
An Extensible Resource Discovery Mechanism for Grid Computing Environments1

Tania Gomes Ramos and Alba Cristina Magalhaes Alves de Melo
 Department of Computer Science, University of Brasilia (UnB), Brazil

Campus Universitário – ICC Norte – Subsolo – Cx Postal 4466
{tania, albamm}@cic.unb.br

1 This work was partially supported by FINATEC/UnB/Brazil

Abstract

Grid computing is emerging as a new infrastructure to
provide collaborative and secure resource sharing over
multiple geographically distributed organizations. In this
scenario, resource discovery is a very important
component, since it is responsible to retrieve information
about the resources that compose the grid. Traditionally,
the kind of data to be retrieved by resource discovery
mechanisms is statically defined. In a highly heterogeneous
and dynamic environment such as a grid, statically defined
searches are usually inappropriate. In this paper, we
propose and evaluate an extensible resource discovery
mechanism for grid systems, where the basic resource
information retrieval can be extended to include user-
defined specific resource searches. Our experimental
results show that the proposed mechanism is able to
incorporate new searches to our grid resource discovery
service in reasonable time.

1. Introduction

The popularity of the internet made possible the
interconnection of millions of powerful machines in a
global scale. Several measures were made which state that,
most of the time, the majority of these interconnected
machines remain idle. This led to the idea of
metacomputing [2], which proposes the creation of a
supercomputer by taking advantage of the idle cycles of the
machines connected to the internet.

Grid computing can be considered as an evolution of
metacomputing where not only the computing power is
shared, but also several other types of resources such as
data, software and specific hardware [6]. The main goal of
grid computing is to enable collaborative and secure
resource sharing over multiple organizations which are
geographically distributed.

In this scenario, resource management plays a
fundamental role since it is responsible to discover
resources, allocate them to tasks and monitor the task

execution, among others [11]. In this paper, we will deal
only with resource discovery.

Resource discovery mechanisms are responsible to
retrieve information about the resources that compose the
grid. Traditionally, the data to be gathered by the resource
discovery mechanism is statically defined. In a highly
heterogeneous and dynamic environment such as a grid,
statically defined searches are usually inappropriate.

In this paper, we propose and evaluate an extensible
resource discovery mechanism for grids, where the basic
information retrieval can be extended to include user-
defined specific searches. The proposed mechanism was
designed as a Globus 3 [12] grid service.

Our experimental results show that the proposed
mechanism is able to incorporate new searches to our grid
resource discovery service in reasonable time.

The remainder of this paper is organized as follows.
Section 2 briefly describes grid computing. Resource
discovery in grids is discussed in section 3. Section 4
presents the design of our extensible resource discovery
mechanism. Some experimental results are presented and
discussed in section 5. Finally, section 6 concludes the
paper and presents future work.

2. Grid Computing

The term Grid Computing was conceived in the mid-
1990s to denote a new infrastructure of distributed
computing for the scientists and engineers in a more
advanced scope. This name was inspired by the electrical
power energy because of its pervasiveness, ease of use and
reliability [6].

Grid Computing technologies and concepts were
initially developed in order to enable resource sharing
between scientific institutions with common projects, who
needed to share data, software and computational power. In
developing applications for the grid, it is essential to have
an unified middleware to provide a transparent interface to
the underlying protocols.

The Globus Toolkit [5] emerged in 1997 as an open
source project and quickly became a de facto standard for

grid computing infrastructure. Globus defines and
implements a set of protocols, APIs and services used by
hundreds of grid applications all over the world. Moreover,
it worked as a pioneer in interoperable grid systems
development.

In 2002, the Open Grid Services Architecture (OGSA)
[11] was introduced by the Global Grid Forum (GGF) to
expand standardization. The OGSA provided a new
architecture for grid applications based on Web Services in
order to achieve interoperability using industry standards.

Many OGSA architecture implementations were
developed, including one for Globus. Beyond the definition
of a set of standardized interfaces, the OGSA architecture
provides a framework for portable and interoperable service
definition and thus provides a basis for grid development.
The work carried out in this paper is deployed on a grid
based on Globus (GT3).

To be an attractive choice, grid computing must
provide adequate mechanisms for resource management to
huge heterogeneous environments spread over multiple
organizations that are geographically distributed [11]. One
of the most important components of a resource
management system for grids is resource discovery.

3. Resource Discovery in Grids

Resource Discovery can be defined as a directory
service directed to the spontaneous network’s environment
[3]. In these networks, resources can enter or leave at any
time and this mechanism’s proposal is to provide
information about the resources available in a specific
moment.

