Optimizing Memory Efficiency
for Deep Convolutional Neural
Networks on GPUs

Presenter: Linggi ZHANG
2018-12-19

Outline

e Background: Convolutional Neural Networks
* Introduction

* Memory Issue A: Data layout

e Memory issue B: off-chip memory accesses
 Results

e Conclusion

e Discussion

Convolutional Neural Networks (CNN)

e Visual Systeml1]
e Simple Receptive Field

e Activation related to location

e Complex Receptive Field
e Activation related to patterns

e CNNI2I
e (Convolution Layer
 Pooling Layer
 Fully Connected Layer

e Loss Layer
e Softmax
e Sigmoid Cross-Entropy
* FEuclidean Loss

Left visua Right visual
field — — field

/

\
vzasal retina
<— Optical lens
Temporal Temporal Eye
> <~
retina retina
Optic nerve
< Optic chiasma

Lateral geniculate
nucleus (LGN)

Primary visual cortex

The Visual Pathway.—Source: https://commons.wikimedia.org/wiki/File:Human_visual_pathway.svg

CLASSIFICATION

HIDDEN LAYERS

-learning-what-are-

./ /www.mathworks.

Architecture of a CNN.—Source: h

convolutional-neural-networks--1489512765771.html

[1] Hubel DH and Wiesel TN. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol, 1962, 160: 106-154 http://jp.physoc.org/content/160/1/106.full.pdf+html

[2] wiki, Convolutional Neural Network, https://en.wikipedia.org/wiki/Convolutional_neural_network

https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://commons.wikimedia.org/wiki/File:Human_visual_pathway.svg
http://jp.physoc.org/content/160/1/106.full.pdf+html
https://en.wikipedia.org/wiki/Convolutional_neural_network

Iy Iy

C
Out, [NJ[C,][H][W,] = Z Z Z In. INALCIH,; + f,llW,; + f,1 * filter[C I C 1,111,

Convolutional Layer
Function: dentity [E E E]

Extracts features

—
Low-Level| |Mid-Level Trainable | (1) ; (l)
Edge detecti -
Feature Feature Classifier ge on il
-1 -1 -1
-1 8§ -1
-1 =1 =1
[0 -1
Sharpen -1 5 -1
-1 0
1 1 1
Box blur l 11 1
Feature visualization of convolutional net trained on ImageNet from (Zeiler & Fergus 2013) (nomalized) 9 1 1
Features in a trained network P
https://medium.com/technologymadeeasy/the-best-explanation-of-convolutional-neural-networks-on-the- Gaussian blur 1
internet-fbb8b1ad5df8 — |12 4 2
(approximation) 16 12 1

Different Filters work on Picture

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

X Y
Out,, [NJICIHAIW] =). Y In, INICIIH,* stride + y|[W, * stride + x)/X/Y
x=0 y=0

Pooling Layer

(subsamplint/ downsampling)

Function:

Summarize information of features
Examples:

Max, Ave/Sum

Max(1,1,5,6)=6

N

WAIRYIE
t - max pool with 2x2 filters
5 6// 7 | 8| andstride2 [6| 8
32 [1]0 3|4
1 | 2 .
Sum y
Rectified Feature Map | Rectified Feature Map

Max Pooling

http://cs231n.github.io/convolutional-networks/

Example of Pooling

http://miss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf

Softmax Layer

Function:
User the high level features

A

This paper Specified ‘Loss Layer’ into ‘Softma
Layer’

X

provided by “previous Iaye@ do classification.

X ¥
Maxv[N,] = Z Z max(In[N,][C|])

x=0 y=0
X Y

This paper said that “Before the softmax layer,
there usually exist fully-connected layers”
But neglect the discussion of “fully-connected

layers” in other parts.

