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Introduction (1)

- Graphics processing units (GPUs) are surfacing as a compelling
platform for processing general-purpose HPC programs.

- HPC programs have strong output correctness requirements.

- GPU devices targeting graphics applications usually do not need
strong fault-tolerance techniques.

- Regardless of added memory error protection, HPC programs are
still vulnerable to certain types of GPU hardware (e.g., ALU, FPU,
or register file) due to the irregularity and high operational speed of
GPU core login, i.e., constitutes a large portion of the silicon area in
the GPU chip.

- Designing a technique to tolerate faults in GPU cores is challenging
espacially for HPC GPU programs because of their strong
performance and cost requirements.



Introduction (2)

- In this context, software-implemented full duplication (i.e., well-known

techniques) can be an effective approach to detect SDC errors in
GPU platforms. %silent data corruption

- Optimizing naive full duplication has achieved a limited success in
GPU programs.

- This paper presents HAUBERK, a software technigue to derive

lightweight error detection and recovery customized for target GPU
programs.



Measurement — A. Error sensitivity

- This section evaluates the error sensitivity of HPC and graphics
programs executing on GPU and performance characteristics of the
used HPC GPU programs.

- Figure 1 shows the error sensitivity of HPC GPU programs, graphics
GPU programs, and CPU programs.

- We inject a single-bit error into each variable in benchmark program
by using the fault injection tool described in Section VII.



Measurement — A. Error sensitivity

- Observation 1: An SEU (or single-bit error) in the pointer, integer, and
FP data leads to an SDC error with 18%, 45%, and 39% average
probability, respectively.
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Figure 1. Comparison of average error sensitivity of HPC GPU
program, graphics GPU programs, and CPU programs.



Measurement — A. Error sensitivity

* In the benchmark HPC programs, FP data occupy 3-6 orders of
magnitudes larger memory space than the pointer and integer data
taken together (see Figure 2).
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Figure 2. Data type vs. Memory size.



Measurement — A. Error sensitivity

- Observation 2: A fault in an FP variable rarely leads to a GPU
program failure, while faults (e.q., 16-33%) in pointer or integer
variables are likely to cause program failures.

- Figure 3(a) shows a video frame of the ocean-flow program that is
corrupted by a single-bit fault in its input data stream (a spike in the
image is due to the injected fault).

(a) Transient Fault (1 Value Error) (b) Intermittent Fault (10,000 Value Errors)
Figure 3. Impact of faults in a 3D graphics program on GPU.



Measurement — A. Error sensitivity

- Observation 3: 3D graphics programs can experience SDC errors
when exposed to a longer duration fault in GPU.

- The impact of an intermittent fault having a long duration time can be
significant even in 3D graphics programs.

- In the ocean-flow program, corruptions of 10,000 values form a
prominent stripe pattern in the rended frame image (see Figure 3(b)).

(a) Transient Fault (1 Value Error) (b) Intermittent Fault (10,000 Value Errors)
Figure 3. Impact of faults in a 3D graphics program on GPU.



Measurement — B. Performance

- This section characterizes the execution times of loop and non-loop
portions of GPU kernels (see Figure 4).
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Figure 4. Percent of execution time on loops in HPC GPU programs.
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Measurement — B. Performance

- Observation 4: Loops (for, while, and do-while) form a large portion
(> 98% in 5 out of 7 programs and 87% on average) of the total
execution time spent on GPU.
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Figure 4. Percent of execution time on loops in HPC GPU programs.
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Related work (image)

- This section classifies and analyzes existing error detection
techniques potentially applicable in the context of this study

(see Figure 5).
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Figure 5. Spectrum of various types of error detection techniques.




Related work

- The Design goal is to find a high-coverage ditector without
compromising performance.
(i) Naive full duplication
- high SDC error detection ratio, almost doubles the execution time
(1)) Optimized full duplication
- utilize idle hardware resource, not highly effective for GPU program
(ili)Selective protection
- selectively protects parts of the program state
(a) Fault injection
- most effective if the size of program is small
(b) Static compiler analysis
- can quickly select protection target state
(C)Dynamic program analysis
- derives and selects likely program invariants by profiling
and monitors selected invariants at runtime
(iv)Algorithm-level techniques
- Error detection techniques designed and optimized for a particular
type of algorithm or program are usually highly efficient 13



GPU HAUBERK — A. Design principles

Principle 1:

HAUBERK customizes error detectors by using profiling information of
common HPC GPU programs in order to minimize the impact on
performance.

Principle 2:
HAUBERK selectively protects the program state where errors in
other states are likely to propagate.

Principle 3:

HAUBERK places error detectors by considering the recoverability of
errors.

14



GPU HAUBERK — A. Design principles

HAUBERK defers placements of error detectors as long as possible by
taling advantage of inherent hardware-enforces error isolation

between GPU and CPU.
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Figure 6. Isolation execution and deferred checking model of Hauberk.




GPU HAUBERK — B. Framework

Figure 7 depicts a compile flow of the HAUBERK framework.
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GPU HAUBERK — B. Framework

- Places where HAUBERK translator adds or mutates source codes
are summarized in Table |.

TABLE 1. DESCRIPTIONS OF INSTRUMENTATIONS USED FOR HAUBERK.

oca ib.

