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Selected Papers 
STRADS: A Distributed Framework for Scheduled Model Parallel 
Machine Learning�

¤  J. K. Kim, Q. Ho, S. Lee, X. Zheng, W. Dai, G. A. Gibson, and E. 
P. Xing. STRADS: A Distributed Framework for Scheduled Model 
Parallel Machine Learning. In Proceedings of the Eleventh 
European Conference on Computer Systems, EuroSys ’16, 
pages 5:1?5:16, New York, NY, USA, 2016. ACM. 
¤  Model parallelism solves these problems that data parallelism 

doesn’t 

¤  Naïve concurrent updates violate dependency across 
parameters 

¤  Parameters converge at different rates 

¤  The authors propose Scheduled Model Parallelism (SchMP) and its 
framework STRADS 

¤  SchMP LDA topic modeling and Lasso achieved 10x and 5x 
faster convergence than recent baselines 
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Selected Papers 
STRADS: A Distributed Framework for Scheduled Model Parallel 
Machine Learning�

¤  The user implements schedule(), 
update() and aggregate() 
¤  schedule() select parameters to 

update 

¤  Approximate graph 
partitioning algorithm can be 
implemented to solve the 
uneven convergence rate 
problem 

¤  update() compute intermediate 
result to update the model 

¤  aggregate() collect the 
intermediate result and update 
the model �

Algorithm 1 Generic SchMP ML program template
A: model parameters
Dp: local data stored at worker p
P : number of workers
Function schedule(A,D):

Generate P parameter subsets [S1, . . . ,SP ]
Return [S1, . . . ,SP ]

Function update(p,Sp, Dp, A): // In parallel over p = 1..P
For each parameter a in Sp:

Rp[a] = updateParam(a,Dp)
Return Rp

Function aggregate([R1, . . . , RP ], A):
Combine intermediate results [R1, . . . , RP ]
Apply intermediate results to A

Algorithm 2 SchMP Dynamic, Prioritized Lasso
X,y: input data
{X}p, {y}p: rows/samples of X,y stored at worker p
�: model parameters (regression coefficients)
�: `1 regularization penalty
⌧ : G edges whose weight is below ⌧ are ignored
Function schedule(�,X):

Pick L > P params in � with probability / (��a)
2

Build dependency graph G over L chosen params:
edge weight of (�a,�b) = correlation(xa

,x

b)
[�G1 , . . . ,�GK ] = findIndepNodeSet(G, ⌧ )
For p = 1..P :

Sp = [�G1 , . . . ,�GK ]
Return [S1, . . . ,SP ]

Function update(p,Sp, {X}p, {y}p,�):
For each param �a in Sp, each row i in {X}p:

Rp[a] += x

i
ay

i �
P

b 6=a x
i
ax

i
b�b

Return Rp

Function aggregate([R1, . . . , RP ],S1,�):
For each parameter �a in S1:

temp =
PP

p=1 Rp[a]
�a = S(temp,�)

on subsequent iterations, we should make their updated val-
ues available as soon as possible, rather than waiting until
the end of the pipeline depth s.

4. SchMP Implementations of ML Programs
We describe how two ML algorithms can be written as
Scheduled Model Parallel (SchMP) programs. The user im-
plements schedule(), update(), aggregate(); al-
ternatively, STRADS provides pre-implemented schedule()
functions for some classes of SchMP programs. Algorithm 1
shows a typical SchMP program.

4.1 Parallel Coordinate Descent for Lasso
Lasso, or `1-regularized least-squares regression, is used
to identify a small set of important features from high-
dimensional data. It is an optimization problem

min
�
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P
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Figure 4: Random Model Parallel Lasso: Objective value (lower
the better) versus processed data samples, with 32 to 256 workers
performing concurrent updates. Under naive (random) model par-
allel, higher degree of parallelism results in worse progress.

where k�k1 =
P

d

a=1 |�a

| is a sparsity-inducing `1-regularizer,
and � is a tuning parameter that controls the sparsity level
of �. X is an N -by-M design matrix (xi represents the i-th
row, x

a

represents the a-th column), y is an N -by-1 obser-
vation vector, and � is the M -by-1 coefficient vector (the
model parameters). The Coordinate Descent (CD) algorithm
is used to solve Eq. (4), and thus learn � from the inputs
X,y; the CD update rule for �

a

is
�
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where S(·,�) is a soft-thresholding operator [11].
Algorithm 2 shows an SchMP Lasso that uses dynamic,

prioritized scheduling. It expects that each machine locally
stores a subset of data samples (which is common practice
in parallel ML), however the Lasso update Eq. (5) uses a
feature/column-wise access pattern. Therefore every worker
p = 1..P operates on the same scheduled set of L param-
eters, but using their respective data partitions {X}p, {y}p.
Note that update() and aggregate() are a straightfor-
ward implementation of Eq. (5).

We direct attention to schedule(): it picks (i.e. pri-
oritizes) L parameters in � with probability proportional
to their squared difference from the latest update (their
“delta”); parameters with larger delta are more likely to
be non-converged. Next, it builds a dependency graph over
these L parameters, with edge weights equal to the correla-
tion2 between data columns x

a

,x

b. Finally, it removes all
edges in G below a threshold ⌧ > 0, and extracts nodes �Gk

that do not have common edges. All chosen �Gk are thus
pairwise independent and safe to update in parallel.

Why is such a sophisticated schedule() necessary?
Suppose we used random parameter selection [5]: Fig-
ure 4 shows its progress, on the Alzheimer’s Disease (AD)
data [40]. The total compute to reach a fixed objective
value goes up with more concurrent updates — i.e. progress
per unit computation is decreasing, and the algorithm has
poor scalability. Another reason is uneven parameter con-
vergence: Figure 5 shows how many iterations different
parameters took to converge on the AD dataset; > 85% of
parameters converged in < 5 iterations, suggesting that the
prioritization in Algorithm 2 should be very effective.
Default schedule() functions: The squared delta-based
parameter prioritization and dynamic dependency check-

2 On large data, it suffices to estimate the correlation with a data subsample.
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Selected Papers 
GeePS: Scalable deep learning on distributed GPUs with a GPU-
specialized parameter server�

¤  H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing. 
GeePS: Scalable deep learning on distributed GPUs with a 
GPU-specialized parameter server. In Proceedings of the 
Eleventh European Conference on Computer Systems, EuroSys 
’16, pages 4:1?4:16, New York, NY, USA, 2016. ACM. 
¤  Training DNN on large number of GPUs is insufficient due to data 

movement overhead, GPU stalls, and limited GPU memory 
¤  The authors proposed GeePS, a parameter server implementation 

for distributed deep learning 
¤  GeePS manages the location of DNN parameters and local 

data(such as Input data and intermediate data) in 
background 

¤  GeePS achieved 13x speedup on 16 GPUs 
¤  GeePS achieved higher throughput on four GPUs than 108 

CPU-only machines 
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Method name Input Description Blocking
Read list of keys and data staleness bound request a buffer, filled with parameter data yes
PostRead buffer from Read call release the buffer no
PreUpdate list of keys request an empty buffer, structured for parameter data yes
Update buffer from PreUpdate call release the buffer and save the updates no
LocalAccess list of keys for local data request a buffer, (by default) filled with local data yes
PostLocalAccess buffer from LocalAccess call release the buffer and (by default) save the data in it no
TableClock table ID commit all updates to one table no

Table 1. GeePS API calls used for access to parameter data and GeePS-managed local data.

Swapping data to CPU memory when it does not fit.
The parameter server client library will be able to manage
all the GPU memory on a machine, if the application keeps
all its local data in the parameter server and uses the PS-
managed buffers. When the GPU memory of a machine is not
big enough to host all data, the parameter server will store
part of the data in the CPU memory. The application still
accesses everything through GPU memory, as before, and
the parameter server library will do the data movement for
it. When the application Reads parameter data that is stored
in CPU memory, the parameter server will perform this read
using CPU cores and copy the data from CPU memory to an
allocated GPU buffer, likewise for local data Reads. Figure 7
illustrates the resulting data layout in the GPU and CPU
memories.

Pinned local data

Staging memory
for input data batch

Parameter 
server shard 0

Staging memory for 
parameter cache

GPU memoryCPU memory
Network

Access buffer pool

Local data
(CPU part)

Parameter cache
(CPU part)

Pinned param cache

Input data file
(training data)

Figure 7. Parameter cache and local data partitioned across
CPU and GPU memories. When all parameter and local data
(input data and intermediate data) cannot fit within GPU memory,
our parameter server can use CPU memory to hold the excess.
Whatever amount fits can be pinned in GPU memory, while the
remainder is transferred to and from buffers that the application can
use, as needed.

GPU/CPU data movement in the background. Copy-
ing data between GPU and CPU memory could significantly
slow down data access. To minimize slowdowns, our param-
eter server uses separate threads to perform the Read and
Update operations in the background. For an Update oper-
ation, because the parameter server owns the update buffer,
it can apply the updates in the background and reclaim the
update buffer after it finishes. In order to perform the Read
operations in the background, the parameter server will need
to know in advance the sets of parameter data that the ap-

plication will access. Fortunately, iterative applications like
neural network training typically apply the same parameter
data accesses every iteration [11], so the parameter server
can easily predict the Read operations and perform them in
advance in the background.

3.4 Eschewing asynchrony
Many recent ML model training systems, including for neural
network training, use a parameter server architecture to
share state among data-parallel workers executing on CPUs.
Consistent reports indicate that, in such an architecture,
some degree of asynchrony (bounded or not) in parameter
update exchanges among workers leads to significantly faster
convergence than when using BSP [3, 7, 10, 14, 19, 24,
32]. We observe the opposite with data-parallel workers
executing on GPUs—while synchronization delays can be
largely eliminated, as expected, convergence is much slower
with the more asynchronous models because of reduced
training quality. This somewhat surprising observation is
supported and discussed further in Section 5.4.

4. GeePS implementation
This section describes GeePS, a GPU-specialized parameter
server system that implements the design aspects described
in Section 3.

4.1 GeePS data model and API
GeePS is a C++ library that manages both the parameter data
and local data for GPU-based machine learning applications
(such as Caffe). The distributed application program usually
creates one ML worker process on each machine and each of
them links to one instance of the GeePS library. Algorithm 1
gives an example structure of a deep learning application
using GeePS. The ML application worker often runs in a
single CPU thread that launches NVIDIA library calls or
customized CUDA kernels to perform computations on GPUs,
and it calls GeePS functions to access and release GeePS-
managed data. The GeePS APIs are summarized in Table 1.

GeePS manages all data as a collection of rows indexed
by keys. The rows are then logically grouped into tables, and
rows in the same table share the same attributes (e.g., data
age). In our current implementation, each row is defined as
a fixed sized array of float values, allowing efficient cross-
machine communication without any marshalling. In our

Selected Papers 
GeePS: Scalable deep learning on distributed GPUs with a GPU-
specialized parameter server�

1.  GeePS collect access 
information of buffers on GPU 
memory 
¤  Since training DNN is iterative, 

these access pattern is static 

2.  A GeePS thread performs CPU-
GPU data movement in 
background, based on the 
collected access information 
¤  If all data don’t fit in GPU 

memory, GeePS utilize buffer pool 
to swap buffers between CPU 
and GPU dynamically 

…�

deep learning application, because the model parameters (i.e.,
connection weights of each layer) can have different sizes,
we store each model parameter as multiple rows in the same
table.

GeePS implements the read and update operations with
PS-managed buffers for parameter data access, and a pair of
operations for local data access, with which the application
can directly modify the accessed local data without an ex-
plicit update operation. GeePS also provides a TableClock
operation for application workers to signal the completion of
per-table updates, and the data age of a table (and the rows
in it) is defined as the number of times that the TableClock
operation is called on that table by all workers. Among all the
API calls, Read, PreUpdate, and LocalAccess are block-
ing, forcing the application worker to wait when data or buffer
space is not ready, and the other calls are all asynchronous
and return immediately. By making the application worker
wait on Read, GeePS supports three execution synchrony
models: BSP, SSP [19], and Asynchrony.

