HPC presentation

Yoshitaka Sakurai (B4)
November 20, 2017

DCatch: Automatically Detecting Distributed Concurrency Bugs in
Cloud Systems

e Haopeng Liu(University of Chicago)

e Guangpu Li(University of Chicago)

o Jeffrey F. Lukman(University of Chicago)
e Jiaxin Li(University of Chicago)

e Shan Lu(University of Chicago)

e Haryadi S. Gunawi(University of Chicago)
e Chen Tian (Huawei R&D Center)

N

30

Introduction

Distributed cloud software infrastructures have emerged as a
dominant backbone for modern applications.

But, it is challenging to guarantee reliablity due to wide-spreading
software bugs.

e DCbugs

e distributed concurrency bugs
e the most troublesome among all types of bugs in distributed
system

DCbugs are triggered by untimely interaction among nodes.

DCbugs in Hadoop

NM AM Client

(1) Assign T
g

(2) Ger Task T
repeatEd) v

Figure 1. A Hadoop DCbug: Hang (buggy) if #3 happens
before #2, or no failure (y/) if the otherwise.

1. AM assign a task T to a container in NM

2. NM container tries to retrieve the content of task T from AM
3. T is canceled on the client's request
4

. NM container hangs (waiting forever for AM to return task T)
(T is already canceled in #3)

DCbugs is difficult to avoid,detect and debug

DCbugs is difficult to avoid, detect and debug

e non-deterministic

e hide in the huge staet space of distributed system spreading
across multiple nodes

This paper present the first attempts in building DCbug
detection tool for distributed systems.

Related work

Model checking

e Distributed system model checkers (dmck)

e dmck is powerful
e Dmck does not scale
e The more events included, the larger the state spaceto be
explored

Verification

e Strong solution (no false positive and negative)

e require thousands of lines of proof for every protocol
LCbug and DCbug detection

e LCbug is Local Concurrency bugs

e Many bug detectors for LCbug have been proposed

DCbugs have fundamentally similar root causes as LCbugs

e Both are conflicting accesses to the same memory location

NM AM AM
Thread 1 Thread 2
HRPC function A Register-Handler
while (!getTask(jID)) Task getTask(jID) { ® jMap.put (jID, task):
{ & e
*getTask is a RPC call. retumn jMap.get(jID)y ...

Waits until gets Task jID.*/
]

\/ Un Register-Handler
} }

jMap.remove (j1D);
[*return null if removed®/

Figure 2. Root cause of the DCbug shown in Fig. 1

DCbugs detection can re-use the theoretical foundation and work
flow of LCbugs detection.

e abstract the causality relationship in distributed system into
HB graph

e identify all pairs of concurrent conflicting memory access
based on HB graph and treat them as DCbugs candidates.

HB graph(Happens-Before Graph) is discribed below

Challenge

DCbugs is differ from LCbugs in several aspects

e More complicated timing relationship
e concurrent accesses are conducted not only at thread level but

also node level and event level

e Larger scales of system and bugs
e Distributed system naturally run at a larger scale than
single-machine
e the larger bug scale also demands new techniques in bug
impact analysis and bug exposing
e More subtle fault tolerance
e Distributed systems contain inherent redundancy and aim to

tolerate component failures.
e So it is difficult to judge what are truly harmful bugs

This paper present DCatch
DCatch is a pilot solution in the world of DCbug detection The

design of the DCatch contains two stage

1. design HB model for distributed system

2. design DCatch tool components

10/30

DCatch Happens-Before(HB) Model

DCatch HB Model

Abstract a set of Happens Before rules.
R
01 = O
rule R represents one type of causality relationship between a pair

of operation

e This relation is transitive

e if 0oy = 0, and 0o = 03 then 0; = 03

e if neither o1 = o0p nor 0o = 07 holds, they are concurrent.

