ARUNRETH

"High Performance Parallel Stochastic
Gradient Descent in Shared Memory”

2016/10/04

RRIEXRY BFHRIETFR 2116
RUEGFEST

Selected Papers

STRADS: A Distributed Framework for Scheduled Model Parallel
Machine Learning

O J. K. Kim, Q. Ho, S. Lee, X. Zheng, W. Dai, G. A. Gibson, and E.
P. Xing. STRADS: A Distributed Framework for Scheduled Model
Parallel Machine Learning. In Proceedings of the Eleventh
European Conference on Computer Systems, EuroSys '16,
pages 5:125:16, New York, NY, USA, 2016. ACM.

O Model parallelism solves these problems that data parallelism
doesn’t

0 Nailve concurrent updates violate dependency across
parameters

O Parameters converge at different rates

O The authors propose Scheduled Model Parallelism (SchMP) and its
framework STRADS

O SchMP LDA topic modeling and Lasso achieved 10x and 5x
faster convergence than recent baselines

Selected Papers

STRADS: A Distributed Framework for Scheduled Model Parallel

Machine Learning

O The user implements schedule (),
update () adnd aggregate ()

O schedule () select parameters to
update

O Approximate graph
partitioning algorithm can be
implemented to solve the

uneven convergence rate
problem

O update () compute intermediate
result to update the model

O aggregate () collect the

infermediate result and update
the model

Algorithm 2 SchMP Dynamic, Prioritized Lasso

X, y: input data

{X}?, {y}*: rows/samples of X,y stored at worker p
B: model parameters (regression coefficients)

A: 41 regularization penalty

7: G edges whose weight is below 7 are ignored

Function schedule(s3, X):
Pick L > P params in 3 with probability o< (AB,)?
Build dependency graph G over L chosen params:

edge weight of (34, 8p) = correlation(x*, x°)

[Bgys- - - Bag] = findIndepNodeSet(G, 7)
Forp =1..P:

Sp = [18917“',59'1{]
Return [Sq,...,Sp]

Function update(p, S,, {X}?,{y}?, B):
For each param f3, in Sy, each row ¢ in {X}”:
Rpla) +=2ay" — 2 4sq TaiPo
Return R,

Function aggregate([R1,..., Rp],S1, B):
For each parameter 3, in S;:

temp=Y_"", Ry[a]
B. = S(temp, \)

Selected Papers

GeePS: Scalable deep learning on distributed GPUs with a GPU-
specialized parameter server

O H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing.
GeePS: Scalable deep learning on distributed GPUs with a
GPU-specialized parameter server. In Proceedings of the
Eleventh European Conference on Computer Systems, EuroSys
'16, pages 4:124:16, New York, NY, USA, 2016. ACM.

O Training DNN on large number of GPUs is insufficient due to data
movement overhead, GPU stalls, and limited GPU memory

O The authors proposed GeePS, a parameter server implementation
for distributed deep learning

0 GeePS manages the location of DNN parameters and local
data(such as Input data and intermediate data) in
background

O GeePS achieved 13x speedup on 16 GPUs

0O GeePS achieved higher throughput on four GPUs than 108
CPU-only machines

Selected Papers

GeePS: Scalable deep learning on distributed GPUs with a GPU-
specialized parameter server

function TRAINMINIBATCH(trainData, virtual)

|. GeePS collect access # Forward pass
. . fori =0~ (L —1)do
information of buffers on GPU paramDataPtr
geeps.Read(paramDataKeys;, virtual)
memory localDataPtr <
O Since training DNN is iteroﬂye, ifgjjfj;ffjjfﬁ;ffss(l"“‘”) atakeysi, virtual)
these access pattern is stafic Setup layer; with data pointers
Forward computation of layer;
end if
2. A GeePS thread performs CPU- geeps. Post Read(paramDataPtr)
. geeps.PostLocal Access(local Data Ptr)
GPU data movement in end for
background, based on the = —
collected access information fSt-a%i”tgd’;lZ??,Zii:
or Inpu \ raining data
O |If oll dota don't fit in GPU

memory, GeePS utilize buffer pool) o ~

to swap buffers between CPU

and GPU dynOmiCO”y Par(aCrrl;eljerc:)che i Pinned local data

\~ P2
sorver shard 0| | pavarmeter cachatl—| Pinned param cache
CPU memory \‘ l GPU memory

Network 5

Selected Papers

O S. Sallinen, N. Satish, M. Smelyanskiy, S. Sury, C. Re. High
Performance Parallel Stochastic Gradient Descent in Shared
Memory. I[EEE International Parallel & Distributed Processing
Symposium (IPDPS), 2016.