FI (Section VII)

| Profiler (Section V.B)

| FT (Section V.A., V.B., VI)

(ceui Top of the main file

Includes a header file for H4UBERK libraries

Initializes the control block

rceup Entry of main() The control block is for the location, The control block is for profiled value | The control block is for value ranges,
time, and type of fault injection target ranges and execution counts detection results, and outliers
rceuy Exit of main() Stores fault activation result to a file Stores profiling results to a file Stores updated value ranges to a file

cruy Before launching

Copies the control block from CPU to GPU

Notifies this to guardian process and

GPU kernel - 54 .
calls a checkpoint library (option)

rceur After GPU kernel Waits until the kernel completion and copies the control block back from GPU to CPU

launch - | Calls an error recovery function

rceu] GPU kernel function

Adds a pointer variable for the control block as a function parameter in GPU kernel function prototype and its caller(s)

(Gruy After definition of
virtual variable in GPU
non-loop

Calls a library function with an identifier, pointer, type, and used hardware com-
ponents of variable defined in previous statement

Updates a checksum variable, dupli-

To inject a fault into a defined variable
at a designated time of execution

To count execution count per variable

cates the definition, and checks origi-
nal and duplicated variables

rGru) After def. of virtual
variable in GPU loop

Same as “After definition of virtual
variable in GPU non-loop” field

Adds two addition statements for each protected target virtual variable (one for
target variable and the other for counter) and merges the counters if possible

(Gruy Before loop in GPU
kernel

Defines accumulator and counter variab

les for each protected loop variable

Updates the checksum var. if needed

reeuy After loop in GPU
kernel

Profiles value ranges of accumulated
variables divided by their counter

Checks accumulated variable value
ranges and updates the checksum var.

(Gruy Exit of GPU kernel

Checks the checksum variable

17




Error detection — A. For non-loop code

- HAUBERK duplicates the definition of virtual variable and immedia-
tely checks the original and duplicated variables (see Figure 8(c)).
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Figure 8. Duplication techniques for non-loop codes where statements
marked as gray symbols or italic texts are added for error detection.




Error detection — B. For loop code

- We present value-accumulation-based range checking for loop
codes. Derivation of this error detector has four steps.

(i)Select target variable for protection
Among all virtual variables defined inside a target loop, we first
select self-accumulating virtual variables.

(iilGenerate value accumulator code
The placed error detector accumulates the data value of each
protected virtual variable in every loop iteration.

(iii)Generate accumulation counter code
An addition statement is added to count the number of
accumulation operations for each accumulator variable.

(iv)Generate error checking code

An error checking routine is added right after the loop code.
19



Error detection — B. For loop code

- Figure 9 exemplifies a data-flow graph of a loop in a GPU kernel
that is computing a coulombic potential function.
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Figure 9. Dataflow graph of a loop in a coulombic potential GPU kernel.
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Probability Distribution

Error detection — B. For loop code

- A strong correlation is observed in values stored in or computed
for a same program variable in many HPC GPU programs.

- Figure 10 shows the value distribution of integer and FP variables
in an HPC GPU program (MRI-Q).
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Figure 10. Value range distributions of integer (a) and FP (b) variables in the MR/-Q program executing on a GPU device.
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Error recovery

- This section describes retry-based error recovery in HAUBERK,
which can diagnose and tolerate errors in GPU.

(i)Guadian Program
- A gurdian program is used as a parent process of program
instrumented by using the HAUBERK framework (see Figure 6).

(ii)Diagnosis of False Alarms
- HAUBERK loop error detectors may result in both false negatives.

(a)False alarm
- If the reexecution also raises an SDC alerm and its output is identical to the original
output, these two are likely to be false alarms (i.e., false positive).

(b)SDC error due to transient or short intermittent fault
- If the reexecution terminates normally and does not raise an SDC alarm, we assume the
alarm raised in the first execution is due to transient or intermittent faule (i.e., removed
before the second execution).

(c)SDC error due to long intermittent or parmanent fault
- If the reexecution also raises an SDC alarm but its output is not identical to the original
execution output, we execute a GPU program that is specifically designed to produce
multiple sets of output data by examining variout parts of GPU hardware.

(iii)Configuring Loop Error Detector

- This false alarm diagnosis can calculate the false positive ratio.
22



Error recovery

- If the failure is repeated twice in the same GPU kernel using the

same input data (see Figure 11), the guadian process runs a
program to diagnose intermittent or parmanent faults in GPU

device.
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Figure 11. Error f.iiagnosis and tolerance algorithm. >




Dependability evaluation framework

Information delivered
- Program state ID
- Pointer to a program state

- Data type
- Used HW module(s)
Source Code of GPU Hardware
GPU Kernel State
Faglt I“je'?t:lﬂ“ Statement Register |  |€—
‘omman .
- Fault type > Haqberk {l Statement Register 2
utt 1Yp FI Library
- Injection target
- Injection time Statement Register N
Statement

Memory Word 1
Memory Word 2 |«

Statement

Statement Memory Word N

Fault Injection (i.e., changing the value of a state)

Figure 12. A GPU kernel with H4UBERK fault injection codes.



Experimental results
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Experimental results
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Figure 14. Error detection coverage of HAUBERK.



Experimental results
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Experimental results
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Conclusion

- This paper analyzed reliability problems in GPGPU platforms,
focusing particularly on the design of efficient low-cost detection
and recovery mechanisms for handling SDC (silent data corruption)
errors.

- In order to tolerate SDC errors, customized error detection
techniques are strategically placed in the source code of target
GPU program so as to minimize performance impact and error
propagation, and maximize recoverability.

- HAUBERK offers a high error detection coverage (~87%) with a
small performance overhead (~15%).
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