (automatic parallelizing) compiler infrastructures in the
polyhedral model include CHIiLL [16] and PLuTo [17].

II. A STENCIL SPECIFICATION AND A STRATEGY

Listing 1 shows a PATUS stencil specification. The sten-
cil kernel was taken from a real-world application: a finite
difference earthquake simulation code, for which benchmark
results for kernels on which most of the compute time is spent
are presented in Section IV. The example stencil specification
shows the calculation of the three-dimensional velocity field
ul obtained by applying a discretized differential operator to
the stress tensor field xx, xy, xz. In the stencil specification
the domain is specified by the domainsize keyword, which
defines a rectangular domain over which the stencil is iterated.
t_max = 1 tells PATUS that only one time step is to be
performed within the generated stencil kernel function. Thus,
the C source generated by PATUS can be substituted for the
original code.

The actual stencil computation is defined within the
operation. The arguments to the operat ion are the input
and output grids needed for the computation; an additional
const specifier declares a grid to be constant in time, i.e.,
as not being written to within the operation. Optionally,
the grid size can be specified in round brackets to match
the size of the array as it was actually allocated. The body
of the operation contains the localized, point-wise stencil
expression; stencil sweeps, i.e., the spatial iterations, are not
programmed explicitly.

stencil uxxl

{

domainsize = (nxb .. nxe, nyb .. nye, nzb .. nze);

t_max = 1;

operation (
const float grid dl(-1..nx+2,-1..ny+2,-1..nz+2),
float grid ul(-1..nx+2, -1..ny+2, -1..nz+2),
const float grid xx(-1..nx+2,-1..ny+2,-1..nz+2),
const float grid xy(-1..nx+2,-1..ny+2,-1..nz+2),
const float grid xz(-1..nx+2,-1..ny+2,-1..nz+2),

float param dth)

float cl = 9./8.;
float c2 = -1./24.;
float d = 0.25 % dl[x,y,z] + dl[x,y-1,z] +
dl[x,y,z-1] + dl[x,y-1,2z-11);
ul[x,y,z; t+1] = ull[x,y,z; t] + (dth / d) * (
cl » (
xx[x,y,z] - xx[x-1,vy, z ] +
XY[XIYVZ] - XY[X, Y‘LZ ] +
xz[x,y,2] - xz[x, 'y, z-1]) +
c2 « (
xx[x+1,v, z 1 - xx[x-2,y, z ] +
Xy [x, y+l,z I - xylx, y=2,z ]+
xz[x, Y, z+1] - xz[x, Y, z=21])
)i
}
}
Listing 1.  An example stencil specification taken from the earthquake

simulation code in Section IV.

The idea of Strategies is to provide a clean mechanism
which separates the implementation of parallelization and

bandwidth-optimizing methods from the actual stencil com-
putation. In this way, the implementation of the algorithm can
be reused for arbitrary stencils.

Listing 2 shows a simple cache blocking Strategy. It iterates
over all the time steps in the t loop, and within one time
step in blocks v of size cb over the root domain u, i.e., the
entire domain to which to apply the stencil. Both the root
domain and the size of the subdomain v are given as Strategy
parameters. The blocks v are executed in parallel by virtue of
the parallel keyword, which means that the subdomains
v are dealt out in a cyclic fashion to the worker threads. The
parameter chunk to the schedule keyword defines how
many consecutive blocks one thread is given. Then, the stencil
is applied for each point in the subdomain v.

The Strategy argument cb has a specifier, auto, which
means that this parameter will be interfaced with the auto-
tuner: it is exposed on the command line of the benchmarking
harness so that the auto-tuner can provide values for cb=
(c1,¢2,...,cq), where d is the dimensionality of the stencil,
and pick the one for which the best performance is measured.

strategy cacheblocking (domain u, auto dim cb,
auto int chunk)
{
// iterate over time steps
for t = 1 .. stencil.t_max
{
// iterate over subdomain
for subdomain v (cb) in u(:; t)
parallel schedule chunk
{
// calculate the stencil for each point
// in the subdomain

for point p in v (:; t)
vip; t+l] = stencil (v[p; t]);
}
}
}
Listing 2. A cache blocking Strategy.

The benefit of cache blocking is improved temporal data
locality, i.e., more efficient use of the cache, which results in a
performance increase. By decomposing the grid into cache size
dependent small subdomains it is ensured that data loaded into
the cache can be reused before being evicted due to capacity
misses.

