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Abstract—GPUs offer drastically different performance 
characteristics compared to traditional multicore 
architectures. To explore the tradeoffs exposed by this 
difference, we refactor MUMmer, a widely-used, 
highly-engineered bioinformatics application which has both 
CPU- and GPU-based implementations. 

We synthesize our experience as three high-level guidelines 
to design efficient GPU-based applications. First, minimizing 
the communication overheads is as important as optimizing the 
computation. Second, trading-off higher computational 
complexity for a more compact in-memory representation is a 
valuable technique to increase overall performance (by 
enabling higher parallelism levels and reducing transfer 
overheads). Finally, ensuring that the chosen solution entails 
low pre- and post-processing overheads is essential to 
maximize the overall performance gains. 

Based on these insights, MUMmerGPU++, our GPU-based 
design of the MUMmer sequence alignment tool, achieves, on 
realistic workloads, up to 4x speedup compared to a previous, 
highly optimized GPU port. 

I. INTRODUCTION 

High-performance computing (HPC) platforms are gradually 
shifting towards hybrid architectures. Simply put, hybrid 
architectures combine high-frequency processors with massively-
multicore, yet low-frequency, accelerators. This combination 
makes perfect sense as applications typically have both sequential 
parts, run by the fast, high-frequency processor, and parallel parts, 
run by the accelerators. As argued by Hill et al. [1], compared to 
homogeneous multicore systems, hybrid architectures offer a 
better balance between performance and used resources (power 
and processor area). Examples of such hybrid platforms include 
IBM’s Cell Broadband Engine, AMD’s Fusion architecture, 
Intel’s Larrabee chip, and commodity systems that host both 
traditional CPUs and commodity graphics processing units 
(GPUs).  

Experience with hybrid platforms powered by general purpose 
GPU (GPGPUs) includes reports of significant speedups 
compared to current homogeneous multicore systems in the same 
price range [2]. These reports ignited passionate debate on the 
limits of GPU-supported acceleration for various classes of 
applications [3, 4].  

Indeed, designing applications to run efficiently on a hybrid, 
GPU-based platform is a challenging task for multiple reasons:  

 First, the GPU processing power is offered in a restricted form 
of parallelism, known as single-instruction multiple-data 
(SIMD), which allows for only one instruction to operate on 
multiple data items at each point in time. Hence SIMD 
provides lower execution flexibility and requires extracting 
parallelism at the low-level. 

 Second, splitting the computation between the CPU and the 
GPU requires explicit data transfers between their address 
spaces over a shared I/O bus. Hence efficiently scheduling data 
transfers between the two processing units, and finding a low 
coupling point that limits the volume of data transferred, are 
required to achieve best performance results.  

 Finally, and most relevant to this work, most of the past 
experience on performance-efficient data structures needs to be 
carefully reconsidered when porting applications to use GPUs. 
The reason is that GPUs offer different computational 
tradeoffs compared to traditional multicore systems. On the 
one hand, GPUs offer one order of magnitude higher peak 
memory access bandwidth, and one order of magnitude higher 
peak computational power. On the other hand, current GPUs 
have limited, often one order of magnitude lower, internal 
memory space; moreover their computational model results in 
extra overheads as it relies on transferring data back and forth 
between the device and the host system’s main memory. 

This paper advocates the need for a careful space/time tradeoff 
analysis when designing applications for (or porting applications 
to) GPU-based hybrid platforms. In particular, we analyze and 
evaluate these tradeoffs in the context of a well-engineered, 
widely-used bioinformatics application [5-7] which performs 
‘read alignments’: a memory-intensive operation involving exact 
string matching for a large number of strings. The tool has both 
CPU- and GPU-based implementations named MUMmer [5-7] 
and, MUMmerGPU [8, 9], respectively. 

Using a GPU to accelerate the ‘read alignment’ operation is 
appealing for two reasons. First, GPUs support higher peak 
memory bandwidth than traditional systems. This is facilitated by 
faster memory technology used by GPUs, named GDDR, and by 
employing a wider memory bus. Second, parallelizing this 
operation is straightforward since matches can be processed 
independently and the problem space can be easily partitioned. 
Therefore, it is not surprising that, after careful optimizations [9] 
to efficiently use GPU’s texture memory and improve data access 
locality, MUMmerGPU achieves significant speedups compared 
to its CPU counterpart.  