In a grid environment, resource discovery is a very
complex task basically for two reasons. First, the resources
that are potentially interconnected to a grid are not only
computers, but also softwares, instruments and data, among
others. This adds a very high degree of heterogeneity that

should be taken into account. Second, a grid can have a
very huge number of resources, spread over multiple
administrative domains that are geographically distributed.
In this scenario, scalability issues must be taken into
account.

Many resource discovery mechanisms have been
proposed in the literature for grid environments. Some of
them, such as MDS2 (Metacomputing Directory Service)
[4] and Data Grid Resource Discovery [9], are specific
resource discovery services. However, the great majority of
them are contained in more general grid proposals such as
MDS3 (Monitoring and Discovery Service) [12], NWS
(Network Weather Service) [16], VIRD (VEGA
infrastructure for Resource Discovery) [8], GLOPERF [10]
and NimRod/G [1].

MDS2 [4] and MDS3 [12] were proposed in the context
of the Globus Toolkit project [5]. Although they have the
same acronym, there are great differences between them
since MDS2 is a LDAP (Lightweight Directory Access
Protocol)-based implementation whereas MDS3 is based
on Web services. This led to an extensive change on the
structure of MDS, that made MDS3 be part of the GT3
Information Services Component.

NWS [16] is a performance monitoring and prediction
service that is based on the concept of performance sensors
which gather information about the available resources and
use them to predict performance. The Data Grid system [9]
is a resource discovery mechanism specific to Oracle
databases integrated to the Sun Grid Engine [14]. VIRD [8]
is a three-level decentralized infrastructure for resource
discovery on grids. GLOPERF [10] is in fact a monitoring
tool for network performance in grids which is integrated to
Globus Toolkit 2. Nimrod/G[1] is a resource management
system for grid environments that uses the concept of grid
economy to negotiate resource allocation and integrates
resource discovery capabilities.

The main characteristics of these systems are
summarized in Table 1.

Table 1. Resource Discovery Mechanism characteristics

System Topology Extensible Data retrieved Type of retrieval Output format
MDS2[4] Hierarchical No Operating system, CPU, memory, file

system, others
information providers LDIF

MDS3[12] Decentralized No Operating System, CPU, memory, file
system, others

service providers XML

NWS[16] Decentralized No Network throughput and latency, CPU,
memory, others

passive and active
sensors

LDIF

Data Grid[9] Hierarchical No Tables, stored procedures, database load,
others

daemon specific metadata
format

VIRD[8] Hierarchical No Operating system, CPU, memory, others name servers BNF
Gloperf[10] Decentralized No Network throughput and link activity daemons acting as

sensors
LDIF

Nimrod/G[1] Hierarchical No Operating System, CPU, memory, file
system, network, others

MDS2 [4] LDIF

As can be seen in table 1, the resource discovery
mechanisms proposed for grids are either hierarchical or
decentralized. Most of these mechanisms retrieve data
related to the machines that compose the grid (operating
system used, CPU load, memory occupation, among
others). Some of them [1][16][10] also retrieve network-
related data. An example of a discovery mechanism for
databases in grids [9] is also presented. The entity used to
retrieve the information about the resources varies a lot
(information and service providers, sensors and daemons)
and also does the output format.

None of the resource discovery mechanisms analyzed
were able to execute extensible searches. An extensible
search allows the incorporation of new types of data to be
retrieved to the resource discovery mechanism while it is
already active. In other words, an extensible search allows
the dynamic and transparent creation of a new resource
search. This feature is particularly interesting in a grid
environment where new types of resources can be added at
any time and new needs of information arise constantly.

4. Design of the Extensible Resource
Discovery Mechanism

In this section, we propose a resource discovery
mechanism for grid environments that is able to incorporate
new resource searches on-the-fly. As far as we know, this
is the first time that an extensible resource discovery
mechanism is proposed for grids.

As [1][4][8][9], we propose an hierarchical topology.
The Grid is divided into different virtual organizations
(VOs), as illustrated in Figure 1. Each virtual organization
is structured following the Master x Slave paradigm to
perform data retrieval of the available resources. Although
in figure 1 we have represented only one master at each
virtual organization, an hierarchical structure composed by
many masters can be defined for a given VO.

Master

Slave0 Slave1 Slaven...

Master

Slave0 Slave1 Slavem

VO1 VO2

...

Figure 1. Hierarchical topology of the resource discovery
mechanism

4.1 Basic Resource Discovery

Like the mechanisms mentioned in section 3, our
mechanism is able to perform basic resource discovery. In
our case, a master/slave architecture is used where the
master is responsible to update the resource database and
the slaves are responsible to actually retrieve information
from each machine that composes the grid. This basic
mechanism is shown in Figure 8.

Master Machine

Obtain resource
data

Store
information

Slave Machine

Obtain local
resource data

Slave Machine

Obtain local
resource data

Slave Machine

Obtain local
resource data

BASIC RESOURCE DISCOVERY

Figure 2. Basic resource discovery in our mechanism

Both master and slave activities are performed by two
grid services defined in the context of Globus Toolkit
3[12].

The definition of both services is made in a WSDD
(Web Service Data Definition) file that may be visualized in
Figure 3.

<?xml version="1.0"?>
<deployment name="defaultServerConfig"
 xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <service name="br/unb/cic/infosys/searchslave/SearchResourceService"
 provider="java:RPC">
 <parameter name="allowedMethods" value="*"/>
 <parameter name="className"
 value="br.unb.cic.infosys.searchresource.impl.SearchResourceImpl"/>
 </service>
 <service name="br/unb/cic/searchmaster/SearchMasterService"
 provider="java:RPC">
 <parameter name="allowedMethods" value="*"/>
 <parameter name="className"
 value="br.unb.cic.infosys.searchmaster.impl.SearchMasterImpl"/>
 </service>
</deployment>

Figure 3 . Services definition in WSDD file

The master service (SearchMasterService) is
responsible for looking up the slaves services
(SearchResourceService) which are available in each of the

associated slave machines and invoking their resource
information retrieval.

The lookup for slave machines is started by reading a
configuration file that contains the slave machines’
description. It means that each master machine has its own
file in XML format that contains the IPs and names of all
the slave machines that are under its control and
responsibility.

An example of a configuration file is illustrated at
figure 4. In this case, there are three slave machines (pos-
06, pos-09 and pos-10) that will have their information
retrieved in the resource discovery mechanism.

<System xmlns xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”C:\xsd\informationHost.xsd”>
 <Host>
 <MachineName>pos-06</MachineName>
 <IP> 164.41.14.86 </IP>
 </Host>
 <Host>
 <MachineName>pos-09</MachineName>
 <IP> 164.41.14.89 </IP>
 </Host>
 <Host>
 <MachineName>pos-10</MachineName>
 <IP> 164.41.14.90 </IP>
 </Host>
</System>

Figure 4. XML configuration file with information about the
slave machines

The slave service (SearchResourceService) is
responsible for retrieving default local information about
the slave machine. This information contains both static and
dynamic data, as shown in figure 5.

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<System>
 <Host>
 <Name> pos-03.cic.unb.br </Name>
 <IP> 164.41.14.83 </IP>
 <Memory>
 <Total> 109880.0 </Total>
 <Available> 1496.0 </Available>
 </Memory>
 <CPU>
 <Model> AMD Athlon(tm) Processor </Model>
 <Total> 896.0 </Total>
 <Available Percent> 1.36148 </AvailablePercent>
 </CPU>
 <OS>
 <Name> Linux </Name>
 <Version> 2.4.20-0 </Version>
 </OS>
 <Process>
 <Number> 78 </Number>
 </Process>
 </Host>
</System>

Figure 5. Information retrieved by default by our mechanism

4.2 Extensible Resource Discovery

The architecture of our resource discovery mechanism
can be defined in a module-basis. The module described in
section 4.1 is called basic module. Besides this one, diverse
personalized modules can be coupled to it on-the-fly to
perform specific searches that were not considered when
the basic module was designed.

In order to define a personalized module, the
user/administrator must perform only two tasks: deploy a
method that retrieves personalized information and describe
its characteristics in a configuration file as shown in figure
6.

CLASS_NAME=br.unb.cic.bioinfosys.BioFileSearch
NUM_METHODS=1
METHOD1=getFileLength
NUM_JARS=1
JAR1= BioInfosys.jar

Figure 6. Personalized module’s configuration file

The file in figure 6 informs that a new personalized
module has been deployed with the Java main class
BioFileSearch defined in the package br.unb.cic.bioinfosys.
In this case, there is a single method defined as
getFileLength and one JAR (Java Archive) file called
BioInfosys.jar file that will be necessary to complete the
Java Virtual Machine classpath.

Upon detecting that a new configuration file has been
generated, our extensible resource discovery mechanism
incorporates automatically the new resource search to the
basic resource discovery mechanism described in section
4.1. After doing that, both basic and personalized data are
retrieved. Many personalized searches can be defined to
extend the basic discovery mechanism.

Figure 7 illustrates the main modules in this process.
Three main activities are executed concerning the new
personalized module: detection, incorporation and container
manipulation.

personalized
search

Master Machine

Transfer new
service

Slave Machine

Receive
service

Slave
Machine

EXTENSIBLE RESOURCE DISCOVERY

Create new
service

Stop
container

Restart
container

CONTAINER MANIPULATION

Slave
Machine

Stop
container

Restart
container

CONTAINER MANIPULATION

Figure 7. Extensible information search functionality

The personalized module’s detection is made by the
periodic verification of the existence of the configuration
file shown in figure 6. When this configuration file is
found, it is read by our extensible resource discovery
mechanism and the file PersonalizedServices.xml
(responsible for the personalized modules definition) is
updated to indicate the name of the class and method to be
invoked to perform the new search. This new module is
automatically added to the personalized ones already
defined in the file.

An example of the PersonalizedServices.xml file is
shown in figure 8.

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<Services>
 <PersonalizedService>
 <ClassName> SoftwareSearch </ClassName>
 <Methods>
 <MethodName> isSoftwareInstalled </MethodName>
 </Methods>
 </PersonalizedService>
 <PersonalizedService>
 <ClassName> BioFileSearch </ClassName>
 <Methods>
 <MethodName> getFileLength </MethodName>
 </Methods>
 </PersonalizedService>
</Services>

Figure 8. Definition of personalized module in the
PersonalizedServices.xml file

In this case, two personalized searches have been
defined, since the tag <PersonalizedService> occurs twice.

The incorporation phase then begins. First, the JARs
defined in the configuration file (figure 6) are added to the
ones necessary for the new GAR (Grid Archive) file’s
creation. This creation represents the new resource
discovery service that consists of the new personalized
module added to the old defined service. Due to this
operation, the system is capable of aggregating the new
module to its resource discovery mechanism.

After creation, the GAR file and the
PersonalizedServices.xml file are sent to all slave machines
by the GRIDFTP mechanism [12] in a safe channel.

After being sure that the new grid service is already in
the slave machines, the container manipulation phase
begins. First of all, the old service is undeployed. Due to
globus 3 restrictions [12], the container must be stopped.
After that, the new service is deployed. When the
deployment is finished, all the machines have their
container automatically restarted. At this time, the new
search is already available in all the machines’ services.

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<System>
 <Host>
 <Name> pos-03.cic.unb.br </Name>
 <IP> 164.41.14.83 </IP>
 <Memory>
 <Total> 109880.0 </Total>
 <Available> 1496.0 </Available>
 </Memory>
 <CPU>
 <Model> AMD Athlon(tm) Processor </Model>
 <Total> 896.0 </Total>
 <Available Percent> 1.36148 </AvailablePercent>
 </CPU>
 <OS>
 <Name> Linux </Name>
 <Version> 2.4.20-0 </Version>
 </OS>
 <Process>
 <Number> 78 </Number>
 </Process>
 <PersonalizedServiceInfo>
 <MethodsInfo>
 <Name> getFileLength </Name>
 <Result> 1242796843 </Result>
 </MethodsInfo>
 </PersonalizedServiceInfo>
 <PersonalizedServiceInfo>
 <MethodsInfo>
 <Name> isSoftwareInstalled </Name>
 <Result> true </Result>
 </MethodsInfo>
 </PersonalizedServiceInfo>
 </Host>
</System>

Figure 9. Resources information with a new service definition

On the slave machine, the retrieval of information when
personalized searches have been defined occurs as follows.
Every time a slave machine receives a resource’s
information request, it verifies if there is any personalized
module defined to join its execution’s results to the ones
retrieved by default.

If there is any personalized method, the basic module’s
infrastructure is prepared to read the personalized module’s
configuration file to retrieve the class responsible for
performing the personalized search. By using the Java’s
Reflection [15] mechanism, this class is instantiated and its
methods are invoked. All retrieved information (basic and
personalized ones) is stored in the output XML file, as
shown in figure 9.

In this file, the information contained until the tag
PersonalizedServiceInfo is retrieved by default by our
resource discovery mechanism. The
<PersonalizedServiceInfo> tag shows that there are two
methods that were used to extend the basic service. In this
case, the methods “getFileLenght” and

“isSoftwareInstaleld” were the methods incorporated by the
proposed extensible mechanism.

5. Experimental Results

A prototype of our extensible resource discovery
mechanism was implemented using JAVA version
1.4.2_04, jakarta ant 1.6.2 and globus toolkit 3.2.1.

The test environment was composed by 8 machines
spread over 2 laboratories (LAICO and LabPos),
interconnected by a campus-area network at the University
of Brasilia. All the machines had installed Linux kernel
2.4.20-8. Some of the hardware characteristics of the
machines are shown in table 2. In our current prototype,
only one virtual organization is used and only one master
machine was defined.

Table 2. Machines used in our grid testbed

Machine Lab CPU Memory Disk
pos03 LabPos AMD 900MHz 120MB 20GB
pos06, pos08
pos10, pos15

LabPos AMD 1GHz 256MB 20GB

carbona, fau,
magicien

LAICO P 1.7GHz 256MB 20GB

In our tests, there was an interest to extend the resource
discovery mechanism in order to incorporate new resource
searches that would be useful for our other grid research
projects. Therefore, we chose to focus on the needs of
PackageBlast [13], a grid service to compare biological
sequences against a genomic sequence database.

In this real problem, all the machines involved in the
comparison must have the same genomic database, with the
same version. Nowadays, this verification is manually
done, where a person is responsible to verify if the file
exists and its length. Therefore, it would be very interesting
if the resource discovery mechanism could obtain this
information automatically. So, we have defined a new
module that is responsible to do that.

In this section, we present our experimental results
considering this new module’s incorporation.

In our mechanism, there is a thread that keeps
periodically looking for the configuration file (section 4.2).
In our tests, we considered this pause period as 30s and 5s
and the tests were done varying the number of slave
machines (figure 10).

The times measured were unavailable and incorporation
time. The unavailable time is measured from the time the
resource discovery service is stopped in the master to the
time the extended resource discovery service is restarted.

Since the master service is the last one to be stopped, this
time does not depend on the number of slave machines, as
can be seen in figure 10. On the other hand, the
incorporation time does depend on the number of slave
machines, since it comprises the time between the detection
of the personalized configuration file and the termination of
the old resource discovery grid service in the master
machine.

By the collected results, we noticed that the best results
for incorporation times were obtained through the data
retrieval using the pause period configured to be 5s. With a
pause period of 30s, the resource discovery mechanism
takes longer to notice that a new personalized module has
been defined and this has an impact on the overall
execution time. Thus, we decided to use 5s as the pause
period.

Incorporation and unavailable master times

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7
Number of Slave machines

El
ap

se
d

tim
e

(s
)

Incorporation (30s)
Unavailable master (30s)
Incorporation (5s)
Unavailable master (5s)

Figure 10. Service incorporation and unavailable times for the
master machine for 1 to 7 slave machines, considering a 3.2MB

GAR file, with pause periods of 5s and 30s

The size of the grid archive (GAR) file is a point that
has also to be considered since the transfer to the slave
machines could add a great overhead. Therefore, to verify
the impact of the size of the new GAR file on the
unavailable and incorporation time, we had our tests
repeated using the pause time of 5s and the file’s size
doubled (6.4 MB).

This comparative analysis using these different file
lengths can be seen in Figure 11.

As can be seen in figure 11, the new module’s
incorporation times increase when the GAR size increases.
However, this increase is not so expressive.

The longest increased times were observed when 1 and
5 slave machines were being used. In this case, the
incorporation’s total time suffered an addition of 15.4% and
15.2% respectively when the file size was doubled. The

incorporation’s time using 4 and 6 machines suffered an
addition of 4.7% and 4.6% respectively.

Incorporation and unavailable master times
for 3.2 MB and 6.4 MB files lengths

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6
Number of Slave machines

El
ap

se
d

tim
e

(s
)

Incorporation (3.2MB)
Unavailable master (3.2MB)
Incorporation (6.4MB)
Unavailable master (6.4MB)

Figure 11. Service incorporation and unavailable times for the
master machine for 1 to 7 slave machines, considering a 3.2MB

and 6.4MB GAR file, with pause periods of 5s

That means that, although the increase on the file size
causes an addition to the total time, this addition is not
proportional to the file size, so it does not represent a
significant impact in our extensible resource discovery
mechanism’s utilization, even considering the file sizes
used in the tests, which were quite high.

6. Conclusion and Future Work

In this paper, we proposed and evaluated an extensible
resource discovery mechanism for grid environments. The
possibility of extending a resource discovery mechanism,
by adding new resource searches automatically and “on-
the-fly”, is very useful for the user/administrator, who does
not need to manually modify the resource discovery grid
service to add his new search criteria.