III. THE PATUS FRAMEWORK

PATUS is built from four core components as shown in
the high-level overview in Fig. 1: the parsers for the two
input files, the stencil definition and the Strategy, the actual
code generator, and the auto-tuner. PATUS is written in Java.
As parser generator for the stencil specification and Strategy
parsers, and also for the parser used to interface with the
computer algebra system Maxima [18], which is used as a
powerful expression simplifier, Coco/R [19] was used. The
Cetus framework ([20], [21]) provides Java classes for the in-
ternal representations for both the Strategies and the generated
code, i.e., the Strategy parse tree and the abstract syntax tree
of the generated code. Cetus also provides the mechanism for
unparsing the internal representation of the generated code.
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Fig. 1. High-level overview of the software architecture of PATUS. The
strategy and the stencil specification are input files, which drive the code
generation. The code generator creates a set of parameterized hardware-
specific kernels that are executed by the auto-tuner, which determines the
optimal parameter set.

The internal representation of the stencil specification con-
sists of the domain size and number-of-iterations attributes and
a graph representation of the actual stencil parts described in
the stencil operation. The Strategy is transformed to an
abstract syntax tree that is used as a template by the code
generator. To this end, Strategy-specific Cetus-based IR classes
were added.

These structures are passed as input to the code generator,
along with an additional configuration describing the charac-
teristics of the hardware and the programming model used
to program the architecture and specifies the code generation
back-end to use. The code generator produces C code for
variants of the stencil kernel and also creates an initialization
routine that implements a NUMA-aware data initialization
based on the parallelization scheme used in the kernel routine.

The objective of the code generator is to translate the
Strategy into which the stencil has been substituted, into the
final C code. In particular, it transform Strategy loops into
C loops and parallelizes them according to the specification
in the Strategy, and it unrolls and vectorizes the inner-most
loop containing the stencil calculation if desired; it determines
which arrays to use based on the Strategy structure and the
grids defined in the stencil specification and calculates the
indices for the array accesses.

Along with an implementation for the stencil kernel, the
code generator also creates a benchmarking harness from an
architecture- and programming model-specific template into
which the dynamic memory allocations, the grid initializations,
and the kernel invocation are substituted. The benchmarking
harness expects the problem-specific parameters related to
the domain size (specified in the stencil specification), the
Strategy-specific auto parameters, as well as internal code
generation parameters (currently loop unrolling factors) to be
provided to the benchmarking executable as command line
arguments.

Based on a range specification for the parameters and
optional constraints (e.g., to assert that the number of v-
blocks in Listing 2 is at least the number of running threads),

TABLE I
SUMMARY OF THE AWP KERNELS WHICH WERE USED IN THE
PERFORMANCE BENCHMARKS.

Name Description Flops Arith. Int.
uxxl Velocity in z-dimension 20 0.70 Flop/B
xyl  Stress tensor component oy 16 0.65 Flop/B

xyzl
Xyzq

Stress tensor components gz, Oyy, Tzz
Visc. stress tensor cmps. 0z, Oyy, Ozz

90 1.58 Flop/B
129 1.22 Flop/B

the auto-tuner runs the benchmark executable repeatedly with
varied parameter configurations. Cetus’s expression simplifier
is used to determine whether the constraints are satisfied for
a specific parameter configuration. The exploration of the
search space is driven by a derivative-free search method. A
selection of methods, including exhaustive search, a greedy
search searching along coordinate axes and fixing the best
value before progressing to the next axis, general combined
elimination [22], simplex search, and a genetic algorithm,
has been implemented. The auto-tuner can be readily supple-
mented with additional search methods in a modular fashion.

IV. SELECTED PERFORMANCE RESULTS

In this section, we present performance results obtained
from stencil kernels taken from a real-world application, The
Anelastic Wave Propagation code AWP-ODC of the Southern
California Earthquake Center (SCEC), which was developed
by Olsen, Day, Cui, and Dalguer [23]. This scientific modeling
code is a finite difference code implemented in Fortran+MPI
for simulating both dynamic rupture and earthquake wave
propagation. It has been used to conduct numerous significant
simulations at the SCEC.

The four stencil kernels, in which most of the compute
time is spent, are summarized in Table I. The “Name” column
shows the names of the original Fortran routines, which were
translated into the PATUS stencil specification DSL and for
which the performance benchmarks were carried out. We only
present the kernel-specific results, not results from entire ap-
plication benchmarks. The “Flops” column shows the number
of floating points operations per stencil evaluation, and the
“Arith. Int”” column gives the arithmetic intensity numbers in
Flops per transferred Byte. The benchmarks were carried out
on a 188 x 188 x 152 domain, and the arithmetic intensities
account for the boundary and write allocate traffic incurred.