Some of our specializations (pre-built indices, background
Read, and data placement decisions) exploit knowledge of the
operation sequence of the application. Previous work shows
that one can easily get such operation sequence information
from many iterative ML applications (including deep learn-
ing), because they do the same (or nearly the same) sequence
of operations every iteration [11]. GeePS implements an op-
eration sequence gathering mechanism like that described by
Cui et al. [11]. It can gather the operation sequence either
in the first iteration or in a virtual iteration. For example,
in Algorithm 1, before the real training iterations start, the
application performs a virtual iteration, with all GeePS calls
being marked with a virtual flag, so that the operations are
only recorded by GeePS but no real actions are taken. GeePS
uses the gathered operation sequence knowledge as a hint
to build the data structures, build the access indices, make
GPU/CPU data placement decisions, and perform prefetching.
Since the gathered access information is used only as a hint,
knowing the exact operation sequence is not a requirement
for correctness, but a performance optimization.1

4.2 GeePS architecture
Storing data. GeePS shards the parameter data across all
instances, and each GeePS instance stores one shard of the
parameter data in its parameter server shard. The parameter
server shards are not replicated, and fault tolerance is handled
by checkpointing. In order to reduce communication traffic,
each instance has a parameter cache that stores a local

1 For most DNN applications (including CNN and RNN), the application
accesses all model parameters every mini-batch, so the gathered information
is exact. For some applications with sparse training data (e.g., BOW
representation for NLP tasks), the bottom layer of the network might just
use a subset of the weights. Even for these tasks, the operation sequence
of a whole epoch still repeats. The operation sequence only changes when
the training data is shuffled across epochs, and, for this special case, we can
choose to prefetch all the parameter data that can possibly be used, when
there is enough memory.

Algorithm 1 A DNN application with GeePS
L← number of layers in the network
paramDataKeys← decide row keys for param data
localDataKeys← decide row keys for local data
# Report access information with a virtual iteration
TRAINMINIBATCH(null, virtual = yes)
# Real training iterations
while not done do

TRAINMINIBATCH(nextTrainData, virtual = false)
end while
function TRAINMINIBATCH(trainData, virtual)

# Forward pass
for i = 0 ∼ (L− 1) do

paramDataPtr ←
geeps.Read(paramDataKeysi, virtual)

localDataP tr ←
geeps.LocalAccess(localDataKeysi, virtual)

if not virtual then
Setup layeri with data pointers
Forward computation of layeri

end if
geeps.PostRead(paramDataPtr)
geeps.PostLocalAccess(localDataP tr)

end for
# Backward pass
for i = (L− 1) ∼ 0 do

paramDataPtr ←
geeps.Read(paramDataKeysi, virtual)

paramUpdateP tr ←
geeps.PreUpdate(paramDataKeysi, virtual)

localDataP tr ←
geeps.LocalAccess(localDataKeysi, virtual)

if not virtual then
Setup layeri with data pointers
Backward computation of layeri

end if
geeps.PostRead(paramDataPtr)
geeps.Update(paramUpdateP tr)
geeps.PostLocalAccess(localDataP tr)
geeps.TableClock(table = i, virtual)

end for
end function

snapshot of the parameter data, and the parameter cache
is refreshed from the parameter server shards, such as at
every clock for BSP. When the application applies updates
to the parameter data, those updates are also stored in the
parameter cache (a write-back cache) and will be submitted
to the parameter server shards at the end of every clock
(when a TableClock is called). The parameter cache has two
parts, a GPU-pinned parameter cache and a CPU parameter
cache. If everything fits in GPU memory, only the GPU
parameter cache is used. But, if the GPU memory is not big
enough, GeePS will keep some parameter data in the CPU
parameter cache. (The data placement policies are described
in Section 4.4.) Each GeePS instance also has an access buffer
pool in GPU memory, and GeePS allocates GPU buffers for
Read and PreUpdate operations from the buffer pool. When
PostRead or Update operations are called, the memory will
be reclaimed by the buffer pool. GeePS manages application’s
input data and intermediate states as local data. The local
data also has a GPU-pinned part and a CPU part, with the
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Selected Papers �

¤  S. Sallinen, N. Satish, M. Smelyanskiy, S. Sury, C. Re. High 
Performance Parallel Stochastic Gradient Descent in Shared 
Memory. IEEE International Parallel & Distributed Processing 
Symposium (IPDPS), 2016. 
¤  Stochastic Gradient Descent (SGD) is a popular optimization 

method used to train machine learning models 

¤  Existing parallel SGD implementations may reduce hardware 
efficiency and/or statistical efficiency as scale 

¤  The authors proposed a new, scalable, communication-avoiding, 
many-core friendly implementation of SGD, HogBatch 
¤  HogBatch is a combination of Hogwild and mini-batching 

6�



Introduction 
Stochastic Gradient Descent (SGD)�

¤  Stochastic Gradient Descent (SGD) 
¤  A popular optimization method to train machine learning models 

 

¤    

¤    

¤    

¤    

wt+1 = wt � at Gradient(wt, u) (1)

wt 2 Rd (2)
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Gradient : Rd ⇥ Rd ! Rd (4)
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T 2 Rn⇥d (5)
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: learning rate �
: d-features model �

: n-samples d-features dataset�
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-at Gradient(wt, u) �
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Introduction 
Stochastic Gradient Descent (SGD)�

¤  SGD requires less computational cost to update than other 
traditional approaches  
¤  Machine learning problems typically do not require updating 

with very high accuracy 

¤  cf. Interior-Point Method, Newton Method 

¤  SGD is inherently sequential with dependency across 
iterations 
¤  Some variants exposes extra parallelism, which come at the 

loss of statistical and hardware efficiency 

¤  Statistical: the number of iterations to converge is increased 

¤  Hardware: the amount of inter-core communication and 
cache miss is increased 
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Introduction 
Stochastic Gradient Descent (SGD)�

¤  SGD can be modified in a variety of ways 
1.  Data access and parallelization strategy 

¤  Hogwild 

¤  Mini-batching 
2.  Objective function (loss function) 

¤  Linear, logistic, hinge loss, least squares, … 

3.  How to compute the gradient and fix learning rates  

¤  ADAGRAD tunes learning rate automatically 

¤  Stochastic Average Gradient (SAG) uses an average gradient 
to do model updates 

¤  This paper focuses on 1., the fundamental algorithm that affect 
hardware efficiency 
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Parallelizing SGD�

¤  Parallelizing across… 
¤  Features: Since the problem is typically sparse, there are small 

amounts of parallelism 
¤  Non-zero features: Since elements of w is written randomly in 

parallel, significant inter-core traffic happen to maintain cache 
coherence 

¤  Samples: Updates is computed with stale w, which may degrade 
statistical efficiency 
¤  Staleness: the number of updates to the global model that 

happen between 
¤  “the time the model is read by a thread” to 
¤  “the time the model update is written back by the thread” 
¤  Sequential SGD always provides zero staleness 

¤  Hogwild, Mini-Batching and HogBatch 
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Parallelizing SGD 
Mini-Batching�

¤  S samples (batch) are combined to do one model update 

¤  The batch can be divided across threads 

1.  Each thread update its private gradient vector for the part of 
the batch independently 

2.  Threads update the global model synchronously  

¤  Mini-batching breaks the sequential semantics of SGD 

¤  Each gradient of sample u+i uses wt instead of wt+i

¤  This affects the statistical efficiency 

wt+1 = wt � at Gradient(wt, u) (1)

wt 2 Rd (2)

at > 0 (3)

Gradient : Rd ⇥ Rd ! Rd (4)

U = (u1u2 · · ·un)
T 2 Rn⇥d (5)

wt+S = wt � at

u+SX

b=u

Gradient(wt, b) (6)

1
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Parallelizing SGD 
Mini-Batching�

of choice for datasets with widely varying sparsity. This
method is detailed in sections IV and VI.

For the rest of the paper, we provide a complete evaluation
of each method on real world datasets, including comparing
performance with parallel scaling, in section VII. We con-
clude with a comparison to the state of the art framework
BidMach [2], offering at least a 6.5x improvement for single
model Logistic Regression, in section IX.

II. THE MANY FACES OF SGD
The baseline Stochastic Gradient Descent (SGD) approach

can be modified in a variety of ways. First, the exact gradient
that needs to be computed depends on the loss function (lin-
ear, logistic, hinge loss, least squares, etc). Second, the data
access and parallelization strategy can vary, where different
approaches such as Hogwild [1] and Mini-Batching perform
model updates using varying number of data samples at
different times during a pass over the dataset. Third, the
choice of how to compute the gradient and fix learning rates
can also vary, and in fact techniques such as ADAGRAD [3]
can help remove learning rate as a knob required to be tuned.
One can also adopt extensions to SGD such as Stochastic
Average Gradient (SAG) [4] that uses an average gradient of
the dataset based on previous iterations to do model updates.

In this paper, we focus on the analysis and improvement of
the parallelization of these algorithms in fundamental ways
that affect the hardware efficiency. For instance, while the
choice of loss function changes the computation, the access
patterns and model updates are very similar. Further, learning
rate and adaptive gradient strategies such as ADAGRAD
and/or SAG can be added on to existing baseline SGD
algorithms, without much impact on the actual algorithm
structure, or overall application pattern.

Due to these factors, we focus on improving a relatively
simple model for most of the results in this paper: the
classical SGD algorithm as used in Logistic Regression. Our
novel technique proposed in this paper focuses on reducing
the staleness of updates to the model, as well as techniques
to help increase hardware efficiency. We believe that our
results are representative of other use cases of SGD; in order
to help show this, we performed many of our evaluations
with the ADAGRAD learning rate as an example, and found
comparable efficiency improvements with our approach. We
present some of these results in Section VIII.

III. PARALLELIZING SGD
Semantically, SGD is an inherently sequential algorithm.

The update (where Gradient is a function that computes the
gradient of the dataset at row (also called sample) u)

wt+1 = wt − at Gradient(wt, u) (2)
has a chain dependency, such that the next w update (t+1)
is directly dependent on the previous (t). At first sight,
since w is typically a vector of size d, the number of
features, there appears to be data parallelism across the
features. However, since SGD is typically performed on
sparse problems, the sparsity pattern of the input sample row
u dictates the number and position of the update to w, with
different samples offering different and often small amounts
of parallelism. Parallelizing across non-zero features also
means that elements of w are written randomly in parallel,

Algorithm 1: Mini-Batch SGD pseudocode for one datapass.

1 for (st = 0; st < num_samples/SIZE; st += SIZE) {
2 #pragma omp parallel for schedule(dynamic)
3 for (index = st; index < SIZE; index++) {
4 // Sparse vector operation.
5 g_tid[TID] += a * Gradient(model, index);
6 } // (implicit thread barrier)
7
8 #pragma omp parallel for schedule(static)
9 for (f = 0; f < num_features; f++) {

10 for (t = 0; t < NUM_THREADS; t++)
11 model[f] = model[f] - g_tid[t][f];
12 } // (implicit thread barrier)
13 }

which can cause significant inter-core traffic to maintain
coherence on cache-coherent architectures. For many sparse
datasets, these factors can be quite limiting to scaling.

When parallelizing across samples, an update may be
based on a model w that is not as up to date as it could
be. We quantify this as the staleness, or number of updates
to the global model that happen (by potentially the same or
different threads) between the time the model is read by a
thread to the time that the model update is written back by
that thread. The golden standard is serial SGD, wherein each
update is directly a descendant of the previous and thus has
no staleness. These properties will be further discussed in
section V.

Interestingly, for sparse datasets if two samples, a followed
by b, have non-intersecting non-zero indices, they will then
update independent indices of w. Such updates are actually
independent; when done in parallel, this maintains sequential
convergence properties. This allows an update which is based
on a stale model to become less drastic, since the effective
indices may be less stale.

A. Mini-Batching

Mini-Batching is a strategy to enable parallelization across
samples during SGD updates. A batch of a small number of
samples from the data set is taken and a combined gradient is
formed for all the samples together. A single update is then
performed to the model for the batch. For a batch size of S
and a starting sample u, the update follows the equation:

wt+S = wt − at

u+S∑

b=u

Gradient(wt, b) (3)

Our notation above for wt+S indicates that mini-batching
internally performs multiple gradient accumulations (denoted
by the summation), but only performs a single update at the
end of S data items. Note that this breaks the sequential
semantics of Equation 2 – each gradient in the batch b ∈ S
is computed based on the gradient at wt above, while it
would have been computed on the basis of wt+b in Equation
2. This has consequences for the staleness of updates, i.e.
the model being used to compute the gradient can be quite
old depending on S. This affects the statistical efficiency
of the update and hence convergence. However, it does
enable parallelism across the samples of the batch: threads
can independently update a private gradient vector for their
section of the batch. Upon completion of the batch, threads
will work together to apply a reduction and update from all
threads into the shared w vector, the model. The parallel
algorithm in pseudocode is presented in Algorithm 1 (the
vectors are not shown for simplicity).
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Algorithm 1: Mini-Batch SGD pseudocode for one datapass �
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Parallelizing SGD 
Mini-Batching�

¤  Pros 
¤  One update per batch size: Inter-core traffic is reduced 

¤  Thread independent tasks: Irregular access of the sparse vector 
operation is totally private 

¤  Cons 
¤  Reduction: All threads need to reduce their private gradients to 

do update 

¤  Thread synchronization: Threads have to synchronize before/after 
the reduction  

¤  Updates are stale: The updates within the batch become 
increasingly stale 
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Parallelizing SGD 
Hogwild�

¤  Each thread perform their own asynchronous model updates 
¤  Although data race conditions may occur, Hogwild works well for 

very sparse datasets 

¤  In sparse datasets, many samples has non-zero elements on 
mostly different indices 

Algorithm 2: Hogwild SGD pseudocode for one datapass �
Algorithm 2: Hogwild SGD pseudocode for one datapass.