O Stochastic Gradient Descent (SGD) is a popular optimization
method used to train machine learning models

O Existing parallel SGD implementations may reduce hardware
efficiency and/or statistical efficiency as scale

O The authors proposed a new, scalable, communication-avoiding,
many-core friendly implementation of SGD, HogBatch

0 HogBatch is a combination of Hogwild and mini-batching

Intfroduction

Stochastic Gradient Descent (SGD)

O Stochastic Gradient Descent (SGD)

O A popular optimization method to train machine learning models
wir1 = we — ar Gradient(wsg, u)

wy € R? : 4-features model

a; > 0 :learning rate

U= (uius - up)t € R™¢ :n-samples d-features dataset
Gradient(w,u) : gradient of objective function fof sample u at w,

f

LW
\/ E |

Example(d=1) \/w
- t+1

t

-a, Gmdient(hwt, u)

fof sample u

Intfroduction

Stochastic Gradient Descent (SGD)

O SGD requires less computational cost to update than other
traditional approaches

O Machine learning problems typically do not require updating
with very high accuracy

O cf. Interior-Point Method, Newton Method

O SGD is inherently sequential with dependency across
iferations

O Some variants exposes extra parallelism, which come at the
loss of statistical and hardware efficiency

0O Statistical: the number of iterations to converge is increased

0 Hardware: the amount of inter-core communication and
cache miss is increased

Intfroduction

Stochastic Gradient Descent (SGD)

O SGD can be modified in a variety of ways

1. Data access and parallelization strategy
0 Hogwild
O Mini-batching

2. Objective function (loss function)
O Linear, logistic, hinge loss, least squares, ...

3. How to compute the gradient and fix learning rates
0 ADAGRAD tunes learning rate automatically

O Stochastic Average Gradient (SAG) uses an average gradient
to do model updates

O This paper focuses on 1., the fundamental algorithm that affect
hardware efficiency

Parallelizing SGD

O Parallelizing across...

O Features: Since the problem is typically sparse, there are small
amounts of parallelism

O Non-zero features: Since elements of w is written randomly in
parallel, significant inter-core traffic happen to maintain cache
coherence

O Samples: Updates is computed with stale w, which may degrade
statistical efficiency

O Staleness: the number of updates to the global model that
happen between

O 'the fime the modelis read by a thread” to
O “the time the model update is written back by the thread”
O Sequential SGD always provides zero staleness

O Hogwild, Mini-Batching and HogBatch

10

Parallelizing SGD

Mini-Batching

O Ssamples (batch) are combined to do one model update

u+.S
Wi s = Wy — Gy Z Gradient(wy, b)
b=u
O The batch can be divided across threads

|. Each thread update its private gradient vector for the part of
the batch independently

2. Threads update the global model synchronously

O Mini-batching breaks the sequential semantics of SGD
O Each gradient of sample u+i uses w, instead of w
O This affects the statistical efficiency

t+i

11

Parallelizing SGD

Mini-Batching

Period to process all
samples in the dataset

Algorithm 1: Mini-Batch SGD pseudocode for one datapass

1 for (st = 0; st < num_samples/SIZE; st += SIZE) {
2 #fpragma omp parallel for schedule (dynamic)

3 for (index = st; index < SIZE; index++) {

4 // Sparse vector operation.

[

private
vector

g_tid[TID] += a *x Gradient (model, index);
i 6 implicit thread barrier)
7 | Thread ID global
8 fpragma omp parallel for Schedule(stat%c) vector
9 for (f = 0; f < num_features; f++) {
10 for (t = 0; t < NUM_THREADS; t++)
11 model [£f] = model [f] - g_tid[t][£]; } PENs€ vector
12 } // (implicit thread barrier) ‘3pe”3hon
13}

12

Parallelizing SGD

Mini-Batching

= Pros

O One update per batch size: Inter-core traffic is reduced

O Thread independent tasks: Irregular access of the sparse vector
operation is totally private

0 Cons

O Reduction: All threads need to reduce their private gradients to
do update

O Thread synchronization: Threads have to synchronize before/after
the reduction

O Updates are stale: The updates within the batch become
increasingly stale

13

Parallelizing SGD

Hogwild

O Each thread perform their own asynchronous model updates

O Although data race conditions may occur, Hogwild works well for
very sparse datasets

O In sparse datasets, many samples has non-zero elements on
mostly different indices

Algorithm 2: Hogwild SGD pseudocode for one datapass

#fpragma omp parallel for schedule (dynamic)

for (index = 0; index < num_samples; index++) {
// Sparse vector operation.
model = model - a * Gradient (model, index);

DN B Wi =

}

14

Parallelizing SGD

Hogwild

o Pros
O Thread asynchronicity: Threads do not have to synchronize

O Minimum staleness: Threads compute gradient with the current
model visible to the thread at that fime

0 Cons

O Race conditions: It is quite possible that parts of the update can
be lost due to race condition if the problem is not so sparse

O Inter-core communication: High cross-core traffic occurs to keep
cache coherence

O In the authors’ experiments, core-to-core communication
alone could consume up to 60% of the execution cycles

15

Hogwild + Mini-Batching: HogBatching

O Each thread process one batch (Mini-Batching), and perform
asynchronous model update (Hogwild)

O In HogBatching, write to model is dense

O g tid[TID] is more dense than each gradient affer the
aggregation

O Although the write invalidate cache lines, many new values
are written per one invalidation

Algorithm 3: HogBatching SGD pseudocode for one datapass

fpragma omp parallel for schedule (dynamic)
for (st = 0; st < num_samples/SIZE; st += SIZE) {
for (index = st; index < SIZE; index++) {
// Sparse vector operation.
g_tid[TID] += a * Gradient (model, index);
}

for (£ = 0; £ < num_features; f++)
model [f] = model[f] - g _tid[TID][f];

OO XN A W=

(U

16

Hogwild + Mini-Batching: HogBatching

= Pros

O Thread asynchronicity: As in Hogwild, threads do not have to
synchronize

O Thread independent tasks: As in Mini-Batching, threads has their
own independent subset of samples to process

O Reduced staleness: Staleness may be less than Mini-Batching,

since other threads may update the global model in the middle of
batch processing

0 Cons
O Race conditions
O Inter-core communication

O However, these issues are drastically reduced than Hogwild
because threads have to write the global model per batch

17

Hogwild + Mini-Batching: HogBatching

| sedal | MiniBaich | Hogwild | HogBatch
v 4 v

Parallelism X

#update/#sample x] Vv less than 1 x 1 Vv less than 1
In’rer-corg . i v " A
communication _
v 0 X 4 yAN]'
Model update Sparse Dense Sparse Dense

Hardware

Statistical

18

Staleness Properties

O For Hogwild and HogBatch, the max-stale of the last sample of
a batch increases as other threads update the model
asynchronously

O It is assumed that one model update takes the same amount of
time

O For Mini-Batch and HogBatch, the stale of the last sample is
always more than the batch size

TABLE1: Staleness Analysis of the last sample of a batch
T. #thread, S: Mini-Batch size, HS: HogBatch size

Min-Stale Max-Stale Example: T=8,
Method (For final update S=1024, HS=(S/T)
in batch) [min, max]
Hogwild 0 - [0, 7]
Mini-Batch S S (1024, 1024]

HogBatch HS (T*HS) [128, 1024]

19

Staleness Properties

Improving Staleness

O For Mini-Batch and HogBatch, staleness can be reduced if
each thread use model-g tid[TID] insfead of model fo
compute gradient

O Intuitively each thread updates its local model
O This causes a significant improvement on stafistical efficiency

O In their experiments, fime to convergence is improved up to
30%, especially for denser problems

TABLE II: Improved Staleness Analysis

Min-Stale Max-Stale Example: T=8,
Method (For final update S=1024, HS=(S/T)
in batch) [min, max]
Hogwild 0 (T-1) [0, 7]
Mini-Batch (S) - (S/T) (S) - (S/T) [896, 896]

HogBatch (HS) - (HS) =0 (T*HS) - (HS) [0, 896]

20

Implementation Options with HogBatching

O HS of HogBatching can be larger than S/T of Mini-Batching

O It is because minimum staleness for HogBatching improves
statistical efficiency

O Experiments showed that the optimal HS can lie between S/T to S

O Model updates (g tid[TID]) can be treated as a sparse
format in either of two ways

O Holding a bitmap of non-zero indices, and performing a bit
scan to get the indices

