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Abstract— Stochastic Gradient Descent (SGD) is a popular
optimization method used to train a variety of machine learning
models. Most of SGD work to-date has concentrated on improv-
ing its statistical efficiency, in terms of rate of convergence to
the optimal solution. At the same time, as parallelism of modern
CPUs continues to increase through progressively higher core
counts, it is imperative to understand the parallel hardware
efficiency of SGD, which often comes at odds with its statistical
efficiency.

In this paper, we explore several modern parallelization
methods of SGD on a shared memory system, in the context
of sparse and convex optimization problems. Specifically, we
develop optimized parallel implementations of several SGD al-
gorithms, and show that their parallel efficiency is severely lim-
ited by inter-core communication. We propose a new, scalable,
communication-avoiding, many-core friendly implementation of
SGD, called HogBatch; which exposes parallelism on several
levels, minimizes the impact on statistical efficiency, and, as a
result significantly outperforms the other methods. On a variety
of datasets, HogBatch demonstrates near linear scalability on
a system with 14 cores, as well as delivers up to a 20X speedup
over previous methods.

I. INTRODUCTION

Rapid expansion of applications of machine learning to
Big Data in the last decade has resulted in very large datasets,
with millions to billions of examples and features. This in
turn has given rise to very large optimization problems.
For such problems, traditional approaches such as Interior-
Point Method or Newton Method, which rely on basic
linear algebra routines such as Cholesky, LU or DGEMM,
are prohibitive in computational cost. Furthermore, these
problems typically do not require solutions to be computed
with very high accuracy.

To address these problems, modern machine learning
methods employ Stochastic Gradient Decent (SGD) as a
method of choice to train machine learning models. Machine
learning models are trained using a training data set: this
data can be thought of as a n x d matrix U. Each row (or
sample) u in U corresponds to one instance of the training
set containing d features (the dimensionality of the data set).
The goal of the optimization method is then to find a d-
dimensional vector w which minimizes a certain objective
function, f, also known as loss function.

While there exists different types of loss functions that
arise from different classifiers (e.g., linear, SVM, DNN,
etc.), this paper focuses on the widely used binary Logistic
Regression loss, which arises from classifying the elements

of a given set into two groups, and has the form:

Z log(1 + exp(—yupu)) (D

where p,, is the ggtUproduct of the model w and the matrix
sample u, and y,, is the corresponding label.

SGD solves this problem iteratively; each iteration looks
at a subset of the training set, computes the gradient of the
objective function of the model with respect to the subset
of data, and makes an update to the model in the negative
direction of the gradient.

SGD, however, is inherently sequential with a depen-
dency across iterations: the model being a descendant of
the previous model. This dependency limits parallelism.
Several proposed algorithms, such as Hogwild [1], process
multiple samples in parallel, neglecting this dependency, in
order to offer parallelism. However, extra parallelism in
these methods come at the loss of what can be defined
as statistical and hardware efficiency. Specifically, loss of
statistical efficiency implies an increased number of iterations
(via passes over the data) to converge, while, loss of hardware
efficiency implies poor cache reuse and increased amount of
inter-core communication.

In this paper we explore design trade-offs for SGD which
directly impact statistical and hardware efficiency and pro-
pose a new algorithm, based on this study, which addresses
inherent weaknesses of existing parallel implementations of
SGD. To this end, we make the following contributions,
organized as follows:

e We provide a study of the option space for SGD in
terms of data pass strategies, choice of privatization
and aggregation versus direct shared model updates, and
sparsity handling. This is discussed in section III.

e« We examine the trade-off between staleness of data
(which affects statistical efficiency in the form of con-
vergence) with parallel execution (hardware efficiency),
and focus on the metric of overall time-to-convergence
to a given loss bound. The properties of staleness are
analyzed in section V.

e We propose a new data pass style, HogBatch, that
combines the benefits of Hogwild with a Mini-Batch
SGD approach. We showcase up to a near linear scaling
on multiple cores, with up to a 20x parallel speedup on
a CPU with 14 cores (28 threads), even in sparse prob-
lems where previous parallelization techniques failed
to improve on serial performance. HogBatch can take
advantage of the sparsity of data sets, and is the method



of choice for datasets with widely varying sparsity. This
method is detailed in sections IV and VI.

For the rest of the paper, we provide a complete evaluation
of each method on real world datasets, including comparing
performance with parallel scaling, in section VII. We con-
clude with a comparison to the state of the art framework
BidMach [2], offering at least a 6.5x improvement for single
model Logistic Regression, in section IX.

II. THE MANY FACES OF SGD

The baseline Stochastic Gradient Descent (SGD) approach
can be modified in a variety of ways. First, the exact gradient
that needs to be computed depends on the loss function (lin-
ear, logistic, hinge loss, least squares, etc). Second, the data
access and parallelization strategy can vary, where different
approaches such as Hogwild [1] and Mini-Batching perform
model updates using varying number of data samples at
different times during a pass over the dataset. Third, the
choice of how to compute the gradient and fix learning rates
can also vary, and in fact techniques such as ADAGRAD [3]
can help remove learning rate as a knob required to be tuned.
One can also adopt extensions to SGD such as Stochastic
Average Gradient (SAG) [4] that uses an average gradient of
the dataset based on previous iterations to do model updates.

In this paper, we focus on the analysis and improvement of
the parallelization of these algorithms in fundamental ways
that affect the hardware efficiency. For instance, while the
choice of loss function changes the computation, the access
patterns and model updates are very similar. Further, learning
rate and adaptive gradient strategies such as ADAGRAD
and/or SAG can be added on to existing baseline SGD
algorithms, without much impact on the actual algorithm
structure, or overall application pattern.