1 #pragma omp parallel for schedule(dynamic)
2 for (index = 0; index < num_samples; index++) {
3 // Sparse vector operation.
4 model = model - a * Gradient(model, index);
5 }

By parallelizing across samples, Mini-Batching induces two
important positive characteristics:
+ One update per batch size: There is a reduction in

the total amount of work done – the number of updates
(writes) to the model w per data pass is now the number
of samples divided by the batch size.

+ Thread independent tasks: Since threads have their own
subset of samples to execute on, they do not need to
communicate until the reduction step. Moreover, it is easy
to privatize the partial gradient vectors and have one vector
per thread. Since these vectors can be accessed irregularly
for sparse problems, it is highly advantageous to keep
this irregular access to a thread-private structure and avoid
cross-core traffic on cache-coherent architectures.

However, Mini-Batching suffers from several drawbacks:
- Reduction: As mentioned, all threads need to combine

their partial solutions to compute the update to the model
vector. This reduction step is added work.

- Thread Synchronization: The method has to do two
thread synchronizations per batch: the first after all threads
complete their local updates to the model, and the second
after the reduction step.

- Updates are stale: Since the model update is not applied
until the end of the batch, updates within the batch become
increasingly stale – being based on an out of date model
– such that the last update aggregated within the batch is
stale by the batch size.

B. Hogwild

Hogwild [1], one of the most popular methods for paral-
lelizing SGD, is a data pass approach for SGD that offers
the interesting characteristic that threads do not have to
synchronize, and in fact can perform their own asynchronous
model updates. In Hogwild, as show in algorithm 2, each
thread takes a sample at a time and performs an update
to the global model w without any synchronization with
other threads. These updates from different threads can po-
tentially overwrite each other, leading to data race conditions.
Hogwild works well for very sparse data sets, where many
samples are actually near-independent since they write to
mostly different indices of the model (e.g. the intersect of
non-zeros is generally small).
Hogwild provides two important characteristics:
+ Thread asynchronicity: Threads perform independent

work and do not have to synchronize. There is no need
for any reduction of updates across the threads.

+ Minimum staleness: The computation of the gradient
at any time is based on the current state of the model
visible to the thread at that time. Since each thread directly
performs updates to this shared model vector, the values
read are only as old as the communication latency between
threads, which is quite low as compared to Mini-Batch
SGD.

Algorithm 3: HogBatch SGD pseudocode for one datapass.

1 #pragma omp parallel for schedule(dynamic)
2 for (st = 0; st < num_samples/SIZE; st += SIZE) {
3 for (index = st; index < SIZE; index++) {
4 // Sparse vector operation.
5 g_tid[TID] += a * Gradient(model, index);
6 }
7
8 for (f = 0; f < num_features; f++)
9 model[f] = model[f] - g_tid[TID][f];

10 }

Hogwild suffers from two problems:
- Race Conditions: In this algorithm, updates to the model

are somewhat chaotic due to the lock-free design: a thread
can be updating the value at a particular index in the model
while another thread may be reading/writing from the same
location. It is quite possible that parts of the update can
be lost, however, the chance of conflict gets smaller as the
problem gets more sparse.

- Inter-core communication: Although there is no direct
communication across threads, all threads issue both read
and write requests to a single, common model vector.
On cache-coherent architectures, this can cause ”ping-
ponging” of the vector. Such a phenomenon happens when
multiple threads store private copies of the same cache line,
and updates from any thread to the cache line invalidates
all other copies of that line – the relevant cores may then
need to pull in the updated cache line, leading to high
cross-core traffic.
In fact, this problem is quite severe even if the data sets
are sparse - there can be false cache line sharing cases
where invalidation occurs even if different threads update
different indices that happen to fall in the same cache line
(typically 64 bytes on x86 architectures). This problem
become extreme for small model vectors, dense problems,
or when parallelizing to a large amount of threads. In
our experiments, core-to-core communication alone could
consume up to 60% of the cycles during execution of
Hogwild.

IV. HOGWILD + MINI-BATCHING: HOGBATCHING

A previously unexplored topic is the use of both strate-
gies – Hogwild and Mini-Batching together – in order to
apply an update. In this work, we propose to combine
these approaches as follows: instead of threads working
synchronously together within a batch, we can have each
Hogwild thread work on their own full batch of samples. In
this method, which we call HogBatching, a thread would be
responsible for handling a batch of samples, continuously
aggregating them into a private gradient vector. Once a
thread completes its batch, it will apply the update to the
shared model vector and move on to its next batch without
synchronization between other threads. This method is shown
in algorithm 3.
Analyzing this new method, we note it actually takes the
positive aspects from each of the previous methods:
+ Thread asynchronicity: As in Hogwild, threads have

no need for direct inter thread communication, and do
not need to synchronize. Threads perform their assigned
batches independently, and there is no reduction of up-
dates.
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Parallelizing SGD 
Hogwild�

¤  Pros 
¤  Thread asynchronicity: Threads do not have to synchronize 

¤  Minimum staleness: Threads compute gradient with the current 
model visible to the thread at that time 

¤  Cons 
¤  Race conditions: It is quite possible that parts of the update can 

be lost due to race condition if the problem is not so sparse 

¤  Inter-core communication: High cross-core traffic occurs to keep 
cache coherence 

¤  In the authors’ experiments, core-to-core communication 
alone could consume up to 60% of the execution cycles�
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Hogwild + Mini-Batching: HogBatching�

¤  Each thread process one batch (Mini-Batching), and perform 
asynchronous model update (Hogwild) 
¤  In HogBatching, write to model is dense 

¤  g_tid[TID] is more dense than each gradient after the 
aggregation 

¤  Although the write invalidate cache lines, many new values 
are written per one invalidation Algorithm 2: Hogwild SGD pseudocode for one datapass.

1 #pragma omp parallel for schedule(dynamic)
2 for (index = 0; index < num_samples; index++) {
3 // Sparse vector operation.
4 model = model - a * Gradient(model, index);
5 }

By parallelizing across samples, Mini-Batching induces two
important positive characteristics:
+ One update per batch size: There is a reduction in

the total amount of work done – the number of updates
(writes) to the model w per data pass is now the number
of samples divided by the batch size.

+ Thread independent tasks: Since threads have their own
subset of samples to execute on, they do not need to
communicate until the reduction step. Moreover, it is easy
to privatize the partial gradient vectors and have one vector
per thread. Since these vectors can be accessed irregularly
for sparse problems, it is highly advantageous to keep
this irregular access to a thread-private structure and avoid
cross-core traffic on cache-coherent architectures.

However, Mini-Batching suffers from several drawbacks:
- Reduction: As mentioned, all threads need to combine

their partial solutions to compute the update to the model
vector. This reduction step is added work.

- Thread Synchronization: The method has to do two
thread synchronizations per batch: the first after all threads
complete their local updates to the model, and the second
after the reduction step.

- Updates are stale: Since the model update is not applied
until the end of the batch, updates within the batch become
increasingly stale – being based on an out of date model
– such that the last update aggregated within the batch is
stale by the batch size.

B. Hogwild

Hogwild [1], one of the most popular methods for paral-
lelizing SGD, is a data pass approach for SGD that offers
the interesting characteristic that threads do not have to
synchronize, and in fact can perform their own asynchronous
model updates. In Hogwild, as show in algorithm 2, each
thread takes a sample at a time and performs an update
to the global model w without any synchronization with
other threads. These updates from different threads can po-
tentially overwrite each other, leading to data race conditions.
Hogwild works well for very sparse data sets, where many
samples are actually near-independent since they write to
mostly different indices of the model (e.g. the intersect of
non-zeros is generally small).
Hogwild provides two important characteristics:
+ Thread asynchronicity: Threads perform independent

work and do not have to synchronize. There is no need
for any reduction of updates across the threads.

+ Minimum staleness: The computation of the gradient
at any time is based on the current state of the model
visible to the thread at that time. Since each thread directly
performs updates to this shared model vector, the values
read are only as old as the communication latency between
threads, which is quite low as compared to Mini-Batch
SGD.

Algorithm 3: HogBatch SGD pseudocode for one datapass.

1 #pragma omp parallel for schedule(dynamic)
2 for (st = 0; st < num_samples/SIZE; st += SIZE) {
3 for (index = st; index < SIZE; index++) {
4 // Sparse vector operation.
5 g_tid[TID] += a * Gradient(model, index);
6 }
7
8 for (f = 0; f < num_features; f++)
9 model[f] = model[f] - g_tid[TID][f];

10 }

Hogwild suffers from two problems:
- Race Conditions: In this algorithm, updates to the model

are somewhat chaotic due to the lock-free design: a thread
can be updating the value at a particular index in the model
while another thread may be reading/writing from the same
location. It is quite possible that parts of the update can
be lost, however, the chance of conflict gets smaller as the
problem gets more sparse.

- Inter-core communication: Although there is no direct
communication across threads, all threads issue both read
and write requests to a single, common model vector.
On cache-coherent architectures, this can cause ”ping-
ponging” of the vector. Such a phenomenon happens when
multiple threads store private copies of the same cache line,
and updates from any thread to the cache line invalidates
all other copies of that line – the relevant cores may then
need to pull in the updated cache line, leading to high
cross-core traffic.
In fact, this problem is quite severe even if the data sets
are sparse - there can be false cache line sharing cases
where invalidation occurs even if different threads update
different indices that happen to fall in the same cache line
(typically 64 bytes on x86 architectures). This problem
become extreme for small model vectors, dense problems,
or when parallelizing to a large amount of threads. In
our experiments, core-to-core communication alone could
consume up to 60% of the cycles during execution of
Hogwild.

IV. HOGWILD + MINI-BATCHING: HOGBATCHING

A previously unexplored topic is the use of both strate-
gies – Hogwild and Mini-Batching together – in order to
apply an update. In this work, we propose to combine
these approaches as follows: instead of threads working
synchronously together within a batch, we can have each
Hogwild thread work on their own full batch of samples. In
this method, which we call HogBatching, a thread would be
responsible for handling a batch of samples, continuously
aggregating them into a private gradient vector. Once a
thread completes its batch, it will apply the update to the
shared model vector and move on to its next batch without
synchronization between other threads. This method is shown
in algorithm 3.
Analyzing this new method, we note it actually takes the
positive aspects from each of the previous methods:
+ Thread asynchronicity: As in Hogwild, threads have

no need for direct inter thread communication, and do
not need to synchronize. Threads perform their assigned
batches independently, and there is no reduction of up-
dates.
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Algorithm 3: HogBatching SGD pseudocode for one datapass�
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Hogwild + Mini-Batching: HogBatching�

¤  Pros 
¤  Thread asynchronicity: As in Hogwild, threads do not have to 

synchronize 

¤  Thread independent tasks: As in Mini-Batching, threads has their 
own independent subset of samples to process 

¤  Reduced staleness: Staleness may be less than Mini-Batching, 
since other threads may update the global model in the middle of 
batch processing 

¤  Cons 
¤  Race conditions 
¤  Inter-core communication 

¤  However, these issues are drastically reduced than Hogwild 
because threads have to write the global model per batch�
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Hogwild + Mini-Batching: HogBatching�

Serial� Mini-Batch � Hogwild � HogBatch�
Parallelism� ×� ✓� ✓� ✓�
#update/#sample � × 1 � ✓ less than 1 � × 1 � ✓ less than 1 �
Inter-core 
communication� - ✓� ×� △�

Staleness � ✓ 0 � ×� ✓� △�
Model update � Sparse� Dense� Sparse� Dense�
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Staleness Properties �

¤  For Hogwild and HogBatch, the max-stale of the last sample of 
a batch increases as other threads update the model 
asynchronously 
¤  It is assumed that one model update takes the same amount of 

time 

¤  For Mini-Batch and HogBatch, the stale of the last sample is 
always more than the batch size + Reduced staleness: There is some staleness within the

batch as in regular Mini-Batching, but other threads may
asynchronously update the model vector in the middle of
a thread’s batch processing. In that case, the thread would
get a more current model in the middle of processing a
batch. This does not happen in regular Mini-Batch SGD.

+ One update per batch size: As in Mini-Batching, the
update frequency per pass is again reduced by a factor of
the batch size.

+ Thread independent tasks: Also as in Mini-Batching,
threads have their own independent subset of samples to
process. In addition, their work is stored in thread private
gradient vectors, which does not need to be shared with
other cores and thus is cache friendly.

Weaknesses: Although we addressed the negatives of re-
duction and synchronization, two other weaknesses inherited
from Hogwild and mini-batching need to be addressed:
first, the potential for asynchronicity conflicts, and second,
inter-core communication. These issues still remain, but are
drastically reduced: since threads aggregate model updates
to a local model vector and only write out the update once
per batch, the potential for conflicts is highly reduced. For
the same reason, most accesses to the global vector are now
reads – which results in less false sharing and inter-core
communication.