Profiling the latest version of MUMmerGPU, however, reveals 
that only a relatively low share of the total application runtime is 
spent computing. Figure 1 shows that more than 50% of the time 
is spent on data transfers and post-processing. 

Our hypothesis is that the culprit for this arguably low use of the 
GPU is the core data structure (namely the suffix tree) used for 
performance-efficient string matching by both the original, CPU-
based tool, MUMmer, and its GPU port. We contend that this data 
structure is not a good match for GPU implementations: it offers 
fast matching at the cost of a large memory footprint (which 
translates to large data transfers and limited parallelism) and 
relatively complex post-processing. 
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Thus, the goal of this study is to: first, explore the feasibility of 
using a different data structure that offers different space/time 
tradeoffs and, second, to evaluate the effect of this choice on the 
overall application performance. Note that, to highlight the effect 
of the choice of the data structure, we focus on the high-level 
application design, and, throughout our design and 
implementation effort, we pay little attention to low-level 
performance optimizations. 

The contributions of this work are as follows: 

 First, we demonstrate the importance of a careful choice of the 
data structure used to support a GPGPU application. We show 
that a data structure that matches well the space/time tradeoffs 
specific to a GPU can lead to dramatic performance 
improvements. The direct implication of this observation is 
that, when porting applications to a hybrid, GPU-supported 
platform, designers should not only focus on extracting the 
application parallelism usable in a SIMD model; but, in order 
to maximize the performance gains, they may need to 
reconsider the choice of the data structures used. 

 Second, we provide MUMmerGPU++, a fully compatible GPU 
port of the widely used sequence alignment tool MUMmer. 
Our evaluation, performed on one commodity and one high-
end GPU card using realistic workloads, which include large-
scale human genome sequencing data, demonstrates that 
MUMmerGPU++ enables up to 4x speedup compared to 
MUMmerGPU, the highly optimized GPU port of the original 
MUMmer sequence alignment tool. As we argue in §V, data 
analysis has become a major bottleneck in generating new 
knowledge from genomic data [10]; thus, accelerating 
sequence alignment, a major step in data analysis, has the 
potential to alleviate this bottleneck. 

 We contrast, in the context of the sequence alignment 
application, energy consumption for traditional and hybrid 
(GPU-enabled) systems. We show that, although the energy 
consumption rate of a traditional system is lower, the total 
energy consumption to complete a full sequence alignment 
workload for the hybrid system is much lower due to its 
superior performance. While, for our experimental setup, the 
hybrid system requires only a small (13%) performance 
improvement to become more energy efficient than a 
traditional one, MUMmerGPU++ offers much higher speedups 
thus making the hybrid system over one order of magnitude 
more energy efficient. 

How to read this paper. To make this paper self-contained we 
present a fair amount of background material. If the reader is 
familiar with the read alignment problem (§II.A), the data 
structures to accelerate string matching and their space/time 
tradeoffs (§II.B), and the GPGPU programming model (§II.C) 
then he can skip directly to §III, which discusses in detail the 
effect of space/time tradeoffs and our effort to offload read 
alignment computation to the GPU.  §IV presents a detailed 
evaluation of our solution, MUMmerGPU++, and compares it 
with the past approach. §V extends the performance evaluation 

over multiple directions (e.g., energy consumption, ability to 
harness high-end GPUs) and discusses a number of interrelated 
design issues. §VI concludes this paper. 

II. BACKGROUND 

Genome sequencing is the biochemical process of determining the 
order of nucleotides in a DNA molecule. This is an essential 
process to gain important information needed for biological and 
medical studies. New high-throughput sequencing technologies, 
such as 454 life sciences [11] and Illumina [12], enabled dramatic 
increase in sequencing rates, while significantly reducing the 
overall sequencing costs. This advancement enables producing an 
enormous volume of data (generated at the rate of terabytes per 
day) which needs to be processed and analyzed, leading, as a 
result, to insatiable demand for high-performance computing. 