Midv1[NJ[C,] =).) (In[N,][C,] — MaxvIN,])

x=0 y=0
Y

X
Sumv[N,] = Z Z sum(Midv2[N,][C,])

x=0 y=0
X

Y
Out[NJIC,] =) Y (Midv2[N,][C,)/Sumv[N,])

x=0 y=0

DATA Layout

Definition:
A data layout is a structure applied to a system that defines how the data
fields are organized.[l (First search result by Google)

A\

| think the author means the arrangement of
multidimensional array.

R

IR
[

T)
0 65340 [12.483 (138,189 [902.960 633,877 540
15246 424642 (650380 (821254 [866.122| 1 @i
89.678 [236.781 [601.691 [329.274 (913,534 i

103.902[4.567 [733.611 [263.010 [85.550 ||} _~7778
2.778 658305 (128,788 (978,155 620,702 |~ 5/%
5 [45.024 [55.0%8 | 89.672 [384.605° 70 -0
6 [7180 [47.538 784 (556,801 617.107 |~ 5461

7 [32.667 350890 [834.753 [638.108 [85.188 5

548322 756,587 |F P
3 [513.048 [418.482)

Index [0

| -

L | ba |

]
¥ /]
\h
[e]
=)

1| | k|
~i
[#]
-‘ﬂ

oo
L

| =
W |
1

4 3 (1245582
[1]https://help.dsync.com/hc/en-us/articles/115006785467-What-is-a-data-layout- 8 [56.083 [145.582 |
9 141,123 543542 |

J

o
| &
2 RIE=)

CNN Libraries

Caffe binds cuDNN in
its implementation as
an improved version

Layout

Implementation
for
convolutions

NHWC < NCHW
(tested)

Matrix Multiplication
(MM)

Cuda-convnet

L Caffe/’

FFT

*

CHWN = HWCN
(tested)

Direct Convolution

Nearby index also physically adjacent

N: Batch of image

C: Feature Map

H: Height of image
W: Width of imag

C: Feature Map

H: Height of image
W: Width of image
N: Batch of image

Neural Networks

Dataset used

when first Description
proposed

Handwritten character

LeNet MINIST recognition (Number)
Cifar CIFAR10 10 Citbejggtrfs of
AlexNet

ZENet ImageNet 1 million real-word

Images

VGG

Outline

e Background: Convolutional Neural Networks
* Introduction

* Memory Issue A: Data layout

e Memory issue B: off-chip memory accesses
* Results

e Conclusion

e Discussion

Introduction

e Curent situation

e Success in CNN (e.g. Alex)

e GPU optimizations
e (e.g. Caffe)

* Reducing arithmetic complexity

* Problems

* No one focus on memory efficiency
e 2 issues
e Data Layouts
 Redundant off-chip memory access.

B CHWN B NCHW

Normalized
execution time

OFRLrNWHAULION

Data Layout

|
JH B- B0 B~ B0 B IH |
PL2 PL

cvl Cv2 (CVv3 Cv4 CV5 PL1 3

Fig. 1. Performance comparison between the CHWN layout (cuda-convnet2) and
NCHW layout (cuDNNv4) on convolutional and pooling layers in AlexNet [12]

e POINT 1:
e GPU thread organization highly depends on data layout
e Data layout determines the memory access pattern
e EVIDENCE 1 (Fig1):
e Suitable layout lead up to 6.9x layer-level speedup
e Suitable layout even speedup convolutional layer to up 2.3x
e POINT 2: size of each dimension affect performance
* Because, each dimension has distinct memory access patterns
e DEDUCTION 1 (from POINT 2):
 Performance impact from data layout is complex and difficult to reason

about.
e DEDUCTION 2 (from EVIDENCE 1):

* Single data layout cannot deliver the best performance for all the layers.
e CURRENT SITUATION (PROBLEM):
e Current libraries only employ one data layout for all the CNN layers.

