ININA—IIR
aAEa—Ta429
2014/11/10

14M37138
HAFZ

wagr

i 3

 Detection and Correction of Silent Data
Corruption for Large-Scale High-Performance
Computing

=] [

— David Fiala, Frank Mueller, Christian Engelmann,
Rolf Riesen, Kurt Ferreira, Ron Brightwell

—SC12

Resilience in HPC

* Faults have become the norm rather than the
exception for parallel computation on large systems

— Jugar (now Titan)
* Cores: 150,152
* MTBF: 52 hours

* Recent work shows that:
— Servers tend to crash twice year
— 1-5% of disk drives die per year

— Need of Checkpoint/Restart paradigm for running
large-scale jobs

Increase of C/R overhead

 HPC applications required to support C/R
paradigm
— As we enlarge systems, C/R overhead grows
exponentially

. TABLE I
— Sandia’s Study: 168-HOUR JOB, 5 YEAR MTBF
Nodes work checkpt recomp. restart
100 96% 1% 3% 0%
1,000 92% 7% 1% 0%
10,000 75% 15% 6% 4%
100,000 35% 20% 10% 35%

e Need of low cost fault tolerant mechanisms

Proposal and Contribution

* Proposal

— Design and implementation of novel mechanisms for FT in
HPC

— Demonstrate capabilities of SDC protection at
communication layer

e Contribution

— MsgPlusHash, a proposed method, achieves low
overheads from 0% to 30% for dual/triple redundancy
* Runs on ARC cluster at NCSU (108 nodes, 1700+ cores)
e HPCCG, SWEEP3D, etc.

— All injected faults are detected by using the proposed
method

Silent Data Corruption

* Silent Data Corruption faults
— Bit flips
— Some of them are not detectable/correctable
* Invalid results (applications don’t stop)

* Memory bit flips correctable by ECC
— ECC has upper limit of bit flips

* One of two undetectable errors are expected to
occur in a day on ORNL’s Jaguar Supercomputer

Related Work

 Redundant MPIl implementations:

— rMPI [K. Ferreira et al.]
* Built using MPICH
* Using the MPI profiling layer PMPI

— MRMPI [C. Engelmann et al.]

* Not rely on a specific MPI library
* Using the MPI profiling layer PMPI

— VolpexMPI [T. LeBlanc et al.]

* Implemented from scratch
* Using polling mechanism
* No support for MPI_ANY_SOURCE

— All of these implementations don’t protect against SDC

Design of RedMP]

* Create replica MPI processes
— Replicas run same applications

— Replicas always send same massages when no data
corruption

* Dual redundancy
— Message verification
* Triple redundancy
— Message verification and correction

SDC Detection v (V4
SDC Correction v

Design Assumptions

* Reliable transport layer (TCP Ethernet/
Infiniband)

 MPI functions supported
— point-to-point, collectives, wildcards...

Redundant MPI Ranks

Transparently creates r replicas per normal MPI

process

Virtual rank

— seen by applications

Native rank

— seen by MPI

Replica rank

— given 0~r-1 to identify
replicas

Virtual Rank: 0 Native Rank: O Replica Rank: 0
Virtual Rank: O Native Rank: 1 Replica Rank: 1
Virtual Rank: 0 Native Rank: 2 Replica Rank: 2

Virtual Rank: 1 Native Rank: 3 Replica Rank: 0
Virtual Rank: 1 Native Rank: 4 Replica Rank: 1
Virtual Rank: 1 Native Rank: 5 Replica Rank: 2

Virtual Rank: 2 Native Rank: 6 Replica Rank: 0
Virtual Rank: 2 Native Rank: 7 Replica Rank: 1
Virtual Rank: 2 Native Rank: 8 Replica Rank: 2

10

SDC Detection method 1 (All-to-all)

* Each sender sends full copy of a message to
other receiver

Recv Buffer O

Recv Buffer 1

* rreceive buffers bt
* r2 messages

Replica: 2 Send Buffer

Receiver
Replica: 2
Recv Buffer 2

11

SDC Detection method 2
(MsgPlusHash)

* Reducing the total data transfer overhead
compared to the previous method

Sender geng Buffer - Recv Buffer 0

Replica: 0 Receiver

* 1 receive buffer

Hash Buffer2: Rerlica:0

Receiver

e 1 h dsS h b Uﬁe I Sender send Buffer & ,\’\’::\ Recv Buffer 1

Replica: 1 ., . ,
\‘," Hash Buffer O Replica: 1

Sender seng uffer 3 e Recv Buffer 2

Replica: 2 Receiver

' Hash Buffer 1 Replica: 2

Full Message (Solid)
------- Hash Only (Dashed)

Experimental Setup

 ARC cluster at NCSU
— 108 nodes, over 1700 cores

— 32GB DRAM per node
— 8GB/s Infiniband interconnect

— Using at most 1536 processes

* OpenMPI 1.5

* Applications
— LAMMPS, SWEEP3D, HPCCQG, etc.

Weak Scaling

W No Redundancy © Dual Redundancy = Triple Redundancy

LAMMPS - CHUTE.SCALED SWEEP3D HPCCG
150 600

100 400
100
w | Zw I
o ' T

Size: 128 Size: 256 Size: 512 Size: 128 Size: 256 Size: 512 . Size: 128 Size: 256 Size: 512

(=]

99.8[s] 99.8[s] 125.8[s]
256 99.6[s] 128.8[s] 131.0[s]
512 126.4(s] 146.2[s] 152.3[s]

* At most approx. 30% overhead
 The overhead ratio is still modest as the # of processes grows

14

Fault Injector

* When sending messages, 1/x messages randomly receive
1 random bit flip

* Modifies not only send buffer, but also the original
memory space

mg e
Replica: 0
- 01101 a Reokca
Receiver
Replica: 2

Receivers detect corruption

bit is permanently flipped in sender’s

buffer =» passed to receivers

Retains only correct msg 15

Fault Injection Experiments

* Propagation
— Investigate how quickly do SDC injections propagate to
other processes via communication

 NPB (LU, BT, SP, etc.)
— Dual redundancy
* Allow application progress to continue when detecting corruptions

* Protection

— Investigate the effectiveness of RedMPI’s SDC detection/
correction

* CG benchmark
— Triple redundancy

Experiments: Propagation

Progressive
— Communicate with
their grid neighbors

Explosion
— Use collectives or
send msgs to all nodes

Localized
— Corrupted data is neither
reused nor transmitted

Message Count

18000
16000
14000
12000
10000
8000
6000
4000
2000

Timestep

60

60

50

30
20

10

Tainted Nodes

Experiments: Protection #1

e Configuration
— Corruption frequency (1 bit flip): 1/5,000,000
— virtual ranks: 64, physical ranks: 192

— Inject corruption to only the process whose replica
rank is O

* 10 times runs in total
— 1 occasion with two injections
— 4 occasions with one injection
— 5 occasions without injections

— All runs pass benchmark’s built-in verification

Experiments: Protection #2

e Configuration
— Corruption frequency (1 bit flip): 1/2,500,000
— virtual ranks: 64, physical ranks: 192
— Doubling the odds for and injection
— Remove the process selection restriction

e 10 times runs in total

— 2.5 injections on average & several thousand invalid
messages per run

—> RedMPI forced corrupted job to fail

19

Conclusion

* Design and develop

— MsgPlusHash, a proposed method, achieves low
overheads from 0% to 30% for dual/triple redundancy

* Runs on ARC cluster at NCSU (108 nodes, 1700+ cores)
« HPCCG, SWEEP3D, etc.

* Allinjected faults are detected by using the
proposed method

—> Redundancy may be worth the cost to protect
and ensure correct output

20

Discussion

* How does the overhead change when the
datasets we handle become huge?

— Redundancy use much memory

* How much power consumption when using
triple redundancy?