This paper focuses on sequence alignment: the operation on 
genomic data which aims to find all occurrences of one sequence 
in another sequence, where a sequence is a string composed of 
some alphabet  (e.g., the alphabet set {A,C,G,T} in case of 
genome sequences). Sequence alignment [13] is widely used in 
computational biology studies such as gene finding, comparative 
genomics, phylogenetic analysis and genome assembly. In 
particular, we focus on a specific, yet important, use case in 
sequence alignment, called genome read alignment. 

A. The Read Alignment Problem 

In read alignment, a large number of short sequences, (called 
‘reads’) and referred hereafter as the query set, are aligned to a 
longer genome reference sequence. This process is an essential 
time-intensive operation in comparative genome assembly [14]. 

1) Formal Problem Definition 
The read alignment problem can be formally defined as follows: 
For each query q in the query set Q, find all maximal matches of 
minimum length l in the reference string S. A maximal match is 
defined as a match of a suffix qi of query q starting at position i 
(and referred hereafter as a subquery) to a suffix Sj of the 
reference string S that is at position j. The match is assumed to be 

Table 1: Sample ‘read alignment’ workloads. For experimental purposes, we use three different minimum-match length values  
Workload / Species  Reference 

sequence length 
# of queries Sequencing technology 

(read length) 
Minimum-match length 

HS1 - Homo sapiens chromosome 2 238,202,930 78,310,972 454 (~200) Config1: 25, Config2: 50, Config3: 100 
HS2 - Homo sapiens chromosome 3 100,537,107   2,622,728 Sanger (~700) Config1: 50, Config2: 100, Config3: 200 
MONO - L. monocytogenes  2,944,528   6,620,471 454 (~120) Config1: 20, Config2: 40, Config3: 80 
SUIS - S. suis  2,007,491 26,592,500 Illumina (~36) Config1: 15, Config2: 20, Config3: 30 
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Figure 1: Percentage of time spent in each processing stage 
using MUMmerGPU for the workloads presented in Table 1, 
for config2 (discussed in §II.A.2). 



as long as possible, and not contained in any suffix qk, with k < i. 

For example, for a query string “ACACT” and a match length of 
at least three, the following three subqueries must be searched in 
the reference string: ACACT, CACT, and ACT. For each 
subquery, all match occurrences that are at least three characters 
long must be reported. Figure 2 shows a snapshot of a reference 
sequence, query set and alignment result. 

2) Workload Characteristics 
Depending on the species, the length of the genome reference 
sequence ranges from a few million nucleotides (e.g., for 
Streptococcus suis), to a few billion nucleotides (e.g., for Homo 
sapiens), to a maximum of hundreds of billions nucleotides (e.g., 
for Amoeba dubia). A nucleotide is represented as a character 
from the alphabet set {A,C,G,T}. 

The number of queries ranges from few thousand to hundreds of 
millions, and the query length ranges from tens to several hundred 
nucleotides depending on the sequencing technology used. In 
particular, current high-throughput sequencing technologies, such 
as Illumina and 454, produce significantly shorter queries (30–
200 nucleotides) compared to previous sequencing generations 
such as sanger (~700 nucleotides). 

Table 1 presents a sample of read alignment workloads we fetched 
from the National Center for Biotechnology Information (NCBI) 
archive [15], and used to drive the experiments in this paper. The 
workloads include sequencing data that cover a wide spectrum of 
usage scenarios. For example, HS1 is a relatively large scale 
workload for a Homo sapiens that aligns about 78M queries of 
average length 200 to the genome sequence of the human 
chromosome #2 which is about 238M nucleotide-long.  MONO is 
a smaller scale workload for a Listeria monocytogenes species 
which aligns ~6M queries to a reference genome sequence ~2M 
nucleotide-long. 

Finally, the minimum match length is a user-specified parameter. 
A short minimum-match length implies a relaxed assumption on 
what is considered a match, and vice versa. On the one hand, 
since all the suffixes of each query need to be aligned, a short 
minimum-match length increases the number of subqueries to be 
aligned per query, and, at the same time, increases the chance to 
find matches; therefore the workload becomes larger, and requires 
more processing time. On the other hand, a longer minimum-
match results in reducing the workload demands.  