The benchmarks were done on two architectures, a AMD
Opteron “Magny Cours” and an NVIDIA C2050 Fermi GPU.
The former is a dual-socket platform with two dies per socket
and 6 cores per die. Thus, the total of 24 cores are distributed
among 4 NUMA domains. We used the GNU gfortran/gcc
4.5.2 compilers with the —0O3 optimization flag, for both the
reference codes and the generated PATUS codes. The GPU
features 448 streaming processors packaged into 14 streaming
multiprocessors. We used CUDA 4.0 and NVIDIA’s nvce
compiler.

The performance benchmarks were done in single precision,
as the original application uses that precision mode. The
orange markers show the maximum attainable performance
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Fig. 2. AWP kernel benchmarks on the AMD Opteron “Magny Cours.”

calculated from the measured sustained bandwidth (53.1 GB/s
on AMD Opteron “Magny Cours” when all 4 NUMA domains
are used) and the arithmetic intensity of the stencil kernels. On
one die (6 threads) the “uxx1” and “xy1” kernels reach around
80% of the peak and around 70% if all 24 threads are used.
The theoretical maximum is quite high for the “xyz*” kernels,
and the reason why only a fraction (around 40%-50%) of the
maximum was achieved lies in the arithmetic operations: the
kernels contain many divisions (18 in both cases), which are
notorious for incurring pipeline stalls.

The green line shows the performance of the reference
Fortran code, which was parallelized by inserting an OpenMP
sentinel above the outer most spatial loop. No NUMA opti-
mization was done, which is evident from the scaling behavior
of the reference “uxx1” and “xyl” kernels. The arithmetic
intensities of the “xyz*” kernels are higher; hence the NUMA
effect is mitigated to some extent by the relatively high number
of floating point operations, and the performance can increase
further when going to 2 and 4 NUMA domains (12 and 24
threads, respectively).

The blue bars show the performances of auto-tuned blocked
codes, including the NUMA optimization, and relying on the
compiler to do the vectorization. With the NUMA optimization
enabled, the performance scales almost linearly up to 24
threads. Fig. 2 shows that explicit use of SSE intrinsics and
padding for optimal vector alignment results in a significant
performance boost, in particular for the “xyz1” kernel, where
explicit vectorization gave a performance increase of 150%.
Activating and tuning for loop unrolling gave another slight
gain in performance.

Overall, PATUS achieved speedups between 2.8 and 6.6 x
with respect to the original Fortran code using 24 threads on
the AMD Opteron “Magny Cours” with the NUMA optimiza-
tion enabled and a cache blocking Strategy (the one shown in
Listing 2).

The GPU performance results are shown in Fig. 3. GPU
support in PATUS is still work in progress, thus the perfor-
mance numbers shown in the figure are to be treated as a
result of a proof of concept. Again, the results are for single
precision stencils, and the three indexing modes were used:
one-dimensional thread blocks and grids, three-dimensional
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Fig. 3. AWP kernel benchmarks on the NVIDIA Tesla C2050 Fermi GPU.

thread blocks and a two-dimensional grid, and both three-
dimensional thread blocks and grids, supported as of CUDA
4.0 on Fermi GPUs. For both the “uxx1” and “xyl” kernels,
the default thread block size of 16 x 4 x 4 threads was
an adequate choice, and tuning the thread block sizes only
increased the performance slightly. In both cases, the fully 3D
indexing mode outperformed the (2, 3)-dimensional indexing
by a tight margin due to the simplified index calculation code.
We hope to be able to increase the performance in the future
by making use of the GPU-specific hardware features such as
its shared memory.

V. CONCLUSIONS

In this paper, we presented PATUS, a code generation and
auto-tuning framework for general stencil computations. It is
thought of as both a productivity tool and a tool for experi-
menting with parallelization and optimization strategies, such
as bandwidth-saving algorithms: it is for both programmers
in need of an efficient implementation of a stencil kernel for
a given hardware architecture, but who do not want to care
about hardware-specific tuning, and for domain experts who
want to experiment. The modular architecture of the system
allows to add new components, such as back-ends for other
and future hardware.

We have shown that the approach works for both mod-
ern multi- and many-core architectures, and the performance
numbers demonstrate the potential of leveraging non-trivial
strategies and the auto-tuning methodology.

In its current state, the framework still has limitations (re-
striction to shared memory architectures, no special boundary
treatment, lacking support for temporal blocking schemes),
which we intend to overcome in the future.

PATUS is open source software and licensed un-
der the GNU Lesser GPL. It can be obtained from
http://code.google.com/p/patus/.
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