Redundant off-chip memory access

e EVIDENCE (from authors’ analysis):
e memory-bounded pooling layers and classifier (softmax) layers is far
from optimal
e DUE TO: overlook on their off-chip memory data access
e PROBLEM 1:
 CNN requires multiple steps to complete (data dependency exists)
e CURRENT SITUATION: use kernel for each step
e PROBLEM: data pass through the bandwidth-limited off-chip memory
 PROBLEM 2:
e |everaging data locality for high memory performance is an important
optimization
e CURRENT SITUATION (PROBLEM): to optimize locality for different
data layouts has not been addressed in existing CNN libraries.

Contributions

Benchmark 1 and optimization 1
1. Benchmarked performance impact of different layouts in various

CNN layers. Derived a heuristic guide for layout selection.
Optimization 2
2. Proposed a layout transformation on GPUs. Integrated automatic
layout selection and transformation into Caffe

Benchmark 2
3. Benchmarked memory memory behavior of pooling and softmax

layers. Further optimize their memory access efficiency on GPUs.

Experiments
4. The authors “perform rigorous evaluation and result analysis on

different types of layers and representative networks, and
demonstrate high performance improvements for both single
layers, and complete networks’/\

| think the authors want to express that they applied their optimizations in
different types of layers and representative networks.

 N: Batch
e C: Feature Map

Benchmarks : frriesee

e S:slide
Layer Ni |Co |H/W|[Fw/Fn| Ci | S [Description
. CONVI (CVI) | 128 [16 | 28 | 5 1 1
* LAYERS: CONV2(CV2) | 128 | 16| 14 | 5 | 16 | 1 I\ije{[éﬂ:
e TABLE 1 shows the layers POOLI(PLD) [128 [- [28 [2 [16 | 2 | o0 o
POOL2 (PL2) 128 - 14 2 16 2 e o.ch. 200)
Chosen from famOUS neural CLASSI1 128 images and 10 categories P
CONV3(CV3) | 128 |64] 24 | 5 | 3 | 1
networks CONV4 (CV4) | 128 [64 | 12 5 64 1 Cifar10[15]:
. POOLA4 (PLA4) 128 | - 12 3 64 2 rate:14.04%
° COﬂVOlUt|OnaI |aye|’ comes from CLASS2 128 images and 10 categories (epoch 100)
this table. POOLS(PL) | 128 | - [55 | 3 [96 | 2 | ImageNet
_ _ POOL6 (PL6) | 128 | - | 27 | 3 | 192 | 2 With
* Pooling layer comes from this POOL7(PL7) [128 | - [13 [3 [256 [2 | AlexNet[12]
t bl CLASS3 128 images and 1000 categories Model
able. CONV5(CV5) | 64 19 | 224 | 3 | 3 | 2
e Softmax layer is benchmarked CONVO (CV6) | 64 12561 55 | 5 | 96 | 2
_) _ CONV7 (CV7) | 64 [384[13 | 3 | 256 | 1 "
by several settings (described in ["convs(cvs) | 64 [384] 13 | 5 | 384 [1| meghet vt
section VI) POOLS (PL8) | 64 | - [110 | 3 | 96 | 2 | o del[ezs]
' POOL9 (PL9) 64 - 26 3 256 2
POOLI10 (PL10) | 64 - 13 3 256 2
It’s Interestlng that this paper did CLASS4 64 images and 1000 categories
. CONV9 (CV9) | 32 | 64 | 224 | 3 3 1
not benchmark convolutional layer CONVI0 (CV10)| 32 [256] 56 | 3 | 128 | 1 |imageNet with
in Alex Nex and poo]ing |ayer in ~—— CONVI1I1 (CVI1]) | 32 |512] 28 3 256 1 VGG Model
VG CONV12 (CV12)| 32 |512| 14 3 512 1 [22]
G CLASS5 32 images and 1000 categories

TABLE 1: THE CNNS AND THEIR LAYERS USED IN THE EXPERIMENTS.