For each workload, we chose three minimum-match length values 
that represent relaxed (config1), moderate (config2) and 
conservative (config3) configurations with respect to typical 

values used in practice [8, 9] (see Table 1).  

B. Substring Matching 

The core of the read alignment problem is a basic substring 
matching operation: find a string of length m in another reference 
string of length n, where n>>m. A naïve approach to this problem 
is to exhaustively search the reference string. This approach has 
linear space complexity, O(n); in fact, if a nucleotide is 
represented using one Byte, the space requirement of this 
approach is exactly n Bytes. However, the time complexity is 
daunting: O(mn), especially when considering that matching 
needs to be done on a large number of queries. 

A more time-efficient approach to solve this problem is to 
pre-process the long reference string into a data structure that 
allows for efficient search. The rest of this section discusses the 
two main data structures that have been proposed in the literature: 
suffix trees [16] and suffix arrays [17].  

1) Suffix Tree 
A suffix tree (Figure 3) is a trie-like data structure that stores all 
the suffixes of a given string S (the reference string in our case). 
Each suffix has exactly one path from the root of the tree to a leaf. 
The tree has n leaf nodes, corresponding to the n suffixes in S. 
Further, each edge in the tree is labeled with a substring of S such 
that the concatenation of the edge-labels from the root to a leaf 
represents a suffix Sj of S. 

Search procedure and its complexity. Searching the suffix tree is 
done by navigating the tree starting from the root node, matching 
the characters of the query string with the edge-labels. The search 
complexity is O(m), where m is the length of the query string. 
This is an attractive linear-time search solution which does not 
depend on n, the length of the reference. Also, suffix trees can be 
augmented with additional pointers, called suffix links (shown as 
dashed arrows between internal nodes in Figure 3), which enable 
time-efficient maximal-matching (discussed below). Conceptually, 
a suffix link is an internal pointer from a node with path w (i.e., 
the concatenation of edge-labels from the root to the node) to 
another node with path w, where  is a single character and w is a 
substring. 

Processing the maximal-matches of a query q of length m requires 
searching the suffix tree for all subqueries q0 to qm-l (where l is the 
minimum-match length). This can be done by treating each 
subquery as a separate query, and performing a separate search 
operation for each one. However, this approach fails to take 
advantage of the fact that we are searching for a group of related 
suffixes. To this end, suffix links allow for exploiting this 
opportunity: instead of traversing the suffix tree from the root 

 
Figure 2: Genome read alignment example. 
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Table 2: Suffix array for the string TACACA. The suffix and 
index columns are shown for illustration only (i.e., they do not 
present in the actual data structure). The LCP array represents 
the longest common prefix between the suffixes in the current 
and the previous array entry. The rank array represents the 
reverse index of the suffix array and has the same role as the 
suffix links in suffix trees: it is used to efficiently calculate 
maximal matches as discussed in §III.C. 

Index Suffix 
Suffix 
Array 

LCP 
Array 

Rank Array  
(Suffix Array -1) 

0 (smallest) A 5 0 5 
1 ACA 3 1 2 
2 ACACA 1 3 4 
3 CA 4 0 1 
4 CACA 2 2 3 

5 (largest) TACACA 0 0 0 

node for each subquery, the matching can be resumed for 
subquery qi by following the suffix link of the last matching node 
of the previous subquery qi-1, hence saving i-1 comparisons for 
each suffix, and rendering the complexity of matching all the 
subqueries of a query to be O(m). 

Space complexity. The time efficiency of the suffix tree comes at 
the cost of additional computational and space overheads to build 
and store the suffix tree. Although the space complexity grows 
linearly with the reference sequence length as the tree requires 
only O(n) nodes, in practice the constant factors are high and 
suffix trees occupy a significant amount of space: between 22.4n 
and 32.7n Bytes for DNA sequences [17-19], where n is the 
sequence length. Storing the suffix links will require 4i additional 
Bytes, where i is the number of internal nodes. As a result, efforts 
have been made to reduce the space requirements of the tree, 
which resulted in reducing the space requirement to 20n Bytes in 
the worst case [19], without considering the suffix links.  