When a write is issued on completion of a batch, the write
is dense (similar to Mini-Batch SGD), instead of sparse as in
Hogwild (many sparse updates have already been aggregated
into one dense update during batch processing). Although
this of course invalidates the cache, the new cache line
contains many updated values instead of potentially only one.
Hence most of the cache line would actually be required
by the destination core (true sharing as opposed to false
sharing), reducing wasteful traffic.

Finally, the issue of staleness within the thread’s batch, still
remains. However, we address this issue in the next section.

V. STALENESS PROPERTIES

In table I, we show the staleness factors for each method.
In this table, we consider the minimum staleness for the final
sample in the batch, and the maximum staleness (which also
will be for the final sample in the batch). For asynchronous
methods, the minimum would come when a thread applies
their update and no other thread updates the model before the
next sample is processed. In the case of Hogwild, a sample
could be totally up to date (staleness of 0) in the best case,
or in the worst case could be out of date by a factor of the
number of threads. The worst case scenario for the staleness
of an update for Hogwild is that each other thread applies
their update to the model in the time between the model
is read and the time the model will be written. Note we
simplify (to show relativity between strategies) in the table
that processing a single update takes about the same amount
of time, and hence we will not encounter scenarios where
some threads make multiple updates in the same time as
others make a single update.

For Mini-Batching, the minimum and maximum are the
same - the final sample in the batch will always be out of
date by the size of the batch, since the model vector is not

TABLE I: Staleness Analysis. The number of threads is T,
the size of the Mini-Batch is S, and the size of the HogBatch
is HS.

Method
Min-Stale Max-Stale Example: T=8,
(For final update S=1024, HS=(S/T)
in batch) [min, max]

Hogwild 0 (T-1) [0, 7]

Mini-Batch S S [1024, 1024]

HogBatch HS (T*HS) [128, 1024]

updated until the batch completes, as all local thread updates
are aggregated and written back only at that point.

HogBatching has some similar properties to each of the
previous approaches – although the final sample in the batch
could be out of date by the batch size, all other threads could
write their updates in the meantime, causing the sample to
actually be fairly up to date in the global view. In the worst
case, it is similar to regular batching, since the update may
be completely out of date due to the asynchronicity.

A. Improving Staleness
There is a unique way to improve the staleness of both

batch style algorithms. We note that in line 5 of Mini-
Batching (Algorithm 1) and line 5 of HogBatching (Algo-
rithm 3), we calculate the gradient based on a read only
version of the model. It is important to keep the model read
only during this step, since we aggregate the update and only
apply it once per batch. However, note that in lines 11 and
9 respectfully, we simply directly subtract the aggregated
results from the model vector. So, before we compute the
gradient, we can actually locally subtract g tid[TID] from
the model, and calculate the gradient with this instead – in
effect, this is analogous to the thread continuously updating
it’s local view of the model vector with their own samples,
but without actually committing the write back to shared
memory.

This improves the staleness within the batch by a factor of
the work that each thread does within the batch – although
it will not see other thread updates, it will utilize its own
local ones. In table II, we show the effect of this. For
Mini-Batching, since each thread is responsible for an equal
portion of the batch size, the staleness is reduced by that
quantity. Although visually this does not seem like much of
a difference, the more stale a update is, the more useless that
the update is – an update that is only stale by 1 is much more
useful than an update stale by 100, and so on. In effect, this
modification gets rid of the ”tail end”, or worst staleness,
causing a significant improvement.

In HogBatching, this improvement is magnified – since
each thread’s batch is locally improved, the cross thread
updates seen are also improved, causing the best case sce-
nario of an update to be very recent. Note that having a
completely up-to-date model update is possible, although
extremely unlikely, due to the definition of asynchronicity. It
would require that all threads less one complete an update,
and then pause, in which case the final thread is actually
performing the equivalent of sequential SGD. Fortunately,
the worst case is also equally unlikely, since it requires all
other threads to complete their update but but similarly pause
before committing it, while the final thread continues.
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TABLE1: Staleness Analysis of the last sample of a batch 
T: #thread, S: Mini-Batch size, HS: HogBatch size�
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Staleness Properties 
Improving Staleness�

¤  For Mini-Batch and HogBatch, staleness can be reduced if 
each thread use model-g_tid[TID] instead of model to 
compute gradient 
¤  Intuitively each thread updates its local model 

¤  This causes a significant improvement on statistical efficiency 

¤  In their experiments, time to convergence is improved up to 
30%, especially for denser problems�
TABLE II: Improved Staleness Analysis. The number of
threads is T, the size of the Mini-Batch is S, and the size of
the HogBatch is HS.

Method
Min-Stale Max-Stale Example: T=8,
(For final update S=1024, HS=(S/T)
in batch) [min, max]

Hogwild 0 (T-1) [0, 7]

Mini-Batch (S) - (S/T) (S) - (S/T) [896, 896]

HogBatch (HS) - (HS) = 0 (T*HS) - (HS) [0, 896]

Overall, we find this enhancement to experimentally give
up to 30% improvement in time to convergence, especially
becoming important for denser problems. In addition, this
tweak also showcases a nice algorithmic relationship be-
tween Hogwild and HogBatching: In both cases, when T = 1,
the algorithms simply perform sequential SGD. In addition,
when the batch size HS = 1, HogBatching is equivalent to
Hogwild.

VI. IMPLEMENTATION OPTIONS WITH HOGBATCHING

A. Batch Size
One important parameter for HogBatching is the batch

size, for statistical efficiency. In tables I and II, we provide
an example batch size HS that is equal to the Mini-Batch
size divided by the number of threads – this is the basis for
the worst case staleness for HogBatching being the same as
for regular Mini-Batching. This makes intuitive sense: the
number of samples ”in flight”, or being processed during
one logical super-step, becomes equivalent to Mini-Batching
if each thread is working on S/T samples.

However, this is not necessarily the best choice for batch
size. Since the minimum staleness for HogBatching is much
smaller than Mini-Batching, the improved convergence al-
lows for a larger batch size. In practice, we find the optimal
batch size can lie anywhere between S/T to the full size S
depending on the sparsity of the data set and the value of T .

B. Improvements with Sparsity
For all algorithms (Hogwild, Mini-Batching and Hog-

Batching), a model update is computed based on an aggre-
gation of a few rows of the sparse input data set (as few
as one for Hogwild, and equal to the batch size otherwise).
Depending on the batch size, it is possible that these aggre-
gates (sums) of the sparse input rows will still be sparse (the
number of non-zero indices in the sum of sparse vectors is
the size of the set union of the non-zero indexes of each
vector). This sparsity in the model update can be exploited
to make model updates faster.

However, in order to allow for sparse model updates,
we need to keep track of the position of the non-zero
indices when aggregating the sparse rows of the input. We
tested two different methods of keeping track of non-zero
indices: (a) holding a bitmap of indices written during the
batch, updating it as each entry is aggregated; followed by
performing a bit scan to get non-zero indices; and (b) using
a map data structure to accumulating the indices that have
been written. It is important to note, however, that both
these techniques have overheads; indeed if the density of the
aggregated output is large enough, the gains from doing a

sparse update may not be enough to justify these overheads.
We experimented with these various strategies and found
that the extra work of keeping track of non-zero indices was
only useful for extremely sparse problems (we specifically
only found improvements for the two sparsest of the seven
datasets we consider in this work).

C. Hierarchical Parallelism
When enabling SMT threads on the CPU, we realized

an opportunity to further improve performance by using
a hierarchical parallelism structure. With two threads per
core, we have an opportunity to exploit the cache locality
between the threads. We begin by noting that in algorithm
3, there are actually two levels of available parallelism
– an ”outer” parallelism level where different batches are
processed asynchronously, and an ”inner” level where a
thread would perform updates on their local batch, currently
as in a serial SGD algorithm.

For runs with SMT, we set the two SMT threads per core
to index the same private gradient vector, as it will reside
in the same private cache. This reduced the total number
of private gradient vectors by half, and furthermore reduced
cache pressure, as the effective inter-core communication
was reduced as well.

Algorithm 4 shows a generalization of this algorithm,
beyond just SMT. We first start as in HogBatching, allowing
outer asynchronous parallelism, but have a group of threads
(rather than a single thread) be responsible for a batch.
The work within the group’s batch is performed as a small
Hogwild problem by the group’s workers, who index the
same group-private gradient vector. Once a group’s workers
complete their assigned samples, the workers within the
group apply the update to the shared model vector. In this
algorithm, synchronization occurs only between the workers
within the group (and in fact is not necessarily required), and
only when the group’s workers work together to apply the
single group update. In addition, the only shared memory
spanning groups is the model, whereas each group would
have a private memory location (shared among workers) for
the group gradient.

This abstraction to groups and workers is intended to
aid the effectiveness past SMT multi-threading and into
many core architectures, such as the Intel R⃝ Xeon Phi

TM

coprocessor1.

VII. EXPERIMENTAL ANALYSIS

A. Experimental Setup
Unless otherwise mentioned, the following was used for

the evaluations:
Hardware: We use a single socket Intel R⃝ Xeon R⃝ E5-2697
v3 Haswell based CPU, with 14 cores (28 threads including
Simultaneous Multi-Threading/SMT) running at 2.6 GHz.
Our machine has 64 GB RAM and runs Red Hat Enterprise
Linux Server release 6.5.
Software: We use custom end-to-end code written in C++
with OpenMP, and compiled with the Intel R⃝ C++ Compiler
15.0.2 with all optimizations enabled. We format in single

1Intel, Xeon and Intel Xeon Phi are trademarks of Intel Corporation in
the U.S. and/or other countries.
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TABLE II: Improved Staleness Analysis �
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Implementation Options with HogBatching�

¤  HS of HogBatching can be larger than S/T of Mini-Batching 
¤  It is because minimum staleness for HogBatching improves 

statistical efficiency 

¤  Experiments showed that the optimal HS can lie between S/T to S

¤  Model updates (g_tid[TID]) can be treated as a sparse 
format in either of two ways 

¤  Holding a bitmap of non-zero indices, and performing a bit 
scan to get the indices 

¤  Using a map data structure of the indices 

¤  Experiments showed that these strategies was only useful for 
extremely sparse problems 
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Implementation Options with HogBatching�

¤  SMT-aware hierarchical parallelism further improve 
performance 
¤  Two threads on a core share a private gradient vector (g_group) 

¤  This reduces cache pressure of the core�Algorithm 4: Many-Core HogBatch SGD pseudocode, for
one datapass.

1 GROUP_START = get_group_start(TID);
2 // Group parallel asynchronous
3 for (st = GROUP_START; st < GROUP_COUNT; st++) {
4 WORK_START = get_worker_start(st, TID);
5 // Worker parallel asynchronous
6 for (id = WORK_START; id < WORK_COUNT; id++) {
7 // Sparse vector operation.
8 g_group += a * Gradient((model + g_group), id);
9 }

10 sync(); // Sync threads in the group.
11
12 // All threads in the group perform the update.
13 for (f = TID; f < num_features; f += T_PER_GROUP)
14 model[f] = model[f] - g_group[f];
15 }

TABLE III: Experiment Datasets. The RCV1 datasets are
from [5], the others are from the LibSVM resources [6].

Dataset Name Examples Features NNZ Sparse% NNZ/Row Avg/Row

news20.binary 19,996 1,355,191 9,097,916 0.034 1 to 16,423 454.987
RCV1-v2 781,265 276,544 60,534,218 0.028 4 to 1,585 77.482
RCV1-v1-test 677,399 47,236 49,556,258 0.155 4 to 1,224 73.157
real-sim 72,309 20,958 3,709,083 0.245 1 to 3,484 51.295
w8a 64,700 300 753,862 3.884 1 to 114 11.652
connect4 67,557 126 2,837,394 33.333 42 to 42 42.000
covtype 581,012 54 6,940,438 22.121 9 to 12 11.945

precision values (the matrix as well as the labels), although
we have also received similar results with double precision.
We use the classic SGD update algorithm for Logistic
Regression unless otherwise specified.
Datasets: We perform evaluations on a wide range of
datasets with varying feature size (which is equivalent to
model size), as well as sparsity patterns. The datasets used
and their properties are shown in Table III.
Parameters: For each method, we do a combinatorial sweep
of the parameters of alpha (learning rate), and batch size,
and only present the best result. In addition, when using all
cores, we present the better result from enabling or disabling
SMT multi-threading, unless presented separately. We adjust
the learning rate per iteration for a sample index i to be
alpha/sqrt(i +D), where D is the iteration sum from the
previous data-passes: datapass number ∗ num samples.
Regularization: We apply L2 regularization for all
methods, with the Lambda value set to 1/num samples of
the dataset. We use a sparse optimization to regularization,
as described in [7].
Reporting: When reporting time, we discount the time for
loading data from disk. We measure the training time of each
method until it achieves a chosen Closeness to ”Optimal”
Loss – unless otherwise specified, this is 99.5%. We compute
the ”optimal” loss using L-BFGS [8], which is a second
order method and thus can eventually arrive at a model
with a machine precision gradient of zero for our convex
problem. We then evaluate the Closeness to Optimal Loss as
the percentage that the current loss is of this ”optimal” loss
value, with the function (2− |current|/|optimal|) ∗ 100%,
since the loss decreases to approach the optimal. We do not
present the time it takes for L-BFGS, since the goal of this
paper is not to compare first order methods to second order
ones.