Outline

e Background: Convolutional Neural Networks
* Introduction

e Memory Issue A: Data layout

e Memory issue B: off-chip memory accesses
* Results

e Conclusion

e Discussion

A
Data Layout in Convolutional Layers

| think these authors mean “Direct
e Benchmark: Convolution" and “Matrix Multiplication” here

e Comparison of CHWN and NCHW with their best performance
implementation (cuda-convnet and cuDNN respectively)
 Observations:
e cuda_convnet outperform cuDNN for CV1-5 and CV9

e Because C no larger than 64
mnk these authors mean Ci here

30 33 3> 139
ﬁ 3.5 VGG 3 128 256 512
G 3 B cuda-convnet B cuDNN % 256 50 5D
“ 5 28 128 64 64 64 6 H H H
Le et:2 L 16 ZFNet: 3 9% 256 3% = =
8 16 16 128 128 06 256_ 334 384 E E
I__
8_1-5 T Cifar: i - = I -
(Vo) 1 - E - -
1 Ia E : f
O . | _I | | |
@cvz CV3 Cv4 @cvs cv7 cvg €vaXviocviicvi2

Fig. 3. Performance comparison between two different data layouts for the
convolutional layers in Table 1. The performance is normalized to cuda-convnet

measured on a GTX TITAN BLACK.

A

Data Layout in Convolutional Layers

e Benchmark:
* To further identify the sensitivities of data layouts on each dimension,
the researchers collect the results with one varying dimension size (N or

C) and the other thr N

Again, Ci here

fixed

If batch size N is 128, cuda-convnet enables
. each thread to handle 4 images. 3000 d DN
o AnaIyS|s: If batch size is less, the reuse for images 2500 B cuda-convnet B cuDNN
per thread would be reduces 7
. LY 2000
. —
e (Cuda-convnet could not achieve | 5 1000 | -
top performance 500 oy l a =
(implementation rela ‘SiAgI:;\nificant’? 0 16 32 64 128 256
e |f C < 32: '
e Qverhead of unrollinglmatrix (in a. The performance with different values of N.
cuDNN) is more evidence 2500 B cuda-convnet B cuDNN
. 4 . 2000 = -
e Heuristic Layout Selection: £ eoo —
: . o B
Varies depends p—H-L<Ct or N>Nt : = 1000 —
one system. * Better to choose CHWN “ 500 1 I IP .
s gy [Else o In Bn W
Titan X- e Better to choose NCHW 1 3 16 32 64 128 256 384 512

(Ct=128, Nt=64)

b. The performance with different values of C.

Fig. 4. Sensitivity study of data layouts on the N and C dimensions. CONV7 in
Table 1 1s used while others show similar trends.

A
Data Layout in Convolutional Layers

e Benchmark:

* Performance of various convolutional layers using FFT, FFT-Tiling and
Matrix Multiplication with the NCHW layout compared to cuda-
convenet with the CHWN data layout.

 Observation:
e If {N is large}||{filter kernel is large}||{C is large}
* FFT is better than MM

e REASON:
e overhead in forward and backword FFT. |FFT & FFT-T failed
¢ Heuristic Layout r because of OOM
selection still works 3: ;zzg?\;ﬁmetz _
. 3 [cuDNN-FFT
225 [cuDNN-FFT-T
é). 2 - 14 - L H-
1.5 |
1
SN A

CVvl Cv2 Cv3 CV4 V7 Cv8 CV9 CV10CV11CVi2

Fig. 5. Speedups of the FFT-based approach over the cuda-convets.

B
Data Layout in Pooling Layers

e Benchmark:
* Performance of pooling layers with different data layouts
e Cuda-convnet (CHWN) vs Caffe & cuDNN (NCHW)
e Conclusion:
e CHWN always better than NCHW
e REASON:
e NCHW layout cannot ensure coalesced memory access.

Theoretical Peak: 235GB/s B cuda-convnet O Caffe B cuDNN
204.6 1325 1462 151.8 154.8 16528 148.4 1503 161.7 173.9

PL1 PL2 PL3 PLA PL5 PL6 PL7 PL8 PL9 PL10

Figure 6. Performance comparison between different data layouts for the
pooling layers in Table 1. The performance is normalized to cuda-convnet. The
numbers on top denote the highest bandwidth (GB/S) achieved for each layer.

—_—

P - —
. __global void Transformation (float *in, float *out) { /E

2. //from CHWN to NHWC. Naiv
int tx =threadldx.x, bx= blockldx.x; Kernel
int by =blockldx.y, bz=blockldx.z; (a)

out[(((tx*gridDim.z+bz)*gridDim.y+by)*gridDim.x)+bx]| =
in[(((bz*gridDim.y+by)*gridDim.x)+bx)*blockdDim.x+tx];

U ————— A—{
C 1. template <int N, int C>

2. global void OptTransformation (float2 *in, float *out) {
A Fast Data Layout

In fact CHWN->NCHW

//1 Matrix flatten 4D to 2D: [C][H][W][N]->[C*H*W][N]

int D2 W= N/2; int D2_H = gridDim.y*gridDim.x*blpelDinax-
//Shared Memory Tile for Subblock Transpose Solve Band Conflict

3. int #&x =threadldx.x, #y= threadldx.y, bx =blockldx.x,
Transformation for

7. __shared float2 sh[C][33]; //Padding 1 float2

8. for (int i=0;i< N /64;i++) { //handle 64 images every time

. int m = by*gridDim.x*blockDim.y+bx*blockDim.y+ty;
///2 Subgrouping in Shared Memory

int D3 H=m/32;int D3 W =m % 32;

by=blockldx.y;

<16/32,32>,<H,W>
According to the

= - - It of C%32 intindex = D3 W+ D3 H*32; Optimized
0 ptl mizations: resultof &% sh(ty][tx] = in[index*D2_W+tx+i*32]; f(;ml:l
__syncthreads();
1 C h a n g e 4 D . /13 Vector Transpose Index ®)
. Iterate to all Batches . If(C%32==0) {

_ 17. out[(2*ty+i*64)*D2_H+(bx)*32+tx] = sh[tx][ty] x;
t Fan SfO ' tO 2 18. out[(2*ty+1+i*64)*D2_H+(bx)*32+tx]= sh[tx][ty].y; }
19. else if(C%16==0){
| 20. out[(2*ty+i*64)*D2 H+bx*32+tx] = sh[tx][ty] x;
transformr o I Aty

S h d . I . 22. out[(2*(ty+16)+1*64)*D2 H+bx*32+tx] = sh[tx][ty+16].x;
23, t[(2*(ty+16)+1+1*64)*D2 H+bx*32+tx]=

. ared memory tiling e yrior x

24. _ syncthreads();

Vectorization to use 25, }//end loop

26. }//end kernel
O ———— \ V*

8 byte aCCGSS Fig. 7. Kernel code fc_)r data layout transformation

L N

| think vectorization increase the performance by increase bandwidth of global memory here

D
Wrap Up: Automatic CNN Data Layout Support

e Code Modification:
* add a new field in each convolutional and pooling layer to indicate the
data layout choice.
e Use the heuristic method proposed to set layout.
e At the completion time of layer, an additional check is needed, to
determine the overhead of data layout transformation over the
performance improvement obtained from the suitable data layout.

Outline

e Background: Convolutional Neural Networks
* Introduction

* Memory Issue A: Data layout

e Memory issue B: off-chip memory accesses
* Results

e Conclusion

e Discussion

A

Memory Analysis and Optimization on Pooling Layers

e ANOTHER PROBLEM:

e Redundant data access
e SOLUTION:

o THREAD FUSING

e Cache the input data in Register

File for reuse

Theoretical Peak: 235GB/s

L]

1 | 1 ! I | i I I eeeces
[[T O T I N E |

2D image is simplified to 1D vector.

Input element

Shared Data

Fig. 8. Overlapped pooling with a window size of 4. The - -

Loaded Data

B cuda-convnet @ Caffe OcuDNN

204.6 1325 1462 151.8 154.8 16528 148.4 1503 161.7 173.9

PL1 PL2 PL3 PLA PL5 PL6 PL7 PL8 PL9 PL10

Figure 6. Performance comparison between different data layouts for the
pooling layers in Table 1. The performance is normalized to cuda-convnet. The
numbers on top denote the highest bandwidth (GB/S) achieved for each layer.

B
Memory Analysis and

Optimization on Softmax

Layers

* PROBLEM:

* The highest bandwidth achieved
for the softmax layers (BL_Best)
is far from optimization

* ANALYSIS:

* There are 5 kernels to compute
softmax layers step by step,
which involves redundancy in
using global memory.

* Not enough parallelism in inner
loop

SOLUTION:

e Kernel fusing

* Inter-step communication with
share memory

e Parallel inner loop

—

X Y
Maxv[N,] = 2 Z max(In[N,][C,])

x=0 y=0

X Y
Midvi[NJIC,] =) Y (UnIN,]IC,] - MaxvIN,])
x ¥
Sumv[N] =)" Y sum(Midv2[N,][C,])
x=0 y=0

X Y
OutINJIC,) =) Y’ (Midv2[N,][C,]/SumvIN,])

Theoretical Peak: 235GB/s x=0 y=0

225
200
175
150

© 125

5 100

75
50
25

B BL Best

B Opt

— 1

Fig. 13. Performance comparison (GB/S) of softmax layers with a wide range
of configurations. x/y means the batch size as x and the number of categories

asy.

| guess here means the computation of
a window with size X x Y

WAL R W=

10.
11.
12.
13.

dim3 threads(num_category); dim3 blocks(num_img);

__global _ void opt_kernel (float *mat, float *out){

__shared _ float in_tile[C]; // C < 11K (k=1024)

_ float tmp _tile[1024]; /for reduction

int tidx = threadldx.y*blockDim.xx+threadldx.x;

for(uint i = tidx;i<num_category;i=i+blockDim.y*blockDim.x)
in_tile[i] = mat[blockldx.x* num_category +threadldx.x];

__shared

/l step 1

max_reduction_thread block (in_tile, tmp tile);

/] step 2

for(uint 1 = tidx;i<num_category;i=i+blockDim.y*blockDim.x)
in_tile[i] = in_tile[i]-tmp tile[0]; /tmp tile[0] store the max
...... }
Fig. 9. Optimized kernel after kernel fusion (C<11K)

Outline

e Background: Convolutional Neural Networks
* Introduction

* Memory Issue A: Data layout

e Memory issue B: off-chip memory accesses
* Results

e Conclusion

e Discussion

Speedup of a layout over an alternative one]>

A

Results on Data Layout

Optimization

Experiment:

Performance of transformation
overhead of transformation when
ensemble it into Convolutional Layer

CONCLUSION

Data layout has significant
performance impact

Optimizations in transformation
Works

By considering the data layout
transformation overhead, Most of
layers still gain performance by doing
transformation in layout.

7
6 W Opt
5 Opt+Naive Tranform
o B Opt+Optimized Transform
S 4
©
$ 3]
A - H A
2 . H B
i H B
1 i H B
. Lﬁ H BH
0 s H W
V]l CV2 CV3 Cv4 V5 V6 CV7 CV8 @CVlOCVllCVlZ GM

Fig. 10. Speedups achieved on‘s¥ convolutional layrer§. For both NCHW and
CHWN data layouts, the best achieved performance is measured to calculate

the performance differences.
Theoretical Peak: 235G SM SM-+vector
O Transfrom-Optl BTransfrom-Opt2

ITrans?orm Naive
225 = u

200]
175 B 71— = =] = =

o 150 -—
> 125
O 100
75

50

25

0

-
|
-
|
J
|

[
1 1 [|
w

| | | | | |

Fig. 11. Achieved memory bandwidth using three methods for data layout
transformation. The Transform-Ont2 is not aopolicable for CV10. CV11.CV12

with an average of 7.5x speedup
Memory overhead: 73.5MB

- aREF
4 B cuda-convnet?
3.5 O cuDNN-MM _
3 O cuDNN-FFT v
o H| [-
325 0 cuDNN-FFT-T B -
9 _
g 2 -
w15 [-
1 _ | -
os | bk k o I3 AR AR [
0 1 T T I T
Cvl CVvV2 CVv3 Cv4 CV5 Cve CVv7 Cv8 (CV9 Cviocviicviz

Fig. 5. Speedups of the FFT-based approach over the cuda-convets.

B

Results on Off-chip Memory Access Optimization

reduced 9.1% global memory transactions

e Experiments:
 Performance comparison of
different pooling layers
e Memory bandwidth comparison
between optimized and original

best alternative implementation.

36% DRAM accesses

Achieve higher performance with an average of 14.3%

1.6

B cuda-convnet O Caffe O cuDNN B Opt

4

O

A A A
IIIIIII/I/ILII/IIJ
Ifffffffffj’fffffffffff - |
Iflffff!/ff{f/ffl/ffflf
gt gt gt g gt gt gt gt gt]
A S

R

o

PL1 PL2 PL?B PL4 (PL5) PL6) PL7) PL8 | PLY PL1O (GM) D

T T T T T |

Fig. 12. Performance damfparison »mdng\fofr NifferdatAtplmentatidasAor

the pooling layers in Table 1. The performance is normalized to cuda-convnet.

Theoretical Pealc235GB/s

225
200
175
150
125
100
75
50
25
0

w)
S~
o
O

Q
Y
'5’1/\

B BL Best B Opt

T

Q * & ¥ Q
V\'\/Q V\\\} b‘\\9 Cb\'\/g S
© © ©

O & & WO
»\\’0 %\\’\L m\\’g &
LU ¢

Fig. 13. Performance comparison (GB/S) of softmax layers with a wide range
of configurations. x/y means the batch size as x and the number of categories

Y- Communication: 2.81x speedup average
Parallel inner loop: 5.13x speedup average

BcuDNN-MM B cuDNN-FFT B cuDNN-FFT-T
Ecuda-convnet EcuDNN-Best BOpt
B i 52 5|61x speed i_p
I
Results on Whole Networks ~ |iz+s |11
2235 I
%% 3 E P
%02.3 % :_: (f 16% speed up)
I . g€ 15 E : z _ —
* EXxperiments: g 1 E
VY : 0.5]Eﬁ:lln ;
* Integrate optimizations into cuDNN ; §7=m N
and compare. LeNet lexNet ZFNet VGG

Fig. 14. The overall networl¢performance comparison among various schemes.
ImageNet group

e detailed performance comparison of
different layers in AlexNet.
e Conclusion:
* Flexible data layout: 72% improvement

B cuDNN-FFT @ cuDNN-FFT-T
» Off-chip memory access optimization [geudeconvenet BcupiivBest SR
contributes 28% 26 e
. 2.2 M j H
* Pooling layers: Ql.ﬁ H T . I
* speedup by 27.8% 2T i [
e Softmax layers: 812 (—HH— H—t
e 20.1x over cyDNN oz [N
e 8.2x over gdda-convnet = o; g l } 1
e Qverall - 5
e 16% o¥er cuda-convnet TR I I T I o

(e 46% oper cuDNN-Best =~ ¢ &7 ¢"

Fig. 15. The performance comparison of different layers in AlexNet, The
performance is normalized to cuDNN-MM.

Outline

e Background: Convolutional Neural Networks
* Introduction

* Memory Issue A: Data layout

e Memory issue B: off-chip memory accesses
* Results

e Conclusion

e Discussion

CONCLUSION(cite)

“Our detailed study unveils the impact of data layouts on different types of
CNN layers and their performance implications.”

“We propose efficient data layout support as our solution.”

“We further look into the memory access patterns of the memory-bounded
layers, and propose effective optimizations to substantially reduce their
off-chip memory requests and inter-kernel communication.”

Outline

e Background: Convolutional Neural Networks
* Introduction

* Memory Issue A: Data layout

e Memory issue B: off-chip memory accesses
* Results

e Conclusion

e Discussion

Discussion

e Things | considered as big issues.
e Experiment setting without carefully control variable
e Changing Concepts several times

* Neglect the fact that Pooling layers (better to use NCHW) are nearly always inserted into two Convolutional Layers
(CHWN). (Lack experiments)

e Over-exaggerate
* Things | considered as misses.
e Inconsistance
e Neglect ReLU Layer and Fully Connected Layer.
e CODEs not present well
e Never mention time consumption
e Things could be done better.

e Further experiment to compare the performance difference between different convolutional implementations (with same
layout)

* Provide analysis of Cache Miss in Pooling Layers.

e Explain why specific Layer is chosen while others not

Change Concepts

* NCHW = best implementation in NCHW layout =
cuDNN MM

e CHWN = CHWN with cuda-convnet

 BL_Best (highest bandwidth achieved in existing
libraries) = cuDNN

* While in fact according to (the experiment result of)
the paper, it should be cuda-convnet

* Choose Layout = Choose implementations

Inconsistance

T A A o <& T Z L 2
S

TTTTTTTTTT TT T/ TT T TTETTTTIOTTTTTT T TTTTD TTTTT TTTTOTTT T TTTTTO Y T

* Department of Integrated System, NEC
#{cli17, hzhou} @ ncsu.edu; *{yyang, mfeng, «

Abstract— Leveraging large data sets, deep Convolutional
Neural Networks (CNNs) achieve state-of-the-art recognition
accuracy. Due to the substantial compute and memory operations,
however, they require significant execution time. The massive
parallel computing capability of GPUs make them as one of the
ideal platforms to accelerate CNNs and a number of GPU-based
CNN libraries have been developed. While existing works mainly
focus on the computational efficiency of CNNs, the memory
efficiency of CNNs have been largely overlooked. Yet CNNs have
intricate data structures and their memory behavior can have
significant impact on the performance. In this work, we study the
memory efficiency of various CNN layers and reveal the
performance implication from both data layouts and memory
access patterns. Experiments show the universal effect of our
proposed optimizations on both single layers and various
networks, with up to 2f#9x for a single layer and up to 5.6x on the

e AT A ca b A DA

studies o1
complexit
coarse-gra
works mc
network, ¢
efficiency
overlooke
structure,
not straigt
that have
memory e

Jtion time
whUuoN

‘malized

<D Found: 1
Page 1

...ns on both single layers and
various networks, with up to
-x for a single layer and up to
5.6x on the whole networks.

Inconsistance

(Not sure) talk about
something that is not
directly relate to their
work.

The second one is redundant off-chip memory accesses.
Our performance analysis shows that the memory efficiency of
the memory-bounded pooling layers and classifier (i.e.,
softmax) layers is far from optimal due to the overlook on their
off-chip memory data accesses. First, a CNN usually requires
multiple steps to complete and there exists sequential data
dependence across the steps. The common practice is to use a
kernel for each step. However, it incurs high cost for inter-kernel
data communication as the data pass through the bandwidth-
limited off-chip memory. Second, leveraging data locality for
high memory performance is an important optimization.
However, how to optimize locality for different data layouts has
not been addressed in existing CNN libraries.