Construction. The tree can be constructed in O(n) time [16], 
which in practice becomes negligible when matching a large 
number of queries. Further, suffix links are a by-product of suffix 
tree construction, hence no extra pre-processing time is required 
to produce them, yet they still consume additional space to store. 

2) Suffix Array 
To address the large space requirements of suffix trees Manber et 
al. [17] proposed the suffix array, a data structure that enables 
similar string matching operations yet consuming less space in 
practice. A suffix array is a sorted array of all the suffixes of S in 
lexicographical order [17] (presented in Table 2 for the same 
reference string as in Figure 3). The data structure is represented 
as an array of integers which correspond to the indices of the 
suffixes in order (column labeled ‘suffix array’ in Table 2). 

Search procedure and its complexity. A naïve search in the suffix 
array takes O(mlog n) time when supported by a classic binary 
search: O(log n) string comparisons demanded by the binary 
search, and each string-comparison requires O(m) character 
comparisons. In practice, however, a smart implementation of the 
binary search that takes advantage of the fact that we are searching 
related suffixes significantly improves the search time. Manber et 
al. proved that the worst case time complexity can be improved to 
O(m + log n) [17] at the expense of increased space usage by 
associating the suffix array with an extra array of information, 
namely the longest common prefix (LCP) array: an array that 
stores the length of the longest common prefix between the suffix 
stored in the current entry and that stored in the previous array 

entry. Using the LCP array allows ‘priming’ the binary search: 
that is, the search does not start from scratch for each string-
comparison. In a nutshell, the results of earlier string-comparison 
iterations along with the LCP information are used to skip 
unnecessary comparisons in subsequent iterations.   

Space complexity. The suffix array has O(n) entries, the same 
asymptotic space complexity as the suffix tree; in practice, 
however, it consumes three to five times less space than suffix 
trees [17, 18]. In particular, if we assume an integer is represented 
on four Bytes, the array requires exactly 4n Bytes. The LCP and 
the rank array (discussed in §III.C) add another 8n Bytes. 

Construction. The suffix array can be constructed in linear time 
[20-22]. As with the suffix tree, construction overheads are 
amortized even for a relatively small number of queries. 

C. GPGPU Programming 

At the high-level, offloading computation to the GPU is an 
iterative process of three stages: (i) transfer the input data to the 
GPU’s internal memory, (ii) launch the processing ‘kernel’, a 
function that, when called, is executed on the GPU, and (iii) 
transfer the output from the GPU’s internal memory back to the 
host’s main memory. 

This processing model is imposed by the fact that the GPU has no 
direct access to the host’s memory nor to its I/O devices (e.g., 
disk). Rather, the internal GPU processors can only access the 
memory module hosted by the GPU card, itself. Consequently, the 
application has to allocate buffers on the GPU’s local memory for 
both input and output data, and to transfer the data to/from these 
buffers from/to the host’s main memory. 

The GPU architecture and programming model have been 
discussed extensively in several previous publications; hence we 
refer the reader to [23] for a detailed presentation on this subject. 

III. OFFLOADING READ ALIGNMENT  

This section discusses the challenges to offload read alignment to 
the GPU (§III.A), presents MUMmerGPU’s approach to read 
alignment based on suffix trees (§III.B), discusses our design of a 
suffix array-based tool (§III.C), and the opportunities it enables to 
gain extra speedups by significantly reducing the data transfers 
and post-processing overheads (§III.D).  

A. Challenges 

The efficient use of GPUs to speedup read alignment faces two 
main challenges: 

 Limited onboard GPU memory. Current GPU models have one 
order of magnitude less memory compared to the host’s main 
memory. This limitation may constrain applications to partition 
the problem space and perform computations in several 
rounds, hence adding significant data transfer overheads 
especially for data-intensive applications. 