When comparing the performance of different algorithms,
we chose time-to-convergence, in terms of closeness to opti-
mal loss, as the standard; this is because each algorithm has

TABLE IV: Speedup (as time to 99.5% convergence) of
HogBatch over best alternative solution out of Serial, Mini-
Batching, or Hogwild on a 14 core system.

Dataset Sparse% Features Best Alt vs Best Alt

news20.binary 0.034 1,355,191 Hogwild 0.86x
RCV1-v2 0.028 276,544 Hogwild 1.87x
RCV1-test 0.155 47,236 Hogwild 2.43x
real-sim 0.245 20,958 Hogwild 3.85x
w8a 3.884 300 Hogwild 8.97x
connect4 33.333 126 Mini-Batch 5.81x
covtype 22.121 54 Serial 20.16x

its own trade-off between statistical efficiency, the number
of passes over data for convergence (usually reported in the
literature), and hardware efficiency, time per datapass. In
reality, the effective time to convergence is actually a mixture
(product) of these two factors. When possible, the points on
figures represent one complete datapass, to help show the
difference in time per datapass.

B. Results of our Evaluation
Table IV shows the speedup of HogBatch over the best

performing alternative (Serial, Mini-Batching, or Hogwild).
As expected, Hogwild was generally the best performing
alternative, as it is usually faster than Mini-Batching for
sparse data sets due to its asynchronous nature. However,
with increasingly dense problems that have a small number
of features, Hogwild becomes worse than serial. The figures
in 1 show how closely each of these methods approach
”optimal solution” overtime, using all 14 cores, on the
RCV1-v1 and covtype datasets. We present these two in
depth since they have widely different properties: RCV1 is
highly sparse and has a relatively large model size, whereas
covtype has a very small model size and is slightly dense. In
our experiments, we found that other datasets had properties
that fell between these extremes.

In RCV1 1a, we see that Hogwild showed a similar
convergence behaviour to serial; in fact, it was equivalent in
number of data-passes at 8. Mini-Batching converged much
slower, as was expected, taking twice as many data-passes
at 16 – however, it was about twice as fast in time-per-pass
compared to Hogwild, leading to a near parity in overall
time-to-convergence. HogBatching took the advantages of
both – the low overall data-pass count (at 9), with about
half in time-per-pass compared to Hogwild. A similar con-
vergence behaviour was observed with our other datasets,
with the time-per-pass being improved drastically in some
cases: in covtype 1b, Hogwild and Mini-Batching when run
with all cores actually took longer to complete a datapass
than sequentially with one core, whereas HogBatching scaled
near-linearly while maintaining excellent convergence.

On the other hand, table IV shows that HogBatching is
not always the best strategy. In the news20 dataset, which
has an extremely large number of features and very high
sparsity, Hogwild slightly outperforms HogBatching, even
when sparse optimizations to HogBatching are applied. The
reason for this twofold. First, due to the large model size and
sparsity, it is extremely unlikely that samples will suffer from
the write conflict or false sharing. This reduces the amount of
core-to-core cache communication. Second, with a batching
strategy, there is the overhead of applying the local update
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Algorithm 4: Many-Core HogBatch SGD pseudocode, for one datapass �

Shared by 
threads in 

a core�

- �
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Experimental Analysis 
Experimental Setup �

¤  Hardware 
¤  Intel Xeon E5-2697 v3 Haswell @ 2.6 GHz 

¤  14 cores (28 threads including SMT) 

¤  64 GB RAM 

¤  Red Hat Enterprise Linux Server release 6.5 

¤  Software 
¤  Intel C++ Compiler 15.0.2, parallelized by OpenMP 

¤  All values are in single precision format 

¤  Logistic regression loss is used for SGD algorithm 

wt+1 = wt � at Gradient(wt, u) (1)

wt 2 Rd
(2)

at > 0 (3)

Gradient : Rd ⇥ Rd ! Rd
(4)

U = (u1u2 · · ·un)
T 2 Rn⇥d

(5)

wt+S = wt � at

u+SX

b=u

Gradient(wt, b) (6)

X

u2U

log(1 + exp(�yupu)) (7)

1

Label of sample u  
 ∈ {-1, 1}�

Dot product of  
model w and sample u�
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Experimental Analysis 
Experimental Setup �

¤  Datasets 
¤  Seven binary-labeled datasets with varying feature size and 

sparsity patterns 

-1  1:0.016563  2:0.016563  3:0.016563   4:0.016563 … 
-1  1:0.013067  2:0.013067  3:0.013067   5:0.013067 … 
-1 40:0.028421 54:0.028421 75:0.028421  81:0.028421 … 
-1 40:0.048057 57:0.048057 75:0.048057  97:0.048057 … 
-1 40:0.084515 75:0.084515 97:0.084515 103:0.084515 … 

First 5 samples of news20.binary �

Algorithm 4: Many-Core HogBatch SGD pseudocode, for
one datapass.

1 GROUP_START = get_group_start(TID);
2 // Group parallel asynchronous
3 for (st = GROUP_START; st < GROUP_COUNT; st++) {
4 WORK_START = get_worker_start(st, TID);
5 // Worker parallel asynchronous
6 for (id = WORK_START; id < WORK_COUNT; id++) {
7 // Sparse vector operation.
8 g_group += a * Gradient((model + g_group), id);
9 }

10 sync(); // Sync threads in the group.
11
12 // All threads in the group perform the update.
13 for (f = TID; f < num_features; f += T_PER_GROUP)
14 model[f] = model[f] - g_group[f];
15 }

TABLE III: Experiment Datasets. The RCV1 datasets are
from [5], the others are from the LibSVM resources [6].

Dataset Name Examples Features NNZ Sparse% NNZ/Row Avg/Row

news20.binary 19,996 1,355,191 9,097,916 0.034 1 to 16,423 454.987
RCV1-v2 781,265 276,544 60,534,218 0.028 4 to 1,585 77.482
RCV1-v1-test 677,399 47,236 49,556,258 0.155 4 to 1,224 73.157
real-sim 72,309 20,958 3,709,083 0.245 1 to 3,484 51.295
w8a 64,700 300 753,862 3.884 1 to 114 11.652
connect4 67,557 126 2,837,394 33.333 42 to 42 42.000
covtype 581,012 54 6,940,438 22.121 9 to 12 11.945

precision values (the matrix as well as the labels), although
we have also received similar results with double precision.
We use the classic SGD update algorithm for Logistic
Regression unless otherwise specified.
Datasets: We perform evaluations on a wide range of
datasets with varying feature size (which is equivalent to
model size), as well as sparsity patterns. The datasets used
and their properties are shown in Table III.
Parameters: For each method, we do a combinatorial sweep
of the parameters of alpha (learning rate), and batch size,
and only present the best result. In addition, when using all
cores, we present the better result from enabling or disabling
SMT multi-threading, unless presented separately. We adjust
the learning rate per iteration for a sample index i to be
alpha/sqrt(i +D), where D is the iteration sum from the
previous data-passes: datapass number ∗ num samples.
Regularization: We apply L2 regularization for all
methods, with the Lambda value set to 1/num samples of
the dataset. We use a sparse optimization to regularization,
as described in [7].
Reporting: When reporting time, we discount the time for
loading data from disk. We measure the training time of each
method until it achieves a chosen Closeness to ”Optimal”
Loss – unless otherwise specified, this is 99.5%. We compute
the ”optimal” loss using L-BFGS [8], which is a second
order method and thus can eventually arrive at a model
with a machine precision gradient of zero for our convex
problem. We then evaluate the Closeness to Optimal Loss as
the percentage that the current loss is of this ”optimal” loss
value, with the function (2− |current|/|optimal|) ∗ 100%,
since the loss decreases to approach the optimal. We do not
present the time it takes for L-BFGS, since the goal of this
paper is not to compare first order methods to second order
ones.

When comparing the performance of different algorithms,
we chose time-to-convergence, in terms of closeness to opti-
mal loss, as the standard; this is because each algorithm has

TABLE IV: Speedup (as time to 99.5% convergence) of
HogBatch over best alternative solution out of Serial, Mini-
Batching, or Hogwild on a 14 core system.

Dataset Sparse% Features Best Alt vs Best Alt

news20.binary 0.034 1,355,191 Hogwild 0.86x
RCV1-v2 0.028 276,544 Hogwild 1.87x
RCV1-test 0.155 47,236 Hogwild 2.43x
real-sim 0.245 20,958 Hogwild 3.85x
w8a 3.884 300 Hogwild 8.97x
connect4 33.333 126 Mini-Batch 5.81x
covtype 22.121 54 Serial 20.16x

its own trade-off between statistical efficiency, the number
of passes over data for convergence (usually reported in the
literature), and hardware efficiency, time per datapass. In
reality, the effective time to convergence is actually a mixture
(product) of these two factors. When possible, the points on
figures represent one complete datapass, to help show the
difference in time per datapass.

B. Results of our Evaluation
Table IV shows the speedup of HogBatch over the best

performing alternative (Serial, Mini-Batching, or Hogwild).
As expected, Hogwild was generally the best performing
alternative, as it is usually faster than Mini-Batching for
sparse data sets due to its asynchronous nature. However,
with increasingly dense problems that have a small number
of features, Hogwild becomes worse than serial. The figures
in 1 show how closely each of these methods approach
”optimal solution” overtime, using all 14 cores, on the
RCV1-v1 and covtype datasets. We present these two in
depth since they have widely different properties: RCV1 is
highly sparse and has a relatively large model size, whereas
covtype has a very small model size and is slightly dense. In
our experiments, we found that other datasets had properties
that fell between these extremes.

In RCV1 1a, we see that Hogwild showed a similar
convergence behaviour to serial; in fact, it was equivalent in
number of data-passes at 8. Mini-Batching converged much
slower, as was expected, taking twice as many data-passes
at 16 – however, it was about twice as fast in time-per-pass
compared to Hogwild, leading to a near parity in overall
time-to-convergence. HogBatching took the advantages of
both – the low overall data-pass count (at 9), with about
half in time-per-pass compared to Hogwild. A similar con-
vergence behaviour was observed with our other datasets,
with the time-per-pass being improved drastically in some
cases: in covtype 1b, Hogwild and Mini-Batching when run
with all cores actually took longer to complete a datapass
than sequentially with one core, whereas HogBatching scaled
near-linearly while maintaining excellent convergence.

On the other hand, table IV shows that HogBatching is
not always the best strategy. In the news20 dataset, which
has an extremely large number of features and very high
sparsity, Hogwild slightly outperforms HogBatching, even
when sparse optimizations to HogBatching are applied. The
reason for this twofold. First, due to the large model size and
sparsity, it is extremely unlikely that samples will suffer from
the write conflict or false sharing. This reduces the amount of
core-to-core cache communication. Second, with a batching
strategy, there is the overhead of applying the local update
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Experimental Analysis 
Experimental Setup �

¤  Reporting 
¤  Training time until it achieves a closeness of “optimal” loss are 

reported 
¤  (2-|current|/|optimal|)*100% �
¤  Unless otherwise specified, it is 99.5% 
¤  Time to I/O is ignored 

¤  The “optimal” loss are computed with L-BFGS, a second order 
optimization method 

¤  Parameters 
¤  Learning rate and batch size are sweeped and only the best result is 

presented 
¤  The learning rate per iteration is adjusted as alpha/sqrt(#iteration)

¤  Regularization 
¤  L2 regularization with the Lambda value 1/#samples are applied for all 

methods 
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Experimental Analysis 
Results of our Evaluation�

¤  In most datasets, HogBatch is the best solution in terms of 
time-to-convergence 
¤  Hogwild is the best alternative in sparser datasets 

¤  Hogwild beats HogBatch in news20.binary 

¤  Extremely less write conflict/false sharing due to high sparsity 

¤  HogBatch has global model update overhead in dense format Algorithm 4: Many-Core HogBatch SGD pseudocode, for
one datapass.