11/30

Inter-node cuncurrency and communication

Nodes communicate with each other through message

Synchronus RPC(remote procedure call)

e node n; call PRC function f implemented by node n»
e Rule-M"< : Create(r, ny) M Begin(r, ny);
Rule-M"¢< : End(r, ny) M Join(r, n1)

Asynchronous Socket

e node n; sends a message m to node n;

e Rule-Msoc : Send(m, ny) mr Recv(m, ny)

Custom Push-Based Synchronization Protocol

e Node n; updates a status s to a dedicated corrdination node
ne, and n¢ notifies all subscribed nodes ny , about this update.

e Rule-MPUsh . Update(s, ny) = Pushed(s, ny)
Decompose Rule-MPUsh into three chains of causality relationship

e Update(s,n1) = Recv(s, nc)
e Recv(s,n.) = Send(s,nc)
e Send(s,nc) = Pushed(s, ny)

Custom Pull-Based Synchronization Protocol
e node ny keeps polling ny, about status s in node n;

e Rule-MPU': Update(s, n1) et Pulled(s, ny)

13 /30

Intra-node cuncurrencynd communication

Synchronus multi-threaded cuncurrency

e classic fork/join causality

e the creation of thread t happens before the execution of t

starts
fork Tfork i
e Rule-T™™ : Create(t) = Begin(t)
e the end of thread t happens before the join of t
Y fork
o Rule-T%" : End(t) = Join(t)

Asynchronous event-driven concurrency

e event is created before begin

e Rule-E€" : Create(e) = Begin(e)

14 /30

Sequential program ordering

prea .

e Rule-P™9 : 0; = o5 if 01 occures before 0, during the
execution of a regular thread

pnreq

e Rule-P"¢9 : 07 =

execution of an event handler,a message handler, or an RPC

02 if 01 occures before 0, during the

function

15 /30

Example with No HB graph

HMaster HRegionServer (HRS)
OpenRegion
(RPC)

ZK

Coordinator/ (6)Update

(7)Notify

W:regionsToOpen.add(region)
R: if(regionsToOpen.isEmpty())
(After this R, it has another W (regionsToOpen. remove(region))

e To understand the timing between R and W
e Use HB-Graph

16 /30

Example with HB graph

Rule Pred Rule Mrpe
HMaster HRegionServer (HRS)

Coordinator

(7)Nmi&

nreg
Rule P Rule Mpush

reg fork re,
AN Create(t) = Begin(t) =
Create(OpenRegion, HMaster) e Begin(OpenRegion, HRS) =F
en nre, ush
Create(e) = Begin(e) == Update(RS...OPENED, HRS) e

nreg

Pushed(RS...OPENED, HMaster) "= R o

DCatch tracing and trace analysis

DCatch tracing and trace analysis

Given Happens-Before Model, build the DCatch tool

1. Trace the necessary operations

2. Build the Happens-Before graphs and perform analysis on top

DCatch Tracing

DCatch produces a trace file at run time.
DCatch execute following tracing

e Memory-accesse tracing

e Exhaustive approach is too expensive
e Not trace all access

e DCbugs are triggered by inter-node interaction, not every
where in the software

e HB-related operation tracing
e Other tracing

e trace lock/unlock

19/30

HB-graph construction

HB-Graph

e DAG
e vertex v represents an operation o(v) recorded in DCatch

trace
e include memory access and HB-rule opration

e edge e v; — v, represents v; happens before v»

How to construct HB-Graph?

1. Execute application and generate trace file
2. From trace file, make vertex

3. Add edges following MTEP rules

DCbug candidate report

HB-Graph is huge

e 103 ~ 10° nodes

e Naively analysis is too slow
To speed up analysis

e use the algorithm proposed by previous asynchronous race
detection work

e Effective Race Detection for Event-Driven Programs|[OOPSLA
'13]

21/30

Staitc pruning

e Not all DCbug candidates can cause failures
e Avoid excessive false positive

e treat certain instructions in software as failure instruction
e failure instruction represent the occurrence of severe failure

To avoid excessive false positive...

e DCatch see if DCbug candidate impact towards the execution
of any failure instruction

e if DCatch fails to find any failure impact for DCbug
candidate, this DCbug candidate will be pruned out from the
DCatch bug list

DCbug triggering and validation

DCbug triggering and validation

DCatch bug report still may not be harmful. Because...

e Custom synchronization undefined by DCatch

e The concurrent execution may not lead to any failure

To reliably expose truly harmful DCbugs, build end-to-end
analysis-to-testing tool.