The space requirement of the read alignment problem is fairly 
large, especially when considering long sequences such as 
those of mammalian genomes [24]. For example, the human 
reference genome spans more than 3 billion DNA nucleotides 
(i.e., more than 3GB string) which, when processed into a 
suffix tree or suffix array, would require significantly more 
space (20x more, i.e., 60GB when using a suffix tree). 
Moreover, current sequencing projects typically produce more 
than 10x oversampling of the genome (i.e., the total length of 



all queries is 10x the length of the reference sequence) which 
needs to be aligned against the entire reference genome [25]. 
As a result, the space requirements of the problem are at least 
one order of magnitude larger than the size of the onboard 
memory in current and near-future GPU models (for example, 
Nvidia has recently announced its new commodity GPU 
model, GeForce GTX 480, which has 1.5GB of onboard 
memory; current high-end GPU models like the Quadro FX 
5900 have up to 6GB of onboard memory). 

 Limited access to other I/O devices (e.g., disk). As mentioned 
before, the GPU has access only to its onboard memory; hence 
results have to be stored internally then transferred to the 
host’s main memory. As a result, GPU applications with a 
large output size need to divide the limited onboard memory 
efficiently between the input and output buffers. This becomes 
a challenge when the result size cannot be determined in 
advance for a specific input size, or the maximum result size is 
too large to be allocated. Addressing this limitation requires a 
compressed, deterministic representation of the results, which 
needs to be decompressed on the CPU (or possibly by another 
round on the GPU), consequently introducing extra overheads. 

In the case of read alignment problem, the output size cannot 
be determined in advance as the number of alignments for each 
subquery is not known beforehand. Moreover, the maximum 
result size is O(mn|Q|), which is infeasible to allocate.  

B. A Previous Effort: MUMmerGPU 

Delcher et al. [5, 6] implemented MUMmer, a widely used tool 
that performs read alignments on the CPU using suffix trees. The 
tool has also been significantly improved in terms of performance 
and space efficiency by Kurtz et al. [7]. Schatz et al. developed 
[8] then optimized [9] a GPU version of the program, called 
MUMmerGPU, which also uses suffix trees. To address the space 
challenges of the problem (i.e., the long reference sequence, the 
large number of queries, the unpredictable result size, and the 
limited onboard GPU memory), MUMmerGPU divides the 
computation into smaller-sized sub-computations that fit on the 
GPU onboard memory. This is done by (i) dividing the long 
reference string into shorter overlapping segments, (ii) dividing 
the query set into smaller sized subsets, and (iii) reporting a 
“compressed” representation of the results to the host’s memory. 
Figure 4 presents the high-level GPU offloading algorithm 
employed by MUMmerGPU.  

MUMmerGPU constructs a suffix tree for each segment (a 
partition of the reference string), and aligns each query subset to 
all trees in rounds. Conceptually, a “round” is a four-stage process 
(for a more detailed discussion, we refer the reader to [8, 9]):  

 Copy in. The query subset and the suffix tree of the segment 
are transferred to the GPU.  

 Matching. The queries of a query subset are aligned to the tree 
in parallel on the GPU. All subqueries of a query are processed 
by a single GPU thread in order to take advantage of suffix 
links. To make the result size predictable, the match kernel 
does not report all the matches of each subquery (as discussed 
previously, a subquery could have one or more matches; 
however, the number of matches is not known in advance). 
Instead, the match kernel reports only the longest match of 
each subquery (node “Q” in Figure 5). This is done by 
matching the characters of the subquery string with the edge-
labels until a mismatch or the end of the subquery is reached. 

 Copy out. The results are transferred back to main memory. 

 Post-processing. The results of the match kernel are 
“decompressed” to find the other matches of each subquery. 
This is done as follows (Figure 5 presents an example). First, 
starting from node Q that corresponds to the longest match for 
a subquey, the algorithm traverses back to the node at which 
the match length equals the minimum-match length l (labeled P 
in Figure 5). Intuitively, P is the lowest common ancestor of 
the leaves that represent all subquery matches. Second, the 
algorithm performs a depth-first traversal to report all the 
leaves of the subtree rooted at P as the final result (i.e., the 
indices in the reference string where the subquery occurs). 

C. MUMmerGPU++ 

Schatz and his group report that MUMmerGPU achieves 
significant speedups compared to the original CPU-based 
MUMmer program [8]. A closer look at the match between suffix 
tree-based search and the GPU characteristics prