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In this paper...

To explain “SGD” and “Generalization” in terms of Baysian,
this paper consists of 2 part
1, What decide ‘Good’ model?

2, To make ‘Good’ model, what we should do?

ABSTRACT

We consider two guestions at the heart of machine learning: how can we predict
if a minimum will generalize to the test set, and why does stochastic_gradient

descent find minima that generalize well? Our work responds to Zhang et al.
(2016), who showed deep neural networks can easily memorize randomly labeled




average_loss

Understanding deep learning requires rethinking generalization

This paper compared two situations.

1) Pure-train data and Pure-test data

2) Randomized-train(randomized labels or pixels) and Pure-test data

1 and 2 can memorize whole train-data(train loss=0) but (2) cannot

generalize well
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On large-batch training for deep learning: Generalization gap and sharp minima.

They found that if we hold fixed learning rate(lr) and increase the
batch-size(bs).

=> The “test” accuracy falls down.

Large Batch tends go to sharp minimum and Small Batch go to Flat ?
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Accurate, Large Minibatch SGD: Training ImageNet in 1Hour

They sets a linear scaling rule between learning rate and batch size.
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What is Sharp minima? Flat minima?

There are many papers what is the relationship between small and
large batch, flat minima and sharp minima.

> Entropy-SGD: Biasing gradient descent into wide valleys.
> Sharp minima can generalize for deep nets.
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In this paper...

This paper show two:

1) The result of [Zhang et al(2016)] is not unique to deep learning,

this paper demonstrate that this phenomenon is straightforwardly

understood by evaluating the Bayesian evidence in favor of each
model.

2) SGD integrates a stochastic differential equation whose “noise

scale” g = eN/B, where € is the learning rate, N training set size and B
batch size.




BAYESIAN MODEL COMPARISON

Classification model M with a single parameter w, training inputs x and
training labels vy.

P(Y|w, X; M)P(w;M)

P(y|x;M)
P(ylw,x; M) = [1; P(vi|w;, xi; M) = e=H(@M)
°H(w; M) = =X In(P(yi|w, x;; M)

P(wly,x; M) =

P(w; M) = /%e_’l‘“z/z (=>set model with gaussian prior)

P(wl|y,x; M) \/%e‘c(“””’)(where Clw; M) = H(w; M) + Aw?/2)




BAYESIAN MODEL COMPARISON

To predict an unknown label y, of a new input x;, we use
Bayesian predictive distribution(P(y|x) = [ P(y|w)P(w|x)dw)

P(YtlxtJYJX; M) — fd(l) P(ytlwrxt) M)P(wlyrx; M)
= {f dw P(y,|w, x;; M)e‘C(“”M)}/{f dow e~ C¢@MN

Since P(y¢|w, x;; M) is smooth near wy,
° (wq is the point which minimize cost functions )

we can approximate P(y¢|x¢, X, yv; M) = P(y,|wg, X¢; M)




BAYESIAN MODEL COMPARISON

To compare two model, we set probability ratio.
P(Mq|y,x) _ P(y|x;M1) P(Mq)
P(Mz|y,x)  P(y|x;Mz) P(My)
From this point, this paper set P(M)=1

= (Evidence ratio)*(Prior ratio)

Evidence ratio controls how much the training data changes our
prior beliefs.

POy M) = f doo POyl MOP(w: M) = S do emcm

= exp{—(Clwq) +7 2 (i /1))
(p is the number of parameters and /11 is the eigenvalues of Hessian)




MODEL COMPARISON BAYESIAN

They will compare the evidence against a null model which assumes
the labels are entirely random. This unusual model has no

N
parameters and so the evidence is P(y|x; NULL) = (1) = ¢~ NIn(n)

n

(n is the number of model classes, N is the number of train labels)

POlx;M) e—E(wo)
P(y|x;NULL)

where E(wy) = Clwy) + %Zfﬂ In(Ai /1)) — N * In(n)

(If E(wq)<0(= e E(@0)>1), Evidence ratio is larger than 1 and this
imply that the model with P(y|x; M) is reliable)




BAYES THEOREM AND GENERALIZATION

[Zhang et al.(2016)] showed that DNN generalize well on training
input and can overfit on same input with randomized labels.