The results obtained on a grid prototype composed by 8
machines spread over 2 laboratories presented very
reasonable times for the incorporation of a new resource
search, considering all the complexity involved while
incorporating and distributing a new grid service to all the
involved machines.

By our results, it was clear that it is not interesting for a
master to manage a big number of slave machines and, if it
is necessary to retrieve information from a high number of
machines, the system’s architecture permits an organization

of these machines in different sets of master x slave
machines.

For a future work, we intend to add a hot deploy
mechanism, just like [7], to our mechanism. That would
avoid the deploy and undeploy operations that were done in
the container during the manipulation phase. Beyond this, it
is interesting to evaluate tests in environments with
different master machines in different virtual organizations.
It would also be interesting to establish an hierarchy among
the master machines to consolidate the slave machines’
information retrieved, among some other possible
improvements that could be done in our mechanism
utilization. Also, we intend to design a mechanism to
validate the personalized search before it is included in our
resource discovery mechanism.

7. References
[1] R. Buyya, D. Abramson and J. Giddy, Nimrod/G: An

Architecture for a Resource Management and Scheduling
System in a Global Computational Grid, Proceedings of the
High Performance Computing in the Asia-Pacific Region,
2000, China, p.283-289.

[2] C. Catlett, L. Smarr, “Metacomputing”. Communications of
the ACM, 35 (6). 44-52. 1992.

[3] G. Coulouris, J. Dollimore, T. Kindberg, “Distributed
Systems: Concepts and Design”, Addison-Wesley, 2001,
772p.

[4] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W.
Smith, S. Tuecke. A Directory Service for Configuring High-
Performance Distributed Computations. Proc. 6th IEEE
Symposium on High-Performance Distributed Computing, pp.
365-375,1997.

[5] I. Foster, C. Kesselman, Globus: A metacomputing
infrastructure toolkit. The International Journal of
Supercomputer Applications and High Performance
Computing 11, 2 (1997),115--128.

[6] I. Foster, C. Kesselman, editors. The Grid: Blueprint for a
Future Computing Infrastructure. Morgan Kaufmann
Publishers, 1999.

[7] T.Friese, M. Smith, B. Freisleben, “Hot Service Deployment in
an Ad Hoc Grid Environment”, Proceeding of the 2nd Int.
Conference on Service Oriented Computing (ICSOC’04),
November, New York, USA,2004, p.75-83.

[8] Y. Gong, F. Dong, W. Li and Z. Xu, VEGA Infrastructure for
Resource Discovery in Grids. Journal of Computer Science
Technology, 18(4): 413-422, July, 2003.

[9] S. Jayasena, C. Yee, J. Song, A. Stoelwinder, C. W. See and
W. Wong, Data Resource Discovery in a Computational Grid,
Proceedings of the Grid and Cooperative Computing
International Workshops, 2004, p.303-310.

[10] C. A. Lee, J. Stepanek, R. Wolski, C. Kesselman and I.
Foster. A Network Performance Tool for Grid Environments.
In Proceedings of 7th IEEE International Symposium on High
Performance Distributed Computing, pages 260--267, 1998.

[11] J. Nabrzyski, J. M. Schopf, J. Werglarz, “Grid Resource
Management: State of the Art and Future Trends”, Springer,
September, 2003, 598p.

 [12] T. Sandholm, J. Gawor, “Globus Toolkit3 Core – A Grid
Service Container Framework, Technical Report, available at
www-unix.globus.org/toolkit/3.0/ogsa/docs/gt3_core.pdf, 22p.

[13] M. S. Sousa, A. C. M. A. Melo, “PackageBlast: An Adaptive
Multi-Policy Grid Service for Biological Sequence
Comparison”, Proc. of the ACM Symposium on Applied
Computing (SAC), 2006, to appear.

[14] Sun Microsystems , “Sun Cluster Grid Architecture - A
technical white paper describing the foundation of Sun Grid
Computing”, White Paper, 2002.

[15] Sun Microsystems. Java Core Reflection: API and
Specification, February, 1997, available at
http://java.sun.com/products/jdk/1.1/- docs/guide/reflection/.

[16] R. Wolski, N. Spring and J. Hayes, "The Network
Weather Service: A Distributed Resource Performance
Forecasting Service for Metacomputing,", Future
Generation Computer Systems, vol. 15, no. 5-6, pp.
757-768, October 1999.