1 GROUP_START = get_group_start(TID);
2 // Group parallel asynchronous
3 for (st = GROUP_START; st < GROUP_COUNT; st++) {
4 WORK_START = get_worker_start(st, TID);
5 // Worker parallel asynchronous
6 for (id = WORK_START; id < WORK_COUNT; id++) {
7 // Sparse vector operation.
8 g_group += a * Gradient((model + g_group), id);
9 }

10 sync(); // Sync threads in the group.
11
12 // All threads in the group perform the update.
13 for (f = TID; f < num_features; f += T_PER_GROUP)
14 model[f] = model[f] - g_group[f];
15 }

TABLE III: Experiment Datasets. The RCV1 datasets are
from [5], the others are from the LibSVM resources [6].

Dataset Name Examples Features NNZ Sparse% NNZ/Row Avg/Row

news20.binary 19,996 1,355,191 9,097,916 0.034 1 to 16,423 454.987
RCV1-v2 781,265 276,544 60,534,218 0.028 4 to 1,585 77.482
RCV1-v1-test 677,399 47,236 49,556,258 0.155 4 to 1,224 73.157
real-sim 72,309 20,958 3,709,083 0.245 1 to 3,484 51.295
w8a 64,700 300 753,862 3.884 1 to 114 11.652
connect4 67,557 126 2,837,394 33.333 42 to 42 42.000
covtype 581,012 54 6,940,438 22.121 9 to 12 11.945

precision values (the matrix as well as the labels), although
we have also received similar results with double precision.
We use the classic SGD update algorithm for Logistic
Regression unless otherwise specified.
Datasets: We perform evaluations on a wide range of
datasets with varying feature size (which is equivalent to
model size), as well as sparsity patterns. The datasets used
and their properties are shown in Table III.
Parameters: For each method, we do a combinatorial sweep
of the parameters of alpha (learning rate), and batch size,
and only present the best result. In addition, when using all
cores, we present the better result from enabling or disabling
SMT multi-threading, unless presented separately. We adjust
the learning rate per iteration for a sample index i to be
alpha/sqrt(i +D), where D is the iteration sum from the
previous data-passes: datapass number ∗ num samples.
Regularization: We apply L2 regularization for all
methods, with the Lambda value set to 1/num samples of
the dataset. We use a sparse optimization to regularization,
as described in [7].
Reporting: When reporting time, we discount the time for
loading data from disk. We measure the training time of each
method until it achieves a chosen Closeness to ”Optimal”
Loss – unless otherwise specified, this is 99.5%. We compute
the ”optimal” loss using L-BFGS [8], which is a second
order method and thus can eventually arrive at a model
with a machine precision gradient of zero for our convex
problem. We then evaluate the Closeness to Optimal Loss as
the percentage that the current loss is of this ”optimal” loss
value, with the function (2− |current|/|optimal|) ∗ 100%,
since the loss decreases to approach the optimal. We do not
present the time it takes for L-BFGS, since the goal of this
paper is not to compare first order methods to second order
ones.

When comparing the performance of different algorithms,
we chose time-to-convergence, in terms of closeness to opti-
mal loss, as the standard; this is because each algorithm has

TABLE IV: Speedup (as time to 99.5% convergence) of
HogBatch over best alternative solution out of Serial, Mini-
Batching, or Hogwild on a 14 core system.

Dataset Sparse% Features Best Alt vs Best Alt

news20.binary 0.034 1,355,191 Hogwild 0.86x
RCV1-v2 0.028 276,544 Hogwild 1.87x
RCV1-test 0.155 47,236 Hogwild 2.43x
real-sim 0.245 20,958 Hogwild 3.85x
w8a 3.884 300 Hogwild 8.97x
connect4 33.333 126 Mini-Batch 5.81x
covtype 22.121 54 Serial 20.16x

its own trade-off between statistical efficiency, the number
of passes over data for convergence (usually reported in the
literature), and hardware efficiency, time per datapass. In
reality, the effective time to convergence is actually a mixture
(product) of these two factors. When possible, the points on
figures represent one complete datapass, to help show the
difference in time per datapass.

B. Results of our Evaluation
Table IV shows the speedup of HogBatch over the best

performing alternative (Serial, Mini-Batching, or Hogwild).
As expected, Hogwild was generally the best performing
alternative, as it is usually faster than Mini-Batching for
sparse data sets due to its asynchronous nature. However,
with increasingly dense problems that have a small number
of features, Hogwild becomes worse than serial. The figures
in 1 show how closely each of these methods approach
”optimal solution” overtime, using all 14 cores, on the
RCV1-v1 and covtype datasets. We present these two in
depth since they have widely different properties: RCV1 is
highly sparse and has a relatively large model size, whereas
covtype has a very small model size and is slightly dense. In
our experiments, we found that other datasets had properties
that fell between these extremes.

In RCV1 1a, we see that Hogwild showed a similar
convergence behaviour to serial; in fact, it was equivalent in
number of data-passes at 8. Mini-Batching converged much
slower, as was expected, taking twice as many data-passes
at 16 – however, it was about twice as fast in time-per-pass
compared to Hogwild, leading to a near parity in overall
time-to-convergence. HogBatching took the advantages of
both – the low overall data-pass count (at 9), with about
half in time-per-pass compared to Hogwild. A similar con-
vergence behaviour was observed with our other datasets,
with the time-per-pass being improved drastically in some
cases: in covtype 1b, Hogwild and Mini-Batching when run
with all cores actually took longer to complete a datapass
than sequentially with one core, whereas HogBatching scaled
near-linearly while maintaining excellent convergence.

On the other hand, table IV shows that HogBatching is
not always the best strategy. In the news20 dataset, which
has an extremely large number of features and very high
sparsity, Hogwild slightly outperforms HogBatching, even
when sparse optimizations to HogBatching are applied. The
reason for this twofold. First, due to the large model size and
sparsity, it is extremely unlikely that samples will suffer from
the write conflict or false sharing. This reduces the amount of
core-to-core cache communication. Second, with a batching
strategy, there is the overhead of applying the local update
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TABLE IV: Speedup (as time to 99.5% convergence) of HogBatch over best  
alternative solution out of Serial, Mini-Batching, Hogwild on a 14 core system �
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Experimental Analysis 
Results of our Evaluation�

¤  In RCV1 (0.155% sparsity), 
¤  Hogwild showed similar 

convergence behavior to Serial 
in terms of loss-per-pass 

¤  Mini-Batching is worse than 
Hogwild in terms of loss-per-pass 

¤  In time-per-pass it is near parity 
because it is twice faster 

¤  HogBatching took the advantage 
of both�

(a) RCV1-v1-test (b) covtype

Fig. 1: Closeness to the optimal solution over time, of each CPU method, using all cores. Each sample point represents a
dataset pass. The batch size used follows the method name.

(a) RCV1-v1-test (b) covtype
Fig. 2: Speedup over serial, in time-to-convergence, while varying the number of cores. SMT multi-threading is disabled up
to 14 threads, and for the final result (28) SMT is enabled. The batch size used follows the method name.

Fig. 3: Time (in seconds) to 99.5% optimum loss, across
core count and variable frequency. Same coloured elements
represent approximately a trade-off; a double of core count,
or a double of frequency. Dataset. RCV1-v1-test.

VIII. MULTI MODEL REGRESSION

In addition to single model regression, which we have
focused on up to now, regression can also be extended to
produce multiple models from a single input sample dataset.
This is useful when there is more than one prediction to be

made from the same data, and the dataset has different labels
for each prediction to be made. We now deal with a matrix
of labels, instead of a vector; the model will similarly also
then be a matrix.

Moving into the multi model domain has a few important
effects: the first is that parallelism can be applied across
the new dimension (being a matrix rather than a vector).
Thus, the necessity for creating parallelism across samples
diminishes, due to the new-found model parallelism.

The algorithm exposing this is shown in 5. Second,
a strategy that employs batching with sample parallelism
(which duplicates the size of the model per thread) is no
longer cache friendly: the model state and labels, both of
which are dense, are now quite large and may not fit into
caches. Each update to a single index for such models now
needs to update all the models which pulls in a lot of data and
pollutes caches. Due to these reasons, we found Hogwild,
which does not use batching, to be the best approach on all
of our datasets.

Notably, when allocating the model matrix, it is critical to
properly orient the data: the models should be allocated such
that the first index for each model are stored consecutively in
memory, followed by padding if necessary to align the data
(e.g., 103 is padded to 128), and then the second index for
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(a) RCV1-v1-test 
Fig. 1: Closeness to the optimal solution over time. 

Each point represents a dataset pass.�
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Experimental Analysis 
Results of our Evaluation�

¤  In covtype (22.121% sparsity), 
¤  Hogwild is slower than Serial, 

due to low hardware efficiency 

¤  Mini-Batching is slower than 
Serial, due to low statistical 
efficiency 

¤  HogBatch scaled near-linearly 

(a) RCV1-v1-test (b) covtype

Fig. 1: Closeness to the optimal solution over time, of each CPU method, using all cores. Each sample point represents a
dataset pass. The batch size used follows the method name.

(a) RCV1-v1-test (b) covtype
Fig. 2: Speedup over serial, in time-to-convergence, while varying the number of cores. SMT multi-threading is disabled up
to 14 threads, and for the final result (28) SMT is enabled. The batch size used follows the method name.

Fig. 3: Time (in seconds) to 99.5% optimum loss, across
core count and variable frequency. Same coloured elements
represent approximately a trade-off; a double of core count,
or a double of frequency. Dataset. RCV1-v1-test.

VIII. MULTI MODEL REGRESSION

In addition to single model regression, which we have
focused on up to now, regression can also be extended to
produce multiple models from a single input sample dataset.
This is useful when there is more than one prediction to be

made from the same data, and the dataset has different labels
for each prediction to be made. We now deal with a matrix
of labels, instead of a vector; the model will similarly also
then be a matrix.

Moving into the multi model domain has a few important
effects: the first is that parallelism can be applied across
the new dimension (being a matrix rather than a vector).
Thus, the necessity for creating parallelism across samples
diminishes, due to the new-found model parallelism.

The algorithm exposing this is shown in 5. Second,
a strategy that employs batching with sample parallelism
(which duplicates the size of the model per thread) is no
longer cache friendly: the model state and labels, both of
which are dense, are now quite large and may not fit into
caches. Each update to a single index for such models now
needs to update all the models which pulls in a lot of data and
pollutes caches. Due to these reasons, we found Hogwild,
which does not use batching, to be the best approach on all
of our datasets.

Notably, when allocating the model matrix, it is critical to
properly orient the data: the models should be allocated such
that the first index for each model are stored consecutively in
memory, followed by padding if necessary to align the data
(e.g., 103 is padded to 128), and then the second index for
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(b) covtype 
Fig. 1: Closeness to the optimal solution over time. 

Each point represents a dataset pass.�
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Experimental Analysis 
Scaling with Cares�(a) RCV1-v1-test (b) covtype

Fig. 1: Closeness to the optimal solution over time, of each CPU method, using all cores. Each sample point represents a
dataset pass. The batch size used follows the method name.

(a) RCV1-v1-test (b) covtype
Fig. 2: Speedup over serial, in time-to-convergence, while varying the number of cores. SMT multi-threading is disabled up
to 14 threads, and for the final result (28) SMT is enabled. The batch size used follows the method name.

Fig. 3: Time (in seconds) to 99.5% optimum loss, across
core count and variable frequency. Same coloured elements
represent approximately a trade-off; a double of core count,
or a double of frequency. Dataset. RCV1-v1-test.

VIII. MULTI MODEL REGRESSION

In addition to single model regression, which we have
focused on up to now, regression can also be extended to
produce multiple models from a single input sample dataset.
This is useful when there is more than one prediction to be

made from the same data, and the dataset has different labels
for each prediction to be made. We now deal with a matrix
of labels, instead of a vector; the model will similarly also
then be a matrix.

Moving into the multi model domain has a few important
effects: the first is that parallelism can be applied across
the new dimension (being a matrix rather than a vector).
Thus, the necessity for creating parallelism across samples
diminishes, due to the new-found model parallelism.

The algorithm exposing this is shown in 5. Second,
a strategy that employs batching with sample parallelism
(which duplicates the size of the model per thread) is no
longer cache friendly: the model state and labels, both of
which are dense, are now quite large and may not fit into
caches. Each update to a single index for such models now
needs to update all the models which pulls in a lot of data and
pollutes caches. Due to these reasons, we found Hogwild,
which does not use batching, to be the best approach on all
of our datasets.

Notably, when allocating the model matrix, it is critical to
properly orient the data: the models should be allocated such
that the first index for each model are stored consecutively in
memory, followed by padding if necessary to align the data
(e.g., 103 is padded to 128), and then the second index for
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(a) RCV1-v1-test 
Fig. 2: Speedup over serial, in time-to-convergence 
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¤  In RCV1 (0.155% sparsity, 47,236 features) 
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Experimental Analysis 
Scaling with Cares�(a) RCV1-v1-test (b) covtype

Fig. 1: Closeness to the optimal solution over time, of each CPU method, using all cores. Each sample point represents a
dataset pass. The batch size used follows the method name.