0 Using a map data structure of the indices

O Experiments showed that these strategies was only useful for
extremely sparse problems

21

Implementation Options with HogBatching

O SMT-aware hierarchical parallelism further improve
performance

O Two threads on a core share a private gradient vector (g group)
O This reduces cache pressure of the core

Algorithm 4: Many-Core HogBatch SGD pseudocode, for one datapass

1 GROUP_START = get_group_start (TID);

2 // Group parallel asynchronous

3 for (st = GROUP_START; st < GROUP_COUNT; st++) {

4 WORK_START = get_worker_start (st, TID);

5 // Worker parallel asynchronous

6 for (id = WORK_START; id < WORK_COUNT; id++) {

7 // Sparse vector operation.

roup += a * Gradient ((model - roup), id);
Shared by } 9g_9 p ((9_9 P))
threads in 10 sync(); // Sync threads in the group.
a core 1 |

12 // All threads in the group perform the update.

13 for (£ = TID; f < num_features; f += T_PER_GROUP)

14 model[f] = model[f] - g_groupl[f];

15 1}

Experimental Analysis

Experimental Setup

O Hardware
O Intel Xeon E5-2697 v3 Haswell @ 2.6 GHz
O 14 cores (28 threads including SMT)
O 64 GB RAM
O Red Hat Enterprise Linux Server release 6.5

O Software
O Intel C++ Compiler 15.0.2, parallelized by OpenMP
O All values are in single precision format
O Logistic regression loss is used for SGD algorithm

Z log(1 + exp(—yupu))
uelU /7 'T‘

Label of sample u pet product of
€ {-1,1} model w and sample u

23

Experimental Analysis

Experimental Setup

Datasets

O Seven binary-labeled datasets with varying feature size and
sparsity patterns

NNZ/
TABLE Ill: Experiment Dataset [wes*Feo’rures)]

Dataset Name Examples Features NNZ Sparse% NNZ/Row Avg/Row
Spgrge’r‘ news20.binary 19,996 1,355,191 9,097,916 0.034 1 to 16,423 454.987
RCVI1-v2 781,265 276,544 60,534,218 0.028 4 to 1,585 77.482
RCVI1-vli-test 677,399 47,236 49,556,258 0.155 4 to 1,224 73.157
real-sim 72,309 20,958 3,709,083 0.245 1 to 3,484 51.295
w8a 64,700 300 753,862 3.884 1tol14 11.652
connect4 67,557 126 2,837,394 33.333 42 to 42 42.000
Dense covtype 581,012 54 6,940,438 22.121 9to 12 11.945
First 5 samples of news20.binary
-1 1:0.016563 2:0.016563 3:0.016563 4:0.016563 ..
-1 1:0.013067 2:0.013067 3:0.013067 5:0.013067 ..
-1 40:0.028421 54:0.028421 75:0.028421 81:0.028421 ..
-1 40:0.048057 57:0.048057 75:0.048057 97:0.048057 ..
-1 40:0.084515 75:0.084515 97:0.084515 103:0.084515 ..

Experimental Analysis

Experimental Setup

0 Reporting

O Training time until it achieves a closeness of “optfimal” loss are
reported

O (2-lcurrentl/loptimall)*100%
O Unless otherwise specified, it is 99.5%
O Time to I/Oisignored

O The “optimal” loss are computed with L-BFGS, a second order
optimization method

o Parameters

O Learning rate and batch size are sweeped and only the best result is
presented

O The learning rate per iteration is adjusted as alpha/sqrt(#iteration)

O Regularization

O L2 regularization with the Lambda value 1/#samples are applied for all
methods

25

Experimental Analysis

Results of our Evaluation

In most datasets, HogBatch is the best solution in ferms of
time-to-convergence

O Hogwild is the best alternative in sparser datasets

O Hogwild beats HogBatch in news20.binary
Extremely less write conflict/false sharing due to high sparsity
HogBatch has global model update overhead in dense format

TABLE IV: Speedup (as time to 99.5% convergence) of HogBatch over best
alternative solution out of Serial, Mini-Batching, Hogwild on a 14 core system

Dataset Sparse% Features Best Alt vs Best Alt
Sporse A news20.binary 0.034 1,355,191 Hogwild 0.86x
RCV1-v2 0.028 276,544 Hogwild 1.87x
RCV1-test 0.155 47,236 Hogwild 2.43x
real-sim 0.245 20,958 Hogwild 3.85x
w8a 3.884 300 Hogwild 8.97x
connect4 33.333 126 Mini-Batch 5.81x
Dense covtype 22.121 54 Serial 20.16x

Experimental Analysis

Results of our Evaluation

O In RCV1 (0.155% sparsity),
O Hogwild showed similar

convergence behavior to Serial

in ferms of loss-per-pass
O Mini-Batching is worse than

Hogwild in terms of loss-per-pass
O In time-per-pass it is near parity

because it is twice faster

O HogBatching took the advantage

of both

Fig. 1:

Time (ms %06

o 100 200 400 500
90%
91%
wvi
8 92%
-
= 93% =
BN
T 04%
5 \\ e
o 95% \
H %
' 96%
wvi
297% \k
g R_
8os%
W
99% \kﬁ
100%

=de—Hogwild “~-HogBatch 1100
=P SGDSerial —mee=MiniBatch 3700

(a) RCV1-v1-test
Closeness to the optimal solution over time.
Each point represents a dataset pass.

27

Experimental Analysis

Results of our Evaluation

o In cov’rype. (22.121% sparsity), . , T s e
O Hogwild is slower than Serial, 95%
due to low hardware efficiency ; \
—96% |
O Mini-Batching is slower than ; \
Serial, due to low statistical Sorx |
efficiency 9 \ \ \\
O HogBatch scaled near-linearly 2?1 \ S~
§99% — \
(8] _ —— —
1eeX
e Hogwild HogBatch 1@@
—#—5SGDSerial MiniBatch 10@

(b) coviype
Fig. 1: Closeness to the optimal solution over time.
Each point represents a dataset pass.

28

Experimental Analysis

Scaling with Cares

O In RCV1 (0.155% sparsity, 47,236 features)

Number of Threads (14 Core Machinef
2 4 8 6

32.0 =
P
,// 11x than Serial
16.0 v :
Fa >2x than Hogwild
5 8.0
: P 3
g 4.0 / Al O
E O
g 2.0 / | E
53] //
- - | &
Inter-core 1.0 % o *——o
icati verhead due
communication Z ‘ O :
iSs more severe sl G— e to gradient
ogwi ogBatc .
. than parallelism —+—SGDSerial ———MiniBatch3700 LOQQTGQOTIOH onJ
(a) RCV1-v1-test large #feafures

Fig. 2: Speedup over serial, in time-to-convergence

29

Experimental Analysis

Scaling with Cares

O In covtype (22.121% sparsity, 54 features)

Number of Threads (14 Core f"lachine]?
2 4 8 6

Super-linear
2 | scaling (20x) due
2 P to cache
gy improvement

16.0

8.0 A

Speedup over Serial
B
®

o
Qo

fo

o

-

@

l—

>
/f Inter-core)

communications
and write
—tr—Hogwild —o— SGDSerial conflict hurts
“~HogBatchlee = MiniBatchl0@
performance

(b) convtype
Fig. 2: Speedup over serial, in time-to-convergence

Batch size=100 is too
small to parallelize;
larger batch leads

\slower convergence

30

Experimental Analysis

Scaling with Frequency

Hogwild prefers frequency to
#core
O The frequency of core

interconnect is governed by
core frequency

Mini-Batch and HogBatch
prefers #core as well as
frequency

O This characteristic matches
recent many-core trend

O HogBafch is more scalable
than Mini-Batch in terms of
#core

Cores
SGDSerial 1
Frequency 1.3] 4.499
2.6 2.281|
Cores
Hogwild 1 2 4 8 14 14+H
Frequency 1.3 5200 BB 2 3296 1.757
2o BSEE 2975 1.436 0.50
Cores
MiniBatch 1 2 4 8
Frequency 13| s2so 8 2586 2 1.443
26|60 2403 1.399
Cores
HogBatch 1 2 4 8 14 14+H
Frequency 1.3 s 137 1577 0.798
2o 1721 o800 0.208

Fig. 3: Time (in seconds) to 99.5% optimum loss,
across core count and variable frequency[GHz]
Using RCV1-vI-test

Experimental Analysis

Future Scalability

O The authors simulated HogBatch on large #core system with
an execution-driven simulator Spiner [9]

O Single-threaded 2-wide in-order core at 1.8 GHz

O 2-dimentional mesh with 2 cores per mesh stop
O 2 cycle hop latency A Typo of 64 GB/s ?
O Link bandwidth of 64 bytes/s and MESIF coherence protocol