e an infrastructure that enable easy timing manipulation in
distributed systems

e an analysis tool that suggests how to use the infrastructure to
trigger a DCbug candidate

For DCbug candidate (s, t), this tool execute

e s—t

et —s
23/30

Evaluation

Evaluation

e Benchmarks

e Cassanda
e HBase

e Hadoop

e ZooKeeper

e Machine
e Run each node of a distributed system in one virtual
machine(M1)

e A bug require twi physical machine (M1 & M2)

Ubuntul4.04

JVM1.7

e M1 : Xeon CPU E5-2620
e M2 : Core i7-3770

e 64GB

24 /30

BuglD LoC Workload Symptom Error Root
CA-1011 61K startup Data backup failure DE AV
HB-4539 188K split table & alter table System Master Crash DE OV
HB-4729 213K enable table & expire server System Master Crash DE AV
MR-3274 1266K startup + wordcount Hang DH OV
MR-4637 L3BSK startup + wordcount Job Master Crash LE OV
ZK-1144 102K startup Service unavailable LH OV
ZK-1270 110K startup Service unavailable LH OV

Table 3. Benchmark bugs and applications.

25/30

Bug detection result

Detected? #Static Ins. Pair #CallStack Pair

BuglD
Bug Benign Serial Bug Benign Serial

CA-1011 v 3 0 0 5 2 0
HB-4539 v 33 1] 1 33 0 1
HB-4729 v 4y 1 0 55 5 0
MR-3274 v 2 1] 4 2 0 9
MR-4637 v 1 2 4 11 3 9
ZK-1144 v 51 1 1 5 1 1
ZK-1270 v 6 2 0 6 2 0
Total* 2012 5 7 23z 12 12

e DCatch has successfully detected DCbugs for all benchmarks
e 5/32 is Benign bug report
e For 7/32, DCatch mistakenly reports

e some of them are unidentified RPC function

26 /30

false-positive pruning

#Static Ins. Pair #Callstack Pair

BugID

TA TA+SP TA+SP+LP TA TA+SP TA+SP+LP
CA-1011 46 4 3 175 9 7
HB-4539 24 4 4 57 5 4
HB-4729 52 6 5 219 12 10
MR-3274 53 8 6 553 18 11
MR-4637 61 8 7 568 21 13
ZK-1144 29 8 7 52 8 7
ZK-1270 25 10 8§ 25 10 8

Table 5. # of DCbugs reported by trace analysis (TA) alone,
then plus static pruning (SP), then plus loop-based synchro-
nization analysis (LP), which becomes DCatch.

e Static pruning pruned out a big portion of DCbug candidates

e loop-based synchronization is effective

27 /30

False negative discussion

DCatch could miss DCbugs for several reason

e Because of the configure of static pruning, DCatch miss silent
bug

e DCatch miss the DCbug between communication-related
memory accesses and communication-unrelated access

e DCatch may not process extreamly large traces

N
(e5]
w
o

Performance

BuglD Base Tracing Trace Static Trace

Analysis Pruning Size
CA-1011 6.6 13.0s 15.9s 324s 7.7MB
HB-4539 1.1s 3.8s 11.9s 87s 4.9MB
HB-4729 3.5s 16.1s 36.8s 278s 19MB
MR-3274 21.2s 94 .4s 62.2s 341s 22MB
MR-4637 11.7s 36.4s 51.5s 356s 18MB
ZK-1144 0.8s 3.6s 4.8s 25s 1.9MB
ZK-1270 0.2s 1.1s 4.5s 155 1.3MB

e DCatch tracing causes 1.9x ~ 5.5x slowdown

e Static pruning is the most time consuming phase

29/30

Conclusion

Conclusion

e Designed automated DCbug detection tool for large real-world
distributed system

e DCatch HB model combine causaly relationship in single
machine system and distributed system

e DCatch is just a starting point in combating DCbugs

30/30

	Introduction
	Motivation

	DCatch Happens-Before(HB) Model
	DCatch tracing and trace analysis
	Staitc pruning
	DCbug triggering and validation
	Evaluation
	Conclusion