Due to these factors, we focus on improving a relatively
simple model for most of the results in this paper: the
classical SGD algorithm as used in Logistic Regression. Our
novel technique proposed in this paper focuses on reducing
the staleness of updates to the model, as well as techniques
to help increase hardware efficiency. We believe that our
results are representative of other use cases of SGD; in order
to help show this, we performed many of our evaluations
with the ADAGRAD learning rate as an example, and found
comparable efficiency improvements with our approach. We
present some of these results in Section VIIL.

III. PARALLELIZING SGD

Semantically, SGD is an inherently sequential algorithm.
The update (where Gradient is a function that computes the
gradient of the dataset at row (also called sample) )

w1 = wy — a; Gradient(wy, u) 2)
has a chain dependency, such that the next w update (t+1)
is directly dependent on the previous (t). At first sight,
since w is typically a vector of size d, the number of
features, there appears to be data parallelism across the
features. However, since SGD is typically performed on
sparse problems, the sparsity pattern of the input sample row
u dictates the number and position of the update to w, with
different samples offering different and often small amounts
of parallelism. Parallelizing across non-zero features also
means that elements of w are written randomly in parallel,

Algorithm 1: Mini-Batch SGD pseudocode for one datapass.

1 for (st = 0; st < num_samples/SIZE; st += SIZE) {
2 #pragma omp parallel for schedule (dynamic)

3 for (index = st; index < SIZE; index++) {

4 // Sparse vector operation.

5 g_tid[TID] += a * Gradient (model, index);

6 } // (implicit thread barrier)

7

8 #pragma omp parallel for schedule(static)

9 for (f = 0; f < num_features; f++) {
10 for (t = 0; t < NUM_THREADS; t++)

11 model [f] = model[f] - g_tid[t][f];
12 } // (implicit thread barrier)

13}

which can cause significant inter-core traffic to maintain
coherence on cache-coherent architectures. For many sparse
datasets, these factors can be quite limiting to scaling.

When parallelizing across samples, an update may be
based on a model w that is not as up to date as it could
be. We quantify this as the staleness, or number of updates
to the global model that happen (by potentially the same or
different threads) between the time the model is read by a
thread to the time that the model update is written back by
that thread. The golden standard is serial SGD, wherein each
update is directly a descendant of the previous and thus has
no staleness. These properties will be further discussed in
section V.

Interestingly, for sparse datasets if two samples, a followed
by b, have non-intersecting non-zero indices, they will then
update independent indices of w. Such updates are actually
independent; when done in parallel, this maintains sequential
convergence properties. This allows an update which is based
on a stale model to become less drastic, since the effective
indices may be less stale.

A. Mini-Batching

Mini-Batching is a strategy to enable parallelization across
samples during SGD updates. A batch of a small number of
samples from the data set is taken and a combined gradient is
formed for all the samples together. A single update is then
performed to the model for the batch. For a batch size of S

and a starting sample u, the update follows the equation:
u+S

Wiys = Wt — Gt Z Gradient(wy,b) 3)

Our notation above for wtisuindicates that mini-batching
internally performs multiple gradient accumulations (denoted
by the summation), but only performs a single update at the
end of S data items. Note that this breaks the sequential
semantics of Equation 2 — each gradient in the batch b € S
is computed based on the gradient at w; above, while it
would have been computed on the basis of w;; in Equation
2. This has consequences for the staleness of updates, i.e.
the model being used to compute the gradient can be quite
old depending on S. This affects the statistical efficiency
of the update and hence convergence. However, it does
enable parallelism across the samples of the batch: threads
can independently update a private gradient vector for their
section of the batch. Upon completion of the batch, threads
will work together to apply a reduction and update from all
threads into the shared w vector, the model. The parallel
algorithm in pseudocode is presented in Algorithm 1 (the
vectors are not shown for simplicity).



Algorithm 2: Hogwild SGD pseudocode for one datapass.

#pragma omp parallel for schedule (dynamic)

1

2 for (index = 0; index < num_samples; index++) {
3 // Sparse vector operation.

4 model = model - a * Gradient (model, index);

5 )

By parallelizing across samples, Mini-Batching induces two
important positive characteristics:

+ One update per batch size: There is a reduction in
the total amount of work done — the number of updates
(writes) to the model w per data pass is now the number
of samples divided by the batch size.

Thread independent tasks: Since threads have their own
subset of samples to execute on, they do not need to
communicate until the reduction step. Moreover, it is easy
to privatize the partial gradient vectors and have one vector
per thread. Since these vectors can be accessed irregularly
for sparse problems, it is highly advantageous to keep
this irregular access to a thread-private structure and avoid
cross-core traffic on cache-coherent architectures.

However, Mini-Batching suffers from several drawbacks:

- Reduction: As mentioned, all threads need to combine
their partial solutions to compute the update to the model
vector. This reduction step is added work.

- Thread Synchronization: The method has to do two
thread synchronizations per batch: the first after all threads
complete their local updates to the model, and the second
after the reduction step.

- Updates are stale: Since the model update is not applied
until the end of the batch, updates within the batch become
increasingly stale — being based on an out of date model
— such that the last update aggregated within the batch is
stale by the batch size.

B. Hogwild

Hogwild [1], one of the most popular methods for paral-
lelizing SGD, is a data pass approach for SGD that offers
the interesting characteristic that threads do not have to
synchronize, and in fact can perform their own asynchronous
model updates. In Hogwild, as show in algorithm 2, each
thread takes a sample at a time and performs an update
to the global model w without any synchronization with
other threads. These updates from different threads can po-
tentially overwrite each other, leading to data race conditions.
Hogwild works well for very sparse data sets, where many
samples are actually near-independent since they write to
mostly different indices of the model (e.g. the intersect of
non-zeros is generally small).

Hogwild provides two important characteristics:

+ Thread asynchronicity: Threads perform independent
work and do not have to synchronize. There is no need
for any reduction of updates across the threads.

+ Minimum staleness: The computation of the gradient
at any time is based on the current state of the model
visible to the thread at that time. Since each thread directly
performs updates to this shared model vector, the values
read are only as old as the communication latency between
threads, which is quite low as compared to Mini-Batch
SGD.

Algorithm 3: HogBatch SGD pseudocode for one datapass.

#pragma omp parallel for schedule (dynamic)
for (st = 0; st < num_samples/SIZE; st += SIZE) {
for (index = st; index < SIZE; index++) {
// Sparse vector operation.
g_tid[TID] += a x Gradient (model, index);
}

for (f = 0; f < num_features; f++)
model [f] = model[f] - g_tid[TID][f];
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Hogwild suffers from two problems:

- Race Conditions: In this algorithm, updates to the model
are somewhat chaotic due to the lock-free design: a thread
can be updating the value at a particular index in the model
while another thread may be reading/writing from the same
location. It is quite possible that parts of the update can
be lost, however, the chance of conflict gets smaller as the
problem gets more sparse.

- Inter-core communication: Although there is no direct

communication across threads, all threads issue both read
and write requests to a single, common model vector.
On cache-coherent architectures, this can cause “ping-
ponging” of the vector. Such a phenomenon happens when
multiple threads store private copies of the same cache line,
and updates from any thread to the cache line invalidates
all other copies of that line — the relevant cores may then
need to pull in the updated cache line, leading to high
cross-core traffic.
In fact, this problem is quite severe even if the data sets
are sparse - there can be false cache line sharing cases
where invalidation occurs even if different threads update
different indices that happen to fall in the same cache line
(typically 64 bytes on x86 architectures). This problem
become extreme for small model vectors, dense problems,
or when parallelizing to a large amount of threads. In
our experiments, core-to-core communication alone could
consume up to 60% of the cycles during execution of
Hogwild.

IV. HOGWILD + MINI-BATCHING: HOGBATCHING

A previously unexplored topic is the use of both strate-
gies — Hogwild and Mini-Batching together — in order to
apply an update. In this work, we propose to combine
these approaches as follows: instead of threads working
synchronously together within a batch, we can have each
Hogwild thread work on their own full batch of samples. In
this method, which we call HogBatching, a thread would be
responsible for handling a batch of samples, continuously
aggregating them into a private gradient vector. Once a
thread completes its batch, it will apply the update to the
shared model vector and move on to its next batch without
synchronization between other threads. This method is shown
in algorithm 3.

Analyzing this new method, we note it actually takes the
positive aspects from each of the previous methods:

+ Thread asynchronicity: As in Hogwild, threads have
no need for direct inter thread communication, and do
not need to synchronize. Threads perform their assigned
batches independently, and there is no reduction of up-
dates.



+ Reduced staleness: There is some staleness within the
batch as in regular Mini-Batching, but other threads may
asynchronously update the model vector in the middle of
a thread’s batch processing. In that case, the thread would
get a more current model in the middle of processing a
batch. This does not happen in regular Mini-Batch SGD.

+ One update per batch size: As in Mini-Batching, the
update frequency per pass is again reduced by a factor of
the batch size.

+ Thread independent tasks: Also as in Mini-Batching,
threads have their own independent subset of samples to
process. In addition, their work is stored in thread private
gradient vectors, which does not need to be shared with
other cores and thus is cache friendly.

Weaknesses: Although we addressed the negatives of re-
duction and synchronization, two other weaknesses inherited
from Hogwild and mini-batching need to be addressed:
first, the potential for asynchronicity conflicts, and second,
inter-core communication. These issues still remain, but are
drastically reduced: since threads aggregate model updates
to a local model vector and only write out the update once
per batch, the potential for conflicts is highly reduced. For
the same reason, most accesses to the global vector are now
reads — which results in less false sharing and inter-core
communication.

When a write is issued on completion of a batch, the write
is dense (similar to Mini-Batch SGD), instead of sparse as in
Hogwild (many sparse updates have already been aggregated
into one dense update during batch processing). Although
this of course invalidates the cache, the new cache line
contains many updated values instead of potentially only one.
Hence most of the cache line would actually be required
by the destination core (true sharing as opposed to false
sharing), reducing wasteful traffic.

Finally, the issue of staleness within the thread’s batch, still
remains. However, we address this issue in the next section.

V. STALENESS PROPERTIES

In table I, we show the staleness factors for each method.
In this table, we consider the minimum staleness for the final
sample in the batch, and the maximum staleness (which also
will be for the final sample in the batch). For asynchronous
methods, the minimum would come when a thread applies
their update and no other thread updates the model before the
next sample is processed. In the case of Hogwild, a sample
could be totally up to date (staleness of 0) in the best case,
or in the worst case could be out of date by a factor of the
number of threads. The worst case scenario for the staleness
of an update for Hogwild is that each other thread applies
their update to the model in the time between the model
is read and the time the model will be written. Note we
simplify (to show relativity between strategies) in the table
that processing a single update takes about the same amount
of time, and hence we will not encounter scenarios where
some threads make multiple updates in the same time as
others make a single update.

For Mini-Batching, the minimum and maximum are the
same - the final sample in the batch will always be out of
date by the size of the batch, since the model vector is not

TABLE I: Staleness Analysis. The number of threads is T,
the size of the Mini-Batch is S, and the size of the HogBatch
is HS.

Min-Stale Max-Stale  Example: T=8,
Method (For final update S=1024, HS=(S/T)
in batch) [min, max]
Hogwild 0 (T-1) [0, 71
Mini-Batch S S [1024, 1024]
HogBatch HS (T*HS) [128, 1024]

updated until the batch completes, as all local thread updates
are aggregated and written back only at that point.

HogBatching has some similar properties to each of the
previous approaches — although the final sample in the batch
could be out of date by the batch size, all other threads could
write their updates in the meantime, causing the sample to
actually be fairly up to date in the global view. In the worst
case, it is similar to regular batching, since the update may
be completely out of date due to the asynchronicity.

A. Improving Staleness

There is a unique way to improve the staleness of both
batch style algorithms. We note that in line 5 of Mini-
Batching (Algorithm 1) and line 5 of HogBatching (Algo-
rithm 3), we calculate the gradient based on a read only
version of the model. It is important to keep the model read
only during this step, since we aggregate the update and only
apply it once per batch. However, note that in lines 11 and
9 respectfully, we simply directly subtract the aggregated
results from the model vector. So, before we compute the
gradient, we can actually locally subtract g_tid[TID] from
the model, and calculate the gradient with this instead — in
effect, this is analogous to the thread continuously updating
it’s local view of the model vector with their own samples,
but without actually committing the write back to shared
memory.

This improves the staleness within the batch by a factor of
the work that each thread does within the batch — although
it will not see other thread updates, it will utilize its own
local ones. In table II, we show the effect of this. For
Mini-Batching, since each thread is responsible for an equal
portion of the batch size, the staleness is reduced by that
quantity. Although visually this does not seem like much of
a difference, the more stale a update is, the more useless that
the update is — an update that is only stale by 1 is much more
useful than an update stale by 100, and so on. In effect, this
modification gets rid of the “tail end”, or worst staleness,
causing a significant improvement.

In HogBatching, this improvement is magnified — since
each thread’s batch is locally improved, the cross thread
updates seen are also improved, causing the best case sce-
nario of an update to be very recent. Note that having a
completely up-to-date model update is possible, although
extremely unlikely, due to the definition of asynchronicity. It
would require that all threads less one complete an update,
and then pause, in which case the final thread is actually
performing the equivalent of sequential SGD. Fortunately,
the worst case is also equally unlikely, since it requires all
other threads to complete their update but but similarly pause
before committing it, while the final thread continues.



TABLE II: Improved Staleness Analysis. The number of
threads is T, the size of the Mini-Batch is S, and the size of
the HogBatch is HS.

Min-Stale Max-Stale Example: T=8,
Method (For final update S=1024, HS=(S/T)
in batch) [min, max]
Hogwild 0 (T-1) [0, 7]
Mini-Batch ~ (S) - (S/T) (S) - (S/T) [896, 896]
HogBatch (HS) - (HS) =0  (T*HS) - (HS) [0, 896]

Overall, we find this enhancement to experimentally give
up to 30% improvement in time to convergence, especially
becoming important for denser problems. In addition, this
tweak also showcases a nice algorithmic relationship be-
tween Hogwild and HogBatching: In both cases, when T =1,
the algorithms simply perform sequential SGD. In addition,
when the batch size HS = 1, HogBatching is equivalent to
Hogwild.

VI. IMPLEMENTATION OPTIONS WITH HOGBATCHING
A. Batch Size

One important parameter for HogBatching is the batch
size, for statistical efficiency. In tables I and II, we provide
an example batch size HS that is equal to the Mini-Batch
size divided by the number of threads — this is the basis for
the worst case staleness for HogBatching being the same as
for regular Mini-Batching. This makes intuitive sense: the
number of samples “in flight”, or being processed during
one logical super-step, becomes equivalent to Mini-Batching
if each thread is working on S/T samples.

However, this is not necessarily the best choice for batch
size. Since the minimum staleness for HogBatching is much
smaller than Mini-Batching, the improved convergence al-
lows for a larger batch size. In practice, we find the optimal
batch size can lie anywhere between S/T to the full size S
depending on the sparsity of the data set and the value of 7.

B. Improvements with Sparsity

For all algorithms (Hogwild, Mini-Batching and Hog-
Batching), a model update is computed based on an aggre-
gation of a few rows of the sparse input data set (as few
as one for Hogwild, and equal to the batch size otherwise).
Depending on the batch size, it is possible that these aggre-
gates (sums) of the sparse input rows will still be sparse (the
number of non-zero indices in the sum of sparse vectors is
the size of the set union of the non-zero indexes of each
vector). This sparsity in the model update can be exploited
to make model updates faster.

However, in order to allow for sparse model updates,
we need to keep track of the position of the non-zero
indices when aggregating the sparse rows of the input. We
tested two different methods of keeping track of non-zero
indices: (a) holding a bitmap of indices written during the
batch, updating it as each entry is aggregated; followed by
performing a bit scan to get non-zero indices; and (b) using
a map data structure to accumulating the indices that have
been written. It is important to note, however, that both
these techniques have overheads; indeed if the density of the
aggregated output is large enough, the gains from doing a

sparse update may not be enough to justify these overheads.
We experimented with these various strategies and found
that the extra work of keeping track of non-zero indices was
only useful for extremely sparse problems (we specifically
only found improvements for the two sparsest of the seven
datasets we consider in this work).

C. Hierarchical Parallelism

When enabling SMT threads on the CPU, we realized
an opportunity to further improve performance by using
a hierarchical parallelism structure. With two threads per
core, we have an opportunity to exploit the cache locality
between the threads. We begin by noting that in algorithm
3, there are actually two levels of available parallelism
— an “outer” parallelism level where different batches are
processed asynchronously, and an “inner” level where a
thread would perform updates on their local batch, currently
as in a serial SGD algorithm.

For runs with SMT, we set the two SMT threads per core
to index the same private gradient vector, as it will reside
in the same private cache. This reduced the total number
of private gradient vectors by half, and furthermore reduced
cache pressure, as the effective inter-core communication
was reduced as well.

Algorithm 4 shows a generalization of this algorithm,
beyond just SMT. We first start as in HogBatching, allowing
outer asynchronous parallelism, but have a group of threads
(rather than a single thread) be responsible for a batch.
The work within the group’s batch is performed as a small
Hogwild problem by the group’s workers, who index the
same group-private gradient vector. Once a group’s workers
complete their assigned samples, the workers within the
group apply the update to the shared model vector. In this
algorithm, synchronization occurs only between the workers
within the group (and in fact is not necessarily required), and
only when the group’s workers work together to apply the
single group update. In addition, the only shared memory
spanning groups is the model, whereas each group would
have a private memory location (shared among workers) for
the group gradient.

This abstraction to groups and workers is intended to
aid the effectiveness past SMT multi-threading and into
many core architectures, such as the Intel® Xeon Phi

COpI'OCCSSOI'1 .

VII. EXPERIMENTAL ANALYSIS
A. Experimental Setup

Unless otherwise mentioned, the following was used for
the evaluations:
Hardware: We use a single socket Intel® Xeon® E5-2697
v3 Haswell based CPU, with 14 cores (28 threads including
Simultaneous Multi-Threading/SMT) running at 2.6 GHz.
Our machine has 64 GB RAM and runs Red Hat Enterprise
Linux Server release 6.5.
Software: We use custom end-to-end code written in C++
with OpenMP, and compiled with the Intel® C++ Compiler
15.0.2 with all optimizations enabled. We format in single

ntel, Xeon and Intel Xeon Phi are trademarks of Intel Corporation in
the U.S. and/or other countries.



Algorithm 4: Many-Core HogBatch SGD pseudocode, for
one datapass.

1 GROUP_START = get_group_start (TID);

2 // Group parallel asynchronous

3 for (st = GROUP_START; st < GROUP_COUNT; st++) {

4 WORK_START = get_worker_start (st, TID);

5 // Worker parallel asynchronous

6 for (id = WORK_START; id < WORK_COUNT; id++) {

7 // Sparse vector operation.

8 g_group += a x Gradient ((model + g_group), id);
9 }

10 sync(); // Sync threads in the group.

11

12 // All threads in the group perform the update.
13 for (f = TID; f < num_features; f += T_PER_GROUP)
14 model [f] = model[f] - g_group[f];

15 1}

TABLE III: Experiment Datasets. The RCV1 datasets are
from [5], the others are from the LibSVM resources [6].

Dataset Name ~ Examples Features NNZ  Sparse% NNZ/Row Avg/Row
news20.binary 19,996 1,355,191 9,097,916 0.034 1 to 16,423 454.987
RCVI-v2 781,265 276,544 60,534,218 0.028 4 to 1,585 77.482
RCVI-vl-test 677,399 47,236 49,556,258 0.155 4 to 1,224 73.157
real-sim 72,309 20,958 3,709,083 0.245 1 to 3,484 51.295
w8a 64,700 300 753,862 3.884 1to 114 11.652
connect4 67,557 126 2,837,394 33.333 42 to 42 42.000
covtype 581,012 54 6,940,438 22.121 9to 12 11.945

precision values (the matrix as well as the labels), although
we have also received similar results with double precision.
We use the classic SGD update algorithm for Logistic
Regression unless otherwise specified.

Datasets: We perform evaluations on a wide range of
datasets with varying feature size (which is equivalent to
model size), as well as sparsity patterns. The datasets used
and their properties are shown in Table III.

Parameters: For each method, we do a combinatorial sweep
of the parameters of alpha (learning rate), and batch size,
and only present the best result. In addition, when using all
cores, we present the better result from enabling or disabling
SMT multi-threading, unless presented separately. We adjust
the learning rate per iteration for a sample index 7 to be
alpha/sqrt(i + D), where D is the iteration sum from the
previous data-passes: datapass-number x num_samples.
Regularization:  We apply L2 regularization for all
methods, with the Lambda value set to 1/num_samples of
the dataset. We use a sparse optimization to regularization,
as described in [7].

Reporting: When reporting time, we discount the time for
loading data from disk. We measure the training time of each
method until it achieves a chosen Closeness to ”Optimal”
Loss — unless otherwise specified, this is 99.5%. We compute
the “optimal” loss using L-BFGS [8], which is a second
order method and thus can eventually arrive at a model
with a machine precision gradient of zero for our convex
problem. We then evaluate the Closeness to Optimal Loss as
the percentage that the current loss is of this “optimal” loss
value, with the function (2 — |current|/|optimal|) x 100%,
since the loss decreases to approach the optimal. We do not
present the time it takes for L-BFGS, since the goal of this
paper is not to compare first order methods to second order
ones.

When comparing the performance of different algorithms,
we chose time-to-convergence, in terms of closeness to opti-
mal loss, as the standard; this is because each algorithm has

TABLE IV: Speedup (as time to 99.5% convergence) of
HogBatch over best alternative solution out of Serial, Mini-
Batching, or Hogwild on a 14 core system.

Dataset Sparse% Features  Best Alt vs Best Alt
news20.binary 0.034 1,355,191 Hogwild 0.86x
RCV1-v2 0.028 276,544  Hogwild 1.87x
RCV1-test 0.155 47,236  Hogwild 2.43x
real-sim 0.245 20,958  Hogwild 3.85x
w8a 3.884 300 Hogwild 8.97x
connect4 33.333 126~ Mini-Batch 5.81x
covtype 22.121 54 Serial 20.16x

its own trade-off between statistical efficiency, the number
of passes over data for convergence (usually reported in the
literature), and hardware efficiency, time per datapass. In
reality, the effective time to convergence is actually a mixture
(product) of these two factors. When possible, the points on
figures represent one complete datapass, to help show the
difference in time per datapass.

B. Results of our Evaluation

Table IV shows the speedup of HogBatch over the best
performing alternative (Serial, Mini-Batching, or Hogwild).
As expected, Hogwild was generally the best performing
alternative, as it is usually faster than Mini-Batching for
sparse data sets due to its asynchronous nature. However,
with increasingly dense problems that have a small number
of features, Hogwild becomes worse than serial. The figures
in 1 show how closely each of these methods approach
“optimal solution” overtime, using all 14 cores, on the
RCV1-vl and covtype datasets. We present these two in
depth since they have widely different properties: RCV1 is
highly sparse and has a relatively large model size, whereas
covtype has a very small model size and is slightly dense. In
our experiments, we found that other datasets had properties
that fell between these extremes.

In RCV1 1la, we see that Hogwild showed a similar
convergence behaviour to serial; in fact, it was equivalent in
number of data-passes at 8. Mini-Batching converged much
slower, as was expected, taking twice as many data-passes
at 16 — however, it was about twice as fast in time-per-pass
compared to Hogwild, leading to a near parity in overall
time-to-convergence. HogBatching took the advantages of
both — the low overall data-pass count (at 9), with about
half in time-per-pass compared to Hogwild. A similar con-
vergence behaviour was observed with our other datasets,
with the time-per-pass being improved drastically in some
cases: in covtype 1b, Hogwild and Mini-Batching when run
with all cores actually took longer to complete a datapass
than sequentially with one core, whereas HogBatching scaled
near-linearly while maintaining excellent convergence.

On the other hand, table IV shows that HogBatching is
not always the best strategy. In the news20 dataset, which
has an extremely large number of features and very high
sparsity, Hogwild slightly outperforms HogBatching, even
when sparse optimizations to HogBatching are applied. The
reason for this twofold. First, due to the large model size and
sparsity, it is extremely unlikely that samples will suffer from
the write conflict or false sharing. This reduces the amount of
core-to-core cache communication. Second, with a batching
strategy, there is the overhead of applying the local update



to the global model. Although we can limit this overhead
by using sparse updates as in Section VI-B, Hogwild does
not have this overhead and is hence slightly faster. However,
in most other cases, the model size is not as extreme, and
hence the false sharing and inter-core communication traffic
makes HogBatching superior to Hogwild.

C. Scaling with Cores

Figure 2 shows the scaling of different strategies when
we vary the number of cores across two of our datasets. The
baseline of 1.0 is the performance of serial SGD.

These figures show several key aspects of each method of
parallelization:
Hogwild: For RCV1 2a, this method gets worse before
it gets better: when only two cores are used, the method
is outperformed by only one core (which is equivalent to
the serial method): the overhead of inter-core communication
exceeds the benefits of splitting the work across cores. With
more cores, the method begins to scale better, but at 14 cores
the method is still just under 4x better than serial. In the
denser covtype dataset 2b, the behaviour is worse, never
breaking a 2x speedup over serial, and performing worse
than serial when the entire machine is used.
Mini-Batching: In RCV1 2a, after a sweep of batch sizes,
we found that the optimal was a relatively large batch size of
3700. For this dataset, there is sufficient parallelism and the
method scales well. Note that the single thread performance
of Mini-Batching is worse than serial SGD - this is due to
the aggregation into a private vector before application to
the model, which is not necessary for a single core solution.
This creates an initial overhead; however, this overhead is
constant, as it is parallelized when running on more cores.
For the covtype dataset 2b, the overheads of the local
aggregation and application is actually small due to the
small model size, leading to single thread performance that
is almost the same as serial SGD. However, the method
does not scale well; similar to Hogwild, there is a drop in
performance with additional cores. This is, however, for a
different reason: with a small optimal batch size of 100, the
cost of thread synchronization limited performance. Note that
this speedup is in regards to the best time-to-convergence
that we can get for Mini-Batching; we found larger batches
would lead to overall slowdowns due to slower convergence.
HogBatching: This method had the best scaling in both
datasets. In RCV1 2a, similar to Mini-Batching, the method
has an overhead due to aggregation, leading to redundant
work in the single core case. However, the method scales
well with core count, with the performance at 14 cores being
about 8X faster than serial SGD, improving to 11X with
SMT multi-threading. This is over twice as fast as Hogwild.
For the covtype dataset 2b, there is little overhead for
single thread runs (as in Mini-Batching), and furthermore the
method scales well even with small batch sizes due to lack
of synchronization points. Overall, we achieve near-linear
scaling, almost 14X with 14 cores, and some super-linear
scaling effects due to the cache improvement with optimized
SMT multi-threading (20X), as discussed in VI-C.

D. Scaling with Frequency

With the current trends of increasing hardware perfor-
mance through adding multiple cores, improving core fre-
quency is no longer a focus for architecture design. Hence
algorithms that scale well with number of cores rather than
with frequency are preferred for current and future hardware.

In Figure 3, we show the performance of each method
as we vary number of cores from 1 to 14 and frequency
between 1.3GHz and 2.6GHz. We colour pairs of entries
with the same colour: one entry having twice the core count
of the other while running at half the core frequency. For
instance, 2 cores that run at 1.3 GHz are coloured the same
as 1 core that runs at 2.6 GHz (Note: 8 to 14 is not exactly
double, nor is 14 to adding SMT threads).

The figure shows that Hogwild scales much better with
a frequency increase rather than with core count. This is
because the frequency of the interconnect between cores is
governed by core frequency, which was the key bottleneck
in Hogwild. Therefore, a faster inter-core communication on
fewer cores results in a overall performance gain, versus a
larger amount of cores with a slower inter-core connect.

Mini-Batching and HogBatching however, show a differ-
ent story: in both cases, adding more cores or increasing
frequency near equivalently improve performance. This abil-
ity to scale to multiple cores is important for hardware effi-
ciency, especially when moving from the multi-core into the
many-core domain. However, of these techniques, HogBatch
scales better than Mini-Batching.

E. Future Scalability

The reported real system measurements show poor hard-
ware efficiency of Hogwild. While Mini-Batch improves
hardware efficiency of Hogwild, it loses statistical efficiency
with larger batch sizes, which is required to achieve good
overall efficiency. HogBatch on the other hand, maintained
good statistical and hardware efficiency up to 14 cores.

In order to understand how HogBatch performs on system
with larger number of cores, we have simulated HogBatching
using Sniper, an execution-driven simulator [9]. We model
a single-threaded 2-wide in-order core at 1.8 GHz as well
as 2-dimensional mesh, with 2 cores per mesh stop, a 2-
cycle hop latency, a link bandwidth of 64bytes/s and MESIF
cache coherence protocol. On the RCVI1-vl dataset, we
observed 53x scalability in time-per-pass on 64 cores, and
projected 90x scalability on 128 cores, indicating the excel-
lent hardware efficiency of HogBatch at larger scale. The
trace observed only a minimal loss in statistical convergence
per pass compared with serial, at approximately a 25% loss,
which was only slightly more than the loss we observe
when running all threads on our 14 core machine with this
dataset (about 10%). This result indicates HogBatch’s ability
to sustain high statistical efficiency as well.

This ability to achieve high hardware efficiency, while
maintaining statistical efficiency, allows us to consider Hog-
Batching to be the method of choice for future platforms. In
addition, we anticipate hierarchical parallelism (as in section
VI-C), to continue to improve performance on machines that
contain many threads per core.
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VIII. MULTI MODEL REGRESSION

In addition to single model regression, which we have
focused on up to now, regression can also be extended to
produce multiple models from a single input sample dataset.
This is useful when there is more than one prediction to be

made from the same data, and the dataset has different labels
for each prediction to be made. We now deal with a matrix
of labels, instead of a vector; the model will similarly also
then be a matrix.

Moving into the multi model domain has a few important
effects: the first is that parallelism can be applied across
the new dimension (being a matrix rather than a vector).
Thus, the necessity for creating parallelism across samples
diminishes, due to the new-found model parallelism.

The algorithm exposing this is shown in 5. Second,
a strategy that employs batching with sample parallelism
(which duplicates the size of the model per thread) is no
longer cache friendly: the model state and labels, both of
which are dense, are now quite large and may not fit into
caches. Each update to a single index for such models now
needs to update all the models which pulls in a lot of data and
pollutes caches. Due to these reasons, we found Hogwild,
which does not use batching, to be the best approach on all
of our datasets.

Notably, when allocating the model matrix, it is critical to
properly orient the data: the models should be allocated such
that the first index for each model are stored consecutively in
memory, followed by padding if necessary to align the data
(e.g., 103 is padded to 128), and then the second index for



Algorithm 5: Multi-Model Hogwild SGD pseudocode for one
datapass.

1 #pragma omp parallel for schedule (dynamic)

2 for (index = 0; index < num_samples; index++) {
3 #pragma simd

4 for (m = 0; m < NUM_MODELS; m++) {

5 // Sparse indices update of model[m]

6 model [m] -= a * Gradient (model[m], index);
7
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all models, and so on. This allocation strategy is important:
although Hogwild updates the model indices sparsely, it will
apply updates to the same index of all models at once. If
these are available in consecutive memory locations, cache
line utilization can be nearly perfect. This layout also allows
the updates to be done using SIMD (Single Instruction
Multiple Data, using AVX2 Instruction Set, for instance)
operations — the padding will allow these SIMD operations
to operate from aligned memory addresses. Furthermore,
padding also allows cache loads and stores to not be split
— accesses to any index is then guaranteed to be in its own
cache line.

Figure 4 shows the result of varying the number of
models with RCV1-v2. We go up to 103 models for sake
of comparisons with other work that we will describe in
Section IX. We report time per datapass per model on the
y-axis. Until we hit about 32 models, we get benefits our
SIMD-friendly layout and the time per model continues to
fall. At about 32 models, we have gotten the most out of
the SIMD benefits, and increasing parallelism across this
dimension is no longer beneficial.

At this crossover point, we could decide to separate the
model training, either across nodes, or across sockets in a
multi-socket system. For example, a four socket machine
could train 32 models at once per socket, allowing for
continued scalability with increasing model count.

IX. COMPARISON TO STATE-OF-THE-ART

BidMach [2] is a general purpose machine learning frame-
work that runs on multi-core CPUs as well as GPUs, and has
implemented SGD for regression. The framework is open

TABLE V: Single model comparison using RCV1-v1-test
dataset. All methods use the ADAGRAD update, and the
same parameters. Single socket CPU was used for all com-
parisons.

Implementation Hardware Time/Pass (ms)
BidMach TITAN X 723
BidMach Sandy Bridge 14,190
CPU optimized (Mini-Batch) Sandy Bridge 289
CPU optimized (Hogwild) Sandy Bridge 253
CPU optimized (HogBatching)  Sandy Bridge 147
CPU optimized (HogBatching)  Haswell 111

TABLE VI: Multi model comparison using RCV1-v1-test
dataset. All methods use the ADAGRAD update, and the
same parameters. BidMach uses a size of 5,000. We use one
CPU socket for all results, except the last row where we
use two. Each implementation trains all 103 models at once,
the dual socket run splits the models to train separately on
sockets. All CPU optimized runs use Hogwild.

Implementation ~ Hardware Models  Time / Pass (ms)
BidMach TITAN X 103 2,170
BidMach Sandy Bridge 103 120,720
CPU optimized  Sandy Bridge 103 2,010
CPU optimized  Haswell 103 1,283
CPU optimized  2x Haswell 103 724

source, and has been shown to compare favourably to other
implementations. Performance results for logistic regression
performance using BidMach is reported in [10].

We execute the current version of BidMach (1.0.3) on an
Intel® Xeon® E5-2680 Sandy Bridge based system with 8
cores at 2.7 GHz. This machine also hosts an NVIDIA Titan
X that we use for BidMach runs. We set the parameters for
BidMach SGD (e.g. learning rate, regularization) to be the
same as those in our code, and we also implemented the
ADAGRAD update [3] used in BidMach (we note that the
ADAGRAD update is about 3x slower per datapass than the
regular SGD update, as shown in figure 4, due to the use
of extra state). Since we choose the same parameters, the
convergence of our methods was almost identical and we
hence only report performance in time per datapass.

In Table V, we compare the results of our single model
performance with BidMach. Our single-model HogBatch
code is 1-2 orders of magnitude better than the BigMach’s
CPU version, and is also significantly faster than the GPU
results. We note here that (based on communication with the
developers) BidMach is not specifically optimized for use in
the single model case and is mainly targeted at GPU multi
model regression.

Table VI shows the comparison with multi-model regres-
sion. The authors of BidMach have also confirmed that the
framework’s CPU code was not as well optimized as the
GPU code (in fact, BidMach’s CPU code is in Scala, whereas
the GPU code is in native CUDA). With proper attention to
vectorization as discussed in section VIII, we are able to be
on par with the GPU implementation on one Sandy Bridge
CPU, and are slightly faster on our Haswell machine. This
result also shows the importance of using a well optimized
baseline to compare CPU and GPU platforms.



X. RELATED WORK

Hogwild, by F. Niu et al. provides a strong foundation
for this paper [1]. Hogwild presents an asynchronous, lock
free approach to SGD. Hogwild has been extended in many
directions, such as a dual averaging algorithm for non-
smooth, non strongly-convex problems as described by J.
Duchi et al. [11]. In a very recent paper [12], J. Duchi et al.
has also provided related work showing evidence of the ef-
fectiveness of asynchronous stochastic optimization schemes,
also discussing the need for understanding the underlying
hardware — such as avoiding locking. In addition, their work
has also independently introduced a related approach to what
we describe as HogBatching, as they average updates over
a constant 10 samples. However, they did not extend it into
the full abstraction (ie. batch size, hierarchical parallelism,
etc.) or evaluation that we offer in this paper.

M. Zinkevich et al. offers a distributed solution to par-
allelize SGD by splitting the workload and having each
machine perform SGD on a subset of data before averaging
together the results [13]. Similar to their design goal, a new
distributed framework Splash by Y. Zhang et al. improves
performance in the multi-node domain [14]. They are able
to improve convergence with a partitioned dataset with a re-
weighting of local data. Finally, Downpour SGD, shown by
J. Dean et al., also attempt to improve SGD in distributed
systems [15]. Each of these distributed methods work well to
scale out for large datasets, as each machine does not need
to hold the total amount of data — only a defined portion
size. However, the machine that receives the partitioned
SGD tasks could itself have a multi-core processor — at this
point, a shared memory technique like ours actually becomes
harmonious, where one can apply a shared memory solution
to speed up the task at the multi-core level, and then perform
the strategy to aggregate results at the multi-machine level.

In [16], C. De Sa et al. describe an analysis of Hogwild
style method named Buckwild. In their method, one key
design choice to improve hardware efficiency is to use lower
precision arithmetic, as low as an 8 bit value instead of a 32
bit float. With their techniques, they improve wall-clock time
of the solution over a regular Hogwild approach. We believe
these same improvements could be applied to HogBatching,
as both methods are essentially extensions to Hogwild, but
along an orthogonal axis, and we hope to investigate this in
the future.

Ce Zhang and C. Ré present DimmWitted, characterizing
state of the art SGD on shared memory NUMA machines
[17]. Their work is in a similar direction to ours, focusing
on understanding the efficiency of SGD: the authors perform
a study of the trade-off between statistical and hardware
efficiency, which is the focus of this paper as well. However,
in DimmWitted the authors focused on access patterns (e.g.
matrix row access or column access) and data replication,
while we look at the parallelization within datapass strate-
gies, offering analysis of time to convergence.

XI. CONCLUSION

In this paper we developed several highly optimized im-
plementations of SGD, and analyzed factors which contribute
to their statistical and hardware efficiency. We identify inter-
core communication as the key impediment to SGD scaling

on modern multi-core shared-memory systems. We addressed
this challenge with new parallel SGD algorithm, called
HogBatch, which demonstrates up to near linear scalability
across wide range of sparse datasets, without a noticeable
impact on convergence, when compared to serial SGD. Hog-
Batch achieves superior parallel efficiency by localizing a
large fraction of updates into thread-private gradient vectors.
Localizing and avoiding communication is imperative on
modern and future systems, as inter-core communication
latency continues to increase with a larger core counts.
To this end, we also demonstrated the friendliness of this
algorithm to future many-core platforms with large number
of cores or threads.

As future work, we intend to explore the use of the
HogBatching technique on other machine learning problems,
such as stochastic coordinate descent algorithms, where
similar trade-offs exist [18], [19], as well as collaborative
filtering problems, and non-convex problems.
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