O MESIF: MESI + Forwarding(=Shared willing to reply read
request)

O On RCV-vl dataset,
O 64 cores achieved 53x scalability
O 128 cores achieved 90x scalability

O Loss in convergence per pass compared to serial was ~25%
O In the 14 core machine, it was ~10%

32

Multl Model Regression

O Training multiple models simultaneously are useful when each
sample has multiple labels

O Labels and models are matrices, not vectors

O Model-dimension can be parallelized, as well as sample-
dimension

O Batching methods is no longer cache friendly
O Multiple models and labels are dense and may not fit the cache
O Hogwild would be the best approach for multiple models training

Algorithm 5: Multi-Model Hogwild SGD pseudocode for one datapass

#fpragma omp parallel for schedule (dynamic)
for (index = 0; index < num_samples; index++) {
#fpragma simd <€—
for (m = 0; m < NUM_MODELS; m++) {
// Sparse indices update of model [m]
model [m] —= a * Gradient (model[m], index);

b

NNk W -

33

Multl Model Regression

O Model matrix should be allocated as row-major format

O Same indices for each model are stored consecutively, followed
by optional padding
O Padding prohibits one cache line from holding parts of several
indecies
O This format allows to execute SIMD operations

O Since Hogwild updates models sparsely, it access the same
indices of all models at once

o/7§1) fmgl) — ')l’-(l)\
WJ- W': Wk:
f)IL() fmg) o o s /m_()
WJ- w-: WK

it i)

k models

34

Multl Model Regression

O Until 32 models, Hogwild get benefits the SIMD-friendly layout

Number of Models (Log scale)
1 2 4 8 16 32 64 128

4)
ADAGRAD is ~3x

slower due to the
use of extra state

Time Per Pass Per Model (Log scale)

_\ J
. L RCVIVv2haos
. < 103 labels per
4 ™ sample
«-Hogwild multi-optimized === ADAGRAD-Hogwild multi-optimized
Hogwild single-optimized ©® ADAGRAD-Hogwild single-optimized

X HogBatch single-optimized

Fig. 4: Time per pass Per Model, scaling with number of models
Using RCV1-v2

35

Comparison to State-of-the-Art

O The authored compared their implementation with BidMach
[2], a general purpose machine learning framewaork

O Infel Xeon E5-2680 Sandy Bridge at 2.7 GHz

O NVIDIA Titan X

O Same parameters and ADAGRAD are used for comparison

O For single model performance, HogBatch is ~100x better than
BidMach's CPU, and significantly faster than its GPU

TABLE V: Single model comparison using RCV1-v1-test dataset

Implementation Hardware Time/Pass (ms)

BidMach TITAN X 723 . .)
BidMach Sandy Bridge 14,190 BidMach is not so

CPU optimized (Mini-Batch) Sandy Bridge 289 optimized for single
CPU optimized (Hogwild) Sandy Bridge 253 model and CPU, as the
CPU optimized (HogBatching) Sandy Bridge 147 developers mention y
CPU optimized (HogBatching) Haswell 111

36

Comparison to State-of-the-Art

O For multiple models,
O Hogwild on Sandy Bridge is on par with the GPU

O Hogwild on Haswell slightly beats the GPU

TABLE VI: Multi model comparison using RCV1-v1-test dataset

Hogwild

Implementation =~ Hardware Models Time / Pass (ms)
BidMach TITAN X 103
BidMach Sandy Bridge 103
CPU optimized Sandy Bridge 103
CPU optimized Haswell 103
CPU optimized 2x Haswell 103

O~
51(52) models
per CPU

]

37

Related Work

O Hogwild [1] by F. Niu et al. provided a strong foundation of the
paper

O M. Zinkevich et al. offered parallel SGD that splits the workload
and each machine perform SGD on a subset of data before
averaging [13]

0O C. De Sa et al. described an analysis of Hogwild-like method
Buckwild [16]

O Ce Zhang and C. R¢é et al. presented DimmWitted,
characterizing state of the art SGD on NUMA [17]

38

Conclusions

O The authors presented HogBatch, which achieves superior
hardware/statistical efficiency and up to near linear scalability

O HogBatch is friendly towards future many-core platforms

O As future work, the authors intfend to explore the use of
HogBatch on other ML problems

O Stochastic coordinate descent algorithms
O Collaborative filtering problems
O Non-convex problems

39