(a) RCV1-v1-test (b) covtype
Fig. 2: Speedup over serial, in time-to-convergence, while varying the number of cores. SMT multi-threading is disabled up
to 14 threads, and for the final result (28) SMT is enabled. The batch size used follows the method name.

Fig. 3: Time (in seconds) to 99.5% optimum loss, across
core count and variable frequency. Same coloured elements
represent approximately a trade-off; a double of core count,
or a double of frequency. Dataset. RCV1-v1-test.

VIII. MULTI MODEL REGRESSION

In addition to single model regression, which we have
focused on up to now, regression can also be extended to
produce multiple models from a single input sample dataset.
This is useful when there is more than one prediction to be

made from the same data, and the dataset has different labels
for each prediction to be made. We now deal with a matrix
of labels, instead of a vector; the model will similarly also
then be a matrix.

Moving into the multi model domain has a few important
effects: the first is that parallelism can be applied across
the new dimension (being a matrix rather than a vector).
Thus, the necessity for creating parallelism across samples
diminishes, due to the new-found model parallelism.

The algorithm exposing this is shown in 5. Second,
a strategy that employs batching with sample parallelism
(which duplicates the size of the model per thread) is no
longer cache friendly: the model state and labels, both of
which are dense, are now quite large and may not fit into
caches. Each update to a single index for such models now
needs to update all the models which pulls in a lot of data and
pollutes caches. Due to these reasons, we found Hogwild,
which does not use batching, to be the best approach on all
of our datasets.

Notably, when allocating the model matrix, it is critical to
properly orient the data: the models should be allocated such
that the first index for each model are stored consecutively in
memory, followed by padding if necessary to align the data
(e.g., 103 is padded to 128), and then the second index for
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Experimental Analysis 
Scaling with Frequency�

¤  Hogwild prefers frequency to 
#core 
¤  The frequency of core 

interconnect  is governed by 
core frequency 

¤  Mini-Batch and HogBatch 
prefers #core as well as 
frequency 
¤  This characteristic matches 

recent many-core trend 

¤  HogBatch is more scalable 
than Mini-Batch in terms of 
#core�

(a) RCV1-v1-test (b) covtype

Fig. 1: Closeness to the optimal solution over time, of each CPU method, using all cores. Each sample point represents a
dataset pass. The batch size used follows the method name.

(a) RCV1-v1-test (b) covtype
Fig. 2: Speedup over serial, in time-to-convergence, while varying the number of cores. SMT multi-threading is disabled up
to 14 threads, and for the final result (28) SMT is enabled. The batch size used follows the method name.

Fig. 3: Time (in seconds) to 99.5% optimum loss, across
core count and variable frequency. Same coloured elements
represent approximately a trade-off; a double of core count,
or a double of frequency. Dataset. RCV1-v1-test.

VIII. MULTI MODEL REGRESSION

In addition to single model regression, which we have
focused on up to now, regression can also be extended to
produce multiple models from a single input sample dataset.
This is useful when there is more than one prediction to be

made from the same data, and the dataset has different labels
for each prediction to be made. We now deal with a matrix
of labels, instead of a vector; the model will similarly also
then be a matrix.

Moving into the multi model domain has a few important
effects: the first is that parallelism can be applied across
the new dimension (being a matrix rather than a vector).
Thus, the necessity for creating parallelism across samples
diminishes, due to the new-found model parallelism.

The algorithm exposing this is shown in 5. Second,
a strategy that employs batching with sample parallelism
(which duplicates the size of the model per thread) is no
longer cache friendly: the model state and labels, both of
which are dense, are now quite large and may not fit into
caches. Each update to a single index for such models now
needs to update all the models which pulls in a lot of data and
pollutes caches. Due to these reasons, we found Hogwild,
which does not use batching, to be the best approach on all
of our datasets.

Notably, when allocating the model matrix, it is critical to
properly orient the data: the models should be allocated such
that the first index for each model are stored consecutively in
memory, followed by padding if necessary to align the data
(e.g., 103 is padded to 128), and then the second index for
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Experimental Analysis 
Future Scalability �

¤  The authors simulated HogBatch on large #core system with 
an execution-driven simulator Spiner [9] 
¤  Single-threaded 2-wide in-order core at 1.8 GHz 
¤  2-dimentional mesh with 2 cores per mesh stop 

¤  2 cycle hop latency 
¤  Link bandwidth of 64 bytes/s and MESIF coherence protocol 

¤  MESIF: MESI + Forwarding(=Shared willing to reply read 
request) 

¤  On RCV-v1 dataset, 
¤  64 cores achieved 53x scalability 
¤  128 cores achieved 90x scalability 
¤  Loss in convergence per pass compared to serial was ~25% 

¤  In the 14 core machine, it was ~10% 

Typo of 64 GB/s ?�
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Multi Model Regression �

¤  Training multiple models simultaneously are useful when each 
sample has multiple labels 
¤  Labels and models are matrices, not vectors 

¤  Model-dimension can be parallelized, as well as sample-
dimension 

¤  Batching methods is no longer cache friendly 
¤  Multiple models and labels are dense and may not fit the cache 

¤  Hogwild would be the best approach for multiple models training 

�

Algorithm 5: Multi-Model Hogwild SGD pseudocode for one
datapass.

1 #pragma omp parallel for schedule(dynamic)
2 for (index = 0; index < num_samples; index++) {
3 #pragma simd
4 for (m = 0; m < NUM_MODELS; m++) {
5 // Sparse indices update of model[m]
6 model[m] -= a * Gradient(model[m], index);
7 } }

Fig. 4: Time per Pass per Model, scaling with number of
models. Also shown at one model is single model optimized
Hogwild and HogBatch (Note: Log-Time scale), as well as
ADAGRAD scaling. Dataset. RCV1-v2.

all models, and so on. This allocation strategy is important:
although Hogwild updates the model indices sparsely, it will
apply updates to the same index of all models at once. If
these are available in consecutive memory locations, cache
line utilization can be nearly perfect. This layout also allows
the updates to be done using SIMD (Single Instruction
Multiple Data, using AVX2 Instruction Set, for instance)
operations – the padding will allow these SIMD operations
to operate from aligned memory addresses. Furthermore,
padding also allows cache loads and stores to not be split
– accesses to any index is then guaranteed to be in its own
cache line.

Figure 4 shows the result of varying the number of
models with RCV1-v2. We go up to 103 models for sake
of comparisons with other work that we will describe in
Section IX. We report time per datapass per model on the
y-axis. Until we hit about 32 models, we get benefits our
SIMD-friendly layout and the time per model continues to
fall. At about 32 models, we have gotten the most out of
the SIMD benefits, and increasing parallelism across this
dimension is no longer beneficial.

At this crossover point, we could decide to separate the
model training, either across nodes, or across sockets in a
multi-socket system. For example, a four socket machine
could train 32 models at once per socket, allowing for
continued scalability with increasing model count.

IX. COMPARISON TO STATE-OF-THE-ART

BidMach [2] is a general purpose machine learning frame-
work that runs on multi-core CPUs as well as GPUs, and has
implemented SGD for regression. The framework is open

TABLE V: Single model comparison using RCV1-v1-test
dataset. All methods use the ADAGRAD update, and the
same parameters. Single socket CPU was used for all com-
parisons.

Implementation Hardware Time/Pass (ms)

BidMach TITAN X 723
BidMach Sandy Bridge 14,190
CPU optimized (Mini-Batch) Sandy Bridge 289
CPU optimized (Hogwild) Sandy Bridge 253
CPU optimized (HogBatching) Sandy Bridge 147
CPU optimized (HogBatching) Haswell 111

TABLE VI: Multi model comparison using RCV1-v1-test
dataset. All methods use the ADAGRAD update, and the
same parameters. BidMach uses a size of 5,000. We use one
CPU socket for all results, except the last row where we
use two. Each implementation trains all 103 models at once,
the dual socket run splits the models to train separately on
sockets. All CPU optimized runs use Hogwild.

Implementation Hardware Models Time / Pass (ms)

BidMach TITAN X 103 2,170
BidMach Sandy Bridge 103 120,720
CPU optimized Sandy Bridge 103 2,010
CPU optimized Haswell 103 1,283
CPU optimized 2x Haswell 103 724

source, and has been shown to compare favourably to other
implementations. Performance results for logistic regression
performance using BidMach is reported in [10].

We execute the current version of BidMach (1.0.3) on an
Intel R⃝ Xeon R⃝ E5-2680 Sandy Bridge based system with 8
cores at 2.7 GHz. This machine also hosts an NVIDIA Titan
X that we use for BidMach runs. We set the parameters for
BidMach SGD (e.g. learning rate, regularization) to be the
same as those in our code, and we also implemented the
ADAGRAD update [3] used in BidMach (we note that the
ADAGRAD update is about 3x slower per datapass than the
regular SGD update, as shown in figure 4, due to the use
of extra state). Since we choose the same parameters, the
convergence of our methods was almost identical and we
hence only report performance in time per datapass.

In Table V, we compare the results of our single model
performance with BidMach. Our single-model HogBatch
code is 1-2 orders of magnitude better than the BigMach’s
CPU version, and is also significantly faster than the GPU
results. We note here that (based on communication with the
developers) BidMach is not specifically optimized for use in
the single model case and is mainly targeted at GPU multi
model regression.

Table VI shows the comparison with multi-model regres-
sion. The authors of BidMach have also confirmed that the
framework’s CPU code was not as well optimized as the
GPU code (in fact, BidMach’s CPU code is in Scala, whereas
the GPU code is in native CUDA). With proper attention to
vectorization as discussed in section VIII, we are able to be
on par with the GPU implementation on one Sandy Bridge
CPU, and are slightly faster on our Haswell machine. This
result also shows the importance of using a well optimized
baseline to compare CPU and GPU platforms.

881
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Multi Model Regression �

¤  Model matrix should be allocated as row-major format 
¤  Same indices for each model are stored consecutively, followed 

by optional padding 

¤  Padding prohibits one cache line from holding parts of several 
indecies 

¤  This format allows to execute SIMD operations 

¤  Since Hogwild updates models sparsely, it access the same 
indices of all models at once 
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Multi Model Regression �

¤  Until 32 models, Hogwild get benefits the SIMD-friendly layout 

Algorithm 5: Multi-Model Hogwild SGD pseudocode for one
datapass.

1 #pragma omp parallel for schedule(dynamic)
2 for (index = 0; index < num_samples; index++) {
3 #pragma simd
4 for (m = 0; m < NUM_MODELS; m++) {
5 // Sparse indices update of model[m]
6 model[m] -= a * Gradient(model[m], index);
7 } }

Fig. 4: Time per Pass per Model, scaling with number of
models. Also shown at one model is single model optimized
Hogwild and HogBatch (Note: Log-Time scale), as well as
ADAGRAD scaling. Dataset. RCV1-v2.

all models, and so on. This allocation strategy is important:
although Hogwild updates the model indices sparsely, it will
apply updates to the same index of all models at once. If
these are available in consecutive memory locations, cache
line utilization can be nearly perfect. This layout also allows
the updates to be done using SIMD (Single Instruction
Multiple Data, using AVX2 Instruction Set, for instance)
operations – the padding will allow these SIMD operations
to operate from aligned memory addresses. Furthermore,
padding also allows cache loads and stores to not be split
– accesses to any index is then guaranteed to be in its own
cache line.

Figure 4 shows the result of varying the number of
models with RCV1-v2. We go up to 103 models for sake
of comparisons with other work that we will describe in
Section IX. We report time per datapass per model on the
y-axis. Until we hit about 32 models, we get benefits our
SIMD-friendly layout and the time per model continues to
fall. At about 32 models, we have gotten the most out of
the SIMD benefits, and increasing parallelism across this
dimension is no longer beneficial.

At this crossover point, we could decide to separate the
model training, either across nodes, or across sockets in a
multi-socket system. For example, a four socket machine
could train 32 models at once per socket, allowing for
continued scalability with increasing model count.

IX. COMPARISON TO STATE-OF-THE-ART

BidMach [2] is a general purpose machine learning frame-
work that runs on multi-core CPUs as well as GPUs, and has
implemented SGD for regression. The framework is open

TABLE V: Single model comparison using RCV1-v1-test
dataset. All methods use the ADAGRAD update, and the
same parameters. Single socket CPU was used for all com-
parisons.

Implementation Hardware Time/Pass (ms)

BidMach TITAN X 723
BidMach Sandy Bridge 14,190
CPU optimized (Mini-Batch) Sandy Bridge 289
CPU optimized (Hogwild) Sandy Bridge 253
CPU optimized (HogBatching) Sandy Bridge 147
CPU optimized (HogBatching) Haswell 111

TABLE VI: Multi model comparison using RCV1-v1-test
dataset. All methods use the ADAGRAD update, and the
same parameters. BidMach uses a size of 5,000. We use one
CPU socket for all results, except the last row where we
use two. Each implementation trains all 103 models at once,
the dual socket run splits the models to train separately on
sockets. All CPU optimized runs use Hogwild.

Implementation Hardware Models Time / Pass (ms)

BidMach TITAN X 103 2,170
BidMach Sandy Bridge 103 120,720
CPU optimized Sandy Bridge 103 2,010
CPU optimized Haswell 103 1,283
CPU optimized 2x Haswell 103 724

source, and has been shown to compare favourably to other
implementations. Performance results for logistic regression
performance using BidMach is reported in [10].

We execute the current version of BidMach (1.0.3) on an
Intel R⃝ Xeon R⃝ E5-2680 Sandy Bridge based system with 8
cores at 2.7 GHz. This machine also hosts an NVIDIA Titan
X that we use for BidMach runs. We set the parameters for
BidMach SGD (e.g. learning rate, regularization) to be the
same as those in our code, and we also implemented the
ADAGRAD update [3] used in BidMach (we note that the
ADAGRAD update is about 3x slower per datapass than the
regular SGD update, as shown in figure 4, due to the use
of extra state). Since we choose the same parameters, the
convergence of our methods was almost identical and we
hence only report performance in time per datapass.

In Table V, we compare the results of our single model
performance with BidMach. Our single-model HogBatch
code is 1-2 orders of magnitude better than the BigMach’s
CPU version, and is also significantly faster than the GPU
results. We note here that (based on communication with the
developers) BidMach is not specifically optimized for use in
the single model case and is mainly targeted at GPU multi
model regression.

Table VI shows the comparison with multi-model regres-
sion. The authors of BidMach have also confirmed that the
framework’s CPU code was not as well optimized as the
GPU code (in fact, BidMach’s CPU code is in Scala, whereas
the GPU code is in native CUDA). With proper attention to
vectorization as discussed in section VIII, we are able to be
on par with the GPU implementation on one Sandy Bridge
CPU, and are slightly faster on our Haswell machine. This
result also shows the importance of using a well optimized
baseline to compare CPU and GPU platforms.
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Comparison to State-of-the-Art�

¤  The authored compared their implementation with BidMach 
[2], a general purpose machine learning framework 
¤  Intel Xeon E5-2680 Sandy Bridge at 2.7 GHz 

¤  NVIDIA Titan X 

¤  Same parameters and ADAGRAD are used for comparison 

¤  For single model performance, HogBatch is ~100x better than 
BidMach’s CPU, and significantly faster than its GPU  

Algorithm 5: Multi-Model Hogwild SGD pseudocode for one
datapass.

1 #pragma omp parallel for schedule(dynamic)
2 for (index = 0; index < num_samples; index++) {
3 #pragma simd
4 for (m = 0; m < NUM_MODELS; m++) {
5 // Sparse indices update of model[m]
6 model[m] -= a * Gradient(model[m], index);
7 } }

Fig. 4: Time per Pass per Model, scaling with number of
models. Also shown at one model is single model optimized
Hogwild and HogBatch (Note: Log-Time scale), as well as
ADAGRAD scaling. Dataset. RCV1-v2.

all models, and so on. This allocation strategy is important:
although Hogwild updates the model indices sparsely, it will
apply updates to the same index of all models at once. If
these are available in consecutive memory locations, cache
line utilization can be nearly perfect. This layout also allows
the updates to be done using SIMD (Single Instruction
Multiple Data, using AVX2 Instruction Set, for instance)
operations – the padding will allow these SIMD operations
to operate from aligned memory addresses. Furthermore,
padding also allows cache loads and stores to not be split
– accesses to any index is then guaranteed to be in its own
cache line.

Figure 4 shows the result of varying the number of
models with RCV1-v2. We go up to 103 models for sake
of comparisons with other work that we will describe in
Section IX. We report time per datapass per model on the
y-axis. Until we hit about 32 models, we get benefits our
SIMD-friendly layout and the time per model continues to
fall. At about 32 models, we have gotten the most out of
the SIMD benefits, and increasing parallelism across this
dimension is no longer beneficial.

At this crossover point, we could decide to separate the
model training, either across nodes, or across sockets in a
multi-socket system. For example, a four socket machine
could train 32 models at once per socket, allowing for
continued scalability with increasing model count.

IX. COMPARISON TO STATE-OF-THE-ART

BidMach [2] is a general purpose machine learning frame-
work that runs on multi-core CPUs as well as GPUs, and has
implemented SGD for regression. The framework is open

TABLE V: Single model comparison using RCV1-v1-test
dataset. All methods use the ADAGRAD update, and the
same parameters. Single socket CPU was used for all com-
parisons.

Implementation Hardware Time/Pass (ms)

BidMach TITAN X 723
BidMach Sandy Bridge 14,190
CPU optimized (Mini-Batch) Sandy Bridge 289
CPU optimized (Hogwild) Sandy Bridge 253
CPU optimized (HogBatching) Sandy Bridge 147
CPU optimized (HogBatching) Haswell 111

TABLE VI: Multi model comparison using RCV1-v1-test
dataset. All methods use the ADAGRAD update, and the
same parameters. BidMach uses a size of 5,000. We use one
CPU socket for all results, except the last row where we
use two. Each implementation trains all 103 models at once,
the dual socket run splits the models to train separately on
sockets. All CPU optimized runs use Hogwild.

Implementation Hardware Models Time / Pass (ms)

BidMach TITAN X 103 2,170
BidMach Sandy Bridge 103 120,720
CPU optimized Sandy Bridge 103 2,010
CPU optimized Haswell 103 1,283
CPU optimized 2x Haswell 103 724

source, and has been shown to compare favourably to other
implementations. Performance results for logistic regression
performance using BidMach is reported in [10].

We execute the current version of BidMach (1.0.3) on an
Intel R⃝ Xeon R⃝ E5-2680 Sandy Bridge based system with 8
cores at 2.7 GHz. This machine also hosts an NVIDIA Titan
X that we use for BidMach runs. We set the parameters for
BidMach SGD (e.g. learning rate, regularization) to be the
same as those in our code, and we also implemented the
ADAGRAD update [3] used in BidMach (we note that the
ADAGRAD update is about 3x slower per datapass than the
regular SGD update, as shown in figure 4, due to the use
of extra state). Since we choose the same parameters, the
convergence of our methods was almost identical and we
hence only report performance in time per datapass.

In Table V, we compare the results of our single model
performance with BidMach. Our single-model HogBatch
code is 1-2 orders of magnitude better than the BigMach’s
CPU version, and is also significantly faster than the GPU
results. We note here that (based on communication with the
developers) BidMach is not specifically optimized for use in
the single model case and is mainly targeted at GPU multi
model regression.

Table VI shows the comparison with multi-model regres-
sion. The authors of BidMach have also confirmed that the
framework’s CPU code was not as well optimized as the
GPU code (in fact, BidMach’s CPU code is in Scala, whereas
the GPU code is in native CUDA). With proper attention to
vectorization as discussed in section VIII, we are able to be
on par with the GPU implementation on one Sandy Bridge
CPU, and are slightly faster on our Haswell machine. This
result also shows the importance of using a well optimized
baseline to compare CPU and GPU platforms.
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BidMach is not so 
optimized for single 
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developers mention�
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Comparison to State-of-the-Art�

¤  For multiple models, 
¤  Hogwild on Sandy Bridge is on par with the GPU 

¤  Hogwild on Haswell slightly beats the GPU �

Algorithm 5: Multi-Model Hogwild SGD pseudocode for one
datapass.

1 #pragma omp parallel for schedule(dynamic)
2 for (index = 0; index < num_samples; index++) {
3 #pragma simd
4 for (m = 0; m < NUM_MODELS; m++) {
5 // Sparse indices update of model[m]
6 model[m] -= a * Gradient(model[m], index);
7 } }

Fig. 4: Time per Pass per Model, scaling with number of
models. Also shown at one model is single model optimized
Hogwild and HogBatch (Note: Log-Time scale), as well as
ADAGRAD scaling. Dataset. RCV1-v2.

all models, and so on. This allocation strategy is important:
although Hogwild updates the model indices sparsely, it will
apply updates to the same index of all models at once. If
these are available in consecutive memory locations, cache
line utilization can be nearly perfect. This layout also allows
the updates to be done using SIMD (Single Instruction
Multiple Data, using AVX2 Instruction Set, for instance)
operations – the padding will allow these SIMD operations
to operate from aligned memory addresses. Furthermore,
padding also allows cache loads and stores to not be split
– accesses to any index is then guaranteed to be in its own
cache line.

Figure 4 shows the result of varying the number of
models with RCV1-v2. We go up to 103 models for sake
of comparisons with other work that we will describe in
Section IX. We report time per datapass per model on the
y-axis. Until we hit about 32 models, we get benefits our
SIMD-friendly layout and the time per model continues to
fall. At about 32 models, we have gotten the most out of
the SIMD benefits, and increasing parallelism across this
dimension is no longer beneficial.

At this crossover point, we could decide to separate the
model training, either across nodes, or across sockets in a
multi-socket system. For example, a four socket machine
could train 32 models at once per socket, allowing for
continued scalability with increasing model count.

IX. COMPARISON TO STATE-OF-THE-ART

BidMach [2] is a general purpose machine learning frame-
work that runs on multi-core CPUs as well as GPUs, and has
implemented SGD for regression. The framework is open

TABLE V: Single model comparison using RCV1-v1-test
dataset. All methods use the ADAGRAD update, and the
same parameters. Single socket CPU was used for all com-
parisons.

Implementation Hardware Time/Pass (ms)

BidMach TITAN X 723
BidMach Sandy Bridge 14,190
CPU optimized (Mini-Batch) Sandy Bridge 289
CPU optimized (Hogwild) Sandy Bridge 253
CPU optimized (HogBatching) Sandy Bridge 147
CPU optimized (HogBatching) Haswell 111

TABLE VI: Multi model comparison using RCV1-v1-test
dataset. All methods use the ADAGRAD update, and the
same parameters. BidMach uses a size of 5,000. We use one
CPU socket for all results, except the last row where we
use two. Each implementation trains all 103 models at once,
the dual socket run splits the models to train separately on
sockets. All CPU optimized runs use Hogwild.

Implementation Hardware Models Time / Pass (ms)

BidMach TITAN X 103 2,170
BidMach Sandy Bridge 103 120,720
CPU optimized Sandy Bridge 103 2,010
CPU optimized Haswell 103 1,283
CPU optimized 2x Haswell 103 724

source, and has been shown to compare favourably to other
implementations. Performance results for logistic regression
performance using BidMach is reported in [10].

We execute the current version of BidMach (1.0.3) on an
Intel R⃝ Xeon R⃝ E5-2680 Sandy Bridge based system with 8
cores at 2.7 GHz. This machine also hosts an NVIDIA Titan
X that we use for BidMach runs. We set the parameters for
BidMach SGD (e.g. learning rate, regularization) to be the
same as those in our code, and we also implemented the
ADAGRAD update [3] used in BidMach (we note that the
ADAGRAD update is about 3x slower per datapass than the
regular SGD update, as shown in figure 4, due to the use
of extra state). Since we choose the same parameters, the
convergence of our methods was almost identical and we
hence only report performance in time per datapass.

In Table V, we compare the results of our single model
performance with BidMach. Our single-model HogBatch
code is 1-2 orders of magnitude better than the BigMach’s
CPU version, and is also significantly faster than the GPU
results. We note here that (based on communication with the
developers) BidMach is not specifically optimized for use in
the single model case and is mainly targeted at GPU multi
model regression.

Table VI shows the comparison with multi-model regres-
sion. The authors of BidMach have also confirmed that the
framework’s CPU code was not as well optimized as the
GPU code (in fact, BidMach’s CPU code is in Scala, whereas
the GPU code is in native CUDA). With proper attention to
vectorization as discussed in section VIII, we are able to be
on par with the GPU implementation on one Sandy Bridge
CPU, and are slightly faster on our Haswell machine. This
result also shows the importance of using a well optimized
baseline to compare CPU and GPU platforms.
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Related Work �

¤  Hogwild [1] by F. Niu et al. provided a strong foundation of the 
paper 

¤  M. Zinkevich et al. offered parallel SGD that splits the workload 
and each machine perform SGD on a subset of data before 
averaging [13] 

¤  C. De Sa et al. described an analysis of Hogwild-like method 
Buckwild [16] 

¤  Ce Zhang and C. Ré et al. presented DimmWitted, 
characterizing state of the art SGD on NUMA [17]�
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Conclusions �

¤  The authors presented HogBatch, which achieves superior  
hardware/statistical efficiency and up to near linear scalability 
¤  HogBatch is friendly towards future many-core platforms 

¤  As future work, the authors intend to explore the use of 
HogBatch on other ML problems 
¤  Stochastic coordinate descent algorithms 

¤  Collaborative filtering problems 

¤  Non-convex problems �
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