
Distributed Training of Deep Neural Networks:
Theoretical and Practical Limits of Parallel Scalability

BY Janis Keuper & Franz-Josef Pfreundt

17M38236 SUN NAN

Contents

1. Overview of distributed parallel training of Deep Neural Networks(DNN)

2. Three bottlenecks of scalable distributed DNN training

a. Communication Bounds

b. “Skinny” Matrix Multiplication

c. Basic I/O of Data

3. Suggestions to build your own networks

Deep Neural Network

Deep Neural Network

At a very abstract level, DNN means:

1. Graphs, more precisely, directed graphs

2. Nodes, compute entities (Layers)

3. Edges, data flow through graphs (Functions
and Weights)

Training the networks means:
Flow the data from the top to the bottom

Deep Neural Network

Deep Neural Network

Layer types(more than 100):

0. Input Layers

1. Sigmoid

2. Convolutional Layer

3. Pooling

4. ReLU

5. Softmax

6. Loss Layers

7. Local Response Normalization (LRN)

……

Training Deep Neural Network

BP algorithm:

1. Initialize weights W at random

2. Take small random subset X (=batch) of the
train data

3. Run X through network (forward feed)

4. Compute Loss

5. Compute Gradient

6. Propagate backwards through the network

7. Update W

8. Repeat until convergence

Why Stochastic Gradient Descent

Limitations of gradient descent:

a. Relatively slow close to the minimum

b. Local minima

c. Entire data set is needed for each computation

Why Stochastic Gradient Descent

In Gradient Descent:

Run every training example before doing an
update. When there is a large dataset, you might
spend much time on getting something that
works.

In SGD:

Update every time it finds a training
example(Online Learning). On large datasets, SGD
can converge faster than gradient descent since it
performs updates more frequently.

Why Stochastic Gradient Descent

Parallelization

Parallelization of SGD is very hard, it is an inherently sequential
algorithm

1. Start at a state t (point in a billion
dimensional space)
2. Introduce t to data batch d1
3. Compute an update (based on the objective
function)
4. Apply the update → t+1

Parallelization

Things we can do:

1.Make faster updates -> Inner parallelization

2.Make larger updates -> Outer parallelization

Parallelization

Inner parallelization

Def. Use parallel algorithms to compute the forward and backward
operations within the layers of the DNN

1. Dense matrix multiplication

a. Open-source BLAS(Basic Linear Algebra Subprograms)

b. Intel® MKL(CPU)

c. NVIDIA® cuBLAS(GPU)

……

Parallelization

Dense matrix:

Is it a dense matrix?
Probably YES

1. Definition
Whether or not we have only a few non-zero entries

2. Basic rule
Never store the whole matrix in the memory(also
brings about O(n²) in multiplication), GPU&CPU
doesn’t have “enough” memory

3. Block matrix

Parallelization

A 168×168 element block matrix with 12×12, 12×24,

24x12, and 24×24 sub-Matrices. Non-zero elements are
in blue, zero elements are grayed.

Parallelization

Inner parallelization

Def. Use parallel algorithms to compute the forward and backward
operations within the layers of the DNN

2. Task parallelization for special Layers

NVIDIA® Cuda-CNN for fast convolutions

Parallelization
A quick overview of convolution operation in CNN:

Parallelization

How to accelerate the convolution with Cuda?

blockDim.x: Number of thread
blockIdx.x: Index of block
threadIdx.x: Index of thread

Kernel function will compute tid(thread‘s ID)
elements in A,B and C in each thread
simultaneously

Parallelization

Similarly, Cuda use the parallelization to reduce time in calculating
convolution

FFT(Fast Fourier Transform)
O(𝑛2) -> O(𝑛 log 𝑛)

Parallelization

Outer parallelization

Def. Use parallel algorithms to compute the forward and backward
operations over the distributed batches

Two famous CNN models for evaluation

1. AlexNet (8 layers and 60M parameters):2.GoogleNet(more layers and more convolutions)

Evaluation
AlexNet vs GoogleNet on the ImageNet 2D Image labeling and object
detection benchmark:

Evaluation

A HPC cluster with nodes holding a dual Xeon E5-2680
v3 CPU (12 cores @ 2.50GHz), a NVIDIA Tesla K80 GPU

GPU

Graphics Processing Unit

1. Rendering
2. Work independently, no relations between each other

GPU
GPU vs. CPU
1. More threads(not cores) and registers
2. Cache is used to improve thread’s
performance, not to store the data
3. Different coding methods
4. More SIMD(single instruction multiple
data) Unit
5. Compute-intensive & Parallelized
calculations

“One professor vs. Thousands of primary
school students”

GPU
GPU vs. CPU
1. More threads(not cores) and registers
2. Cache is used to improve thread’s
performance, not to store the data
3. Different coding methods
4. More SIMD(single instruction multiple
data) Unit
5. Compute-intensive & Parallelized
calculations

“One professor vs. Thousands of primary
school students”

GPU
GPU vs. CPU
1. More threads(not cores) and registers
2. Cache is used to improve thread’s
performance, not to store the data
3. Different coding methods
4. More SIMD(single instruction multiple
data) Unit
5. Compute-intensive & Parallelized
calculations

“One professor vs. Thousands of primary
school students”

Limitation Ⅰ

Distributed SGD is heavily Communication Bound:

Network Bandwidth is limited:
1. Model size can be hundreds of
MB(Transfer Data)

2. GPU Iteration time

Limitation Ⅰ

Communication overhead for different
models and batch sizes. The scalability
stalls when the compute times drop below
the communication times, leaving
compute units idle. Hence becoming an
communication bound problem.

Limitation Ⅰ
Hardware solutions:

Limitation Ⅰ
Algorithm solutions：

(I) Re-design of the network eliminating unused weights

a. Avoid fully connected Layers for smaller models

(II) Limit the numerical precision of the model weights

a. Reduce Floating Point precision (8 Bit is enough)

(III) Reduce / Avoid Communication

a. Compression

b. Transmit key information

Limitation Ⅰ

But we are still not there, why?

Assume we have already solved all the problems in communication, or Free
Communication…

Limitation Ⅰ

Simulated by measuring the compute
times at a single node at decreasing

batch sizes

Limitation Ⅰ

Evaluation of the relative compute time for each layer
type (several layers of the same type are accumulated) per

training iteration on a single node GPU based.

Limitation Ⅰ

Impact of the batch size b for matrix multiplications
with the shape b × 4096 ∗ 4096 × 9192

“1 million neurons with 256 training samples ”

Limitation Ⅱ

Parallelizing “Skinny” Matrix Multiplication:

One problem, but very basically: Batch size decreases with distributed
scaling

For skinny matrices there is simply not enough work for efficient internal
parallelization over many threads

Limitation Ⅱ

Solution:

Increase Batch size(advantage)

a. Enhance the utilization of memory, also improves parallel efficiency

b. Iterations of the whole epoch is reduced, which means a great speedup
in dealing with the same amount of data compared to the small size

c. Faster in determining the gradient direction

Limitation Ⅱ

Solution:

Increase Batch size(disadvantage)

a. Memory capacity is limited

b. Loss of accuracy

c. Direction is a tiny issue

Full validation accuracy plot for AlexNet with different
large batch sizes. Settings [B = 256; ɛ= 0.01; iter = 450k],
[B = 512; ɛ=0.02; iter = 225k], [B = 1024; ɛ = 0.04; iter =
112k], [B = 2048; ɛ =0.08; iter = 56k]. ɛ is Step sizes

Limitation Ⅲ

Distributed File Systems(I/O):

“Loading Data, very fundamentally but you have to spend time on it”

Limitation Ⅲ

1. Network bandwidth is already exceeded by the SGD communication(I/O)

AlexNet needs 100 epochs(=full pass of the training data) till convergence,
resulting in 100 × 150GB= 15TB of total data traffic compared to 450000×
250MB×2(n- 1) in gradient and update communication

2. Worst possible file access pattern:

Access many small files at random

An example on local multi-GPU computations:

Single SSD (>0.5 GB/s) to slow to feed >= 4 GPUs

Limitation Ⅲ

Solutions:

Local SSDs, but more problems to solve

Conclusions
Situations:

1. The main problem with training DNNs via distributed SGDs is that the

computation load per iteration is too low.

2. This problem will further increase with faster compute units (GPUs).

Possible solutions:

1. Change Network to handle the over-fitting problem for large Batch sizes

2. Alternative optimization methods (SGD is not the only way)

Suggestions
1. Avoid “fat” layers with too many parameters:

a. For CNNs, go deeper with convolutions (As MS does in their modules)

b. Use less fully connected layers

2. Revise network

3. Optimize meta-parameters for larger batch-sizes:

a. Better scalability(At the very beginning)

b. Better I/O performance

Thank you!