To show that this overfit is not unique to DNN, this paper consider
easy model(= logistic regression)
o Using MNIST as input(labels are only 0 and 1)

they test two tasks
o the labels of both train and test sets are randomized

> the labels are not randomized




Train with randomized or not ...
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=>The phenomenon that model can memorize all data occurs not only DNN
but also easy-model(like logistic regression)




Compare cross-entropy
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Left one is trained with RANDOMIZED labels, Right one is NOT RANDOMIZED
=>Log Evidence ratio(Red calculated from Train data) is same as test cross-

entropy
=>Beyesian Evidence and test cross entropy are strongly correlated




Supplement) Noise of SGD

SGD repeats the equation below and finds minima.(£ is loss function)
, 1
w =w+nX B—SZ Ve(x;)
focus on right term...
Bls Y Ve(x;) = nxVe + Bls Y(VE(x;) — V¥)
where V£ = %Z Ve(x;)

(this convert like “x” = “y + (x-y)”)

SGD’s gradient can divide into two terms, whole data’s gradient(left)
and the noise which derived from the choice of data(right)




BAYES THEOREM AND SGD

This paper showed strong correlation between Bayesian evidence
and generalization.

=> We should train DNN‘s minima with large evidence

Bayesian add isotropic Gaussian noise to gradient[Welling & Teh +]

They said that

> In small batch training, the noise of SGD is not isotropic(=large noise?)

> The noise of SGD can go away from sharp minima([Keskar +2016] found
empirically)

o Gradient drives the SGD towards deep minima, noise drives the SGD
towards broad minima




BAYES THEOREM AND SGD

Considering a shallow network with 800 hidden units and relu
activations.

To see generalization gap, this paper set two conditions
> Small batch (BS=30)
° Full batch

Train data is 1000 images randomly selected from MNIST.

Train network with momentum-SGD (momentum=0.9, Ir=1.0)




Train with large batch and small batch...

=== Full batch === Full batch
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We can see “generalization gap” between large and small from left.
And we can see from right that the cross-entropy is increasing, indicative of
overfitting.




Train with some batch size...
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Right picture is correlation between batch size and TEST accuracy after
10000 training steps.

We can see that there is a “optimum” batch size which maximize test acc.




STOCHASTIC DIFFERENCE EQUATIONA AND THE SCALING RULES

This paper said that there is a optimal batch size.
Next, they show how optimal batch size depends on Ir, training set
size(=N), momentum.

w =w+ Aw = W-I-EX—Z Ve(x;)

e dC dC'’

_I_

N (da) (dw da)))

There interpret this equation as the discrete update of a stochastic
differential equation

Aw =

da) dC+ .
& " do T®




STOCHASTIC DIFFERENCE EQUATIONA AND THE SCALING RULES
And skip steps...

We can approximate the noise scale(=g)
g ==& (% — 1) ~ %, because N>>>B

This approximate says that the noise of sgd falls when the batch size
Increases.

N 297

g

=>Boptimal ~




STOCHASTIC DIFFERENCE EQUATIONA AND THE SCALING RULES
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Comparing Ir, BS and test acc(left), we can see that optimal batch size is in
proportion to learning rate
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STOCHASTIC DIFFERENCE EQUATIONA AND THE SCALING RULES
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Comparing N, BS and test acc(left), we can see that optimal batch size is in
proportion to N (=data set size)
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STOCHASTIC DIFFERENCE EQUATIONA AND THE SCALING RULES
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Comparing BS, momentum terms(=m) and test acc(left), we can see that

optimal batch size is in inverse proportion to N (=data set size)
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STOCHASTIC DIFFERENCE EQUATIONA AND THE SCALING RULES

eN
g(1-m)’

We can explain from these there correlations between B «

We can increase batch size with increasing Ir.
=> Speed up without accuracy drop.

This match the fact that we should keep LLS constant.([Goyal +2017])




Conclusion

1)DNN or linear regression which generalize well on informative
labels can memorize whole dataset with randomized labels of same
input.

These observations are explained by Beyesian evidence

2)Mini-batch noise drives SGD away from sharp minima, therefore
there is an optimum batch size which maximizes test acc.

3)Interpreting SGD as the discretization of stochastic differential
eN

g(1-m)

equation, we predict optimum batch size and By, <
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