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In this paper…
To explain  “SGD” and “Generalization” in terms of Baysian,
this paper consists of 2 part
1, What decide ‘Good’ model?
2, To make ’Good’ model, what we should do?



Understanding deep learning requires rethinking generalization
This paper compared two situations.
1) Pure-train data and Pure-test data
2) Randomized-train(randomized labels or pixels) and Pure-test data
1 and 2 can memorize whole train-data(train loss=0) but (2) cannot 
generalize well

-> Deep convolutional networks 
can memorize whole (train)data???

Source: [Zhang et al.(2016)]



On large-batch training for deep learning: Generalization gap and sharp minima.

They found that if we hold fixed learning rate(lr) and increase the 
batch-size(bs).
=> The “test” accuracy falls down.

Large Batch tends go to sharp minimum and Small Batch go to Flat ? 

Flat Minimum vs Sharp minumu (Source: [Keskar et al.])



Accurate, Large Minibatch SGD: Training ImageNet in 1Hour
They sets a linear scaling rule between learning rate and batch size.
!"
#$ = &'()*+(*
( -./012 =

3.0
45)



What is Sharp minima? Flat minima? 
There are many papers what is the relationship between small and 
large batch, flat minima and sharp minima.
◦ Entropy-SGD: Biasing gradient descent into wide valleys.
◦ Sharp minima can generalize for deep nets.
◦ …



In this paper…
This paper show two:
1) The result of [Zhang et al(2016)] is not unique to deep learning,
this paper demonstrate that this phenomenon is straightforwardly 
understood by evaluating the Bayesian evidence in favor of each 
model. 
2) SGD integrates a stochastic differential equation whose “noise 
scale” g ≈ !N/B, where ! is the learning rate, N training set size and B 
batch size.



BAYESIAN MODEL COMPARISON
Classification model M with a single parameter ω, training inputs x and 
training labels y.
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BAYESIAN MODEL COMPARISON
To	predict	an	unknown	label	23 of	a	new	input	53,	we	use
Bayesian predictive distribution(8 2 5 = ∫8 2 ; 8 ; 5 <;)

P y? x?, y, x;M = ∫<C 8 23 C, 53;D 8(C|2, 5;D)

= {I<C 8 23 C, 53;D JKL M;N } /{I<C JKL M;N }

Since P y? C , 53;M is smooth near CQ, 
◦ (CQ is the point which minimize cost functions )

we can approximate P y? x?, x, y;M ≈ P y? CQ, x?;M



BAYESIAN MODEL COMPARISON
To compare two model, we set probability ratio.
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From this point, this paper set P(M)=1
Evidence ratio controls how much the training data changes our 
prior beliefs.
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(p is the number of parameters and OS is the eigenvalues of Hessian)



MODEL COMPARISON BAYESIAN 
They will compare the evidence against a null model which assumes 
the labels are entirely random. This unusual model has no 
parameters and so the evidence is P y x; NULL = )

*

+
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(n is the number of model classes, N is the number of train labels)
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(If A BC <0(= 9-:(;<)>1), Evidence ratio is larger than 1 and this 
imply that the model with P(S|T;U) is reliable)



BAYES THEOREM AND GENERALIZATION
[Zhang et al.(2016)] showed that DNN generalize well on training 
input and can overfit on same input with randomized labels.

To show that this overfit is not unique to DNN, this paper consider
easy model(=  logistic regression)
◦ Using MNIST as input(labels are only 0 and 1)

they test two tasks
◦ the labels of both train and test sets are randomized
◦ the labels are not randomized



Train with randomized or not …

Left one is trained with RANDOMIZED labels, Right one is NOT RANDOMIZED
=> The phenomenon that model can memorize all data occurs not only DNN 
but also easy-model(like logistic regression) 



Compare cross-entropy 

Left one is trained with RANDOMIZED labels, Right one is NOT RANDOMIZED
=>Log Evidence ratio(Red calculated from Train data) is same as test cross-
entropy 
=>Beyesian Evidence and test cross entropy are strongly correlated



Supplement) Noise of SGD
SGD repeats the equation below and finds minima.(ℓ is loss function)
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SGD’s gradient can divide into two terms, whole data’s gradient(left)       
and the noise which derived from the choice of data(right)



BAYES THEOREM AND SGD
This paper showed strong correlation between Bayesian evidence 
and generalization.
=> We should train DNN‘s minima with large evidence
Bayesian add isotropic Gaussian noise to gradient[Welling & Teh +]
They said that 
◦ In small batch training, the noise of SGD is not isotropic(=large noise?)
◦ The noise of SGD can go away from sharp minima([Keskar +2016] found 

empirically)
◦ Gradient drives the SGD towards deep minima, noise drives the SGD 

towards broad minima 



BAYES THEOREM AND SGD
Considering a shallow network with 800 hidden units and relu
activations.
To see generalization gap, this paper set two conditions
◦ Small batch (BS=30)
◦ Full batch

Train data is 1000 images randomly selected from MNIST.
Train network with momentum-SGD (momentum=0.9, lr=1.0)



Train with large batch and small batch…

We can see “generalization gap” between large and small from left.
And we can see from right that the cross-entropy is increasing, indicative of 
overfitting.



Train with some batch size…

Right picture is correlation between batch size and TEST accuracy after 
10000 training steps.
We can see that there is a “optimum” batch size which maximize test acc.



STOCHASTIC DIFFERENCE EQUATIONA AND THE SCALING RULES
This paper said that there is a optimal batch size.
Next, they show how optimal batch size depends on lr, training set 
size(=N), momentum. 
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STOCHASTIC DIFFERENCE EQUATIONA AND THE SCALING RULES
And skip steps…
We can approximate the noise scale(=g)
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This approximate says that the noise of sgd falls when the batch size 
increases.

=>B-./0123 ≈ )*
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STOCHASTIC DIFFERENCE EQUATIONA AND THE SCALING RULES

Comparing lr, BS and test acc(left), we can see that optimal batch size is in 
proportion to learning rate
=> !"#$%&'( ∝ *



STOCHASTIC DIFFERENCE EQUATIONA AND THE SCALING RULES

Comparing N, BS and test acc(left), we can see that optimal batch size is in 
proportion to N (=data set size)
=> !"#$%&'( ∝ *



STOCHASTIC DIFFERENCE EQUATIONA AND THE SCALING RULES

Comparing BS, momentum terms(=m) and test acc(left), we can see that 
optimal batch size is in inverse proportion to N (=data set size)
=> !"#$%&'( ∝ *
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STOCHASTIC DIFFERENCE EQUATIONA AND THE SCALING RULES

We can explain from these there correlations between B ∝ #$
%('()).

We can increase batch size with increasing lr.
=> Speed up without accuracy drop.

This match the fact that we should keep  lr-. constant.([Goyal +2017])



Conclusion
1)DNN or linear regression which generalize well on informative 
labels can memorize whole dataset with randomized labels of same 
input.

These observations are explained by Beyesian evidence

2)Mini-batch noise drives SGD away from sharp minima, therefore 
there is an optimum batch size which maximizes test acc.

3)Interpreting SGD as the discretization of stochastic differential 

equation, we predict optimum batch size and B"#$ ∝ &'
((*+,).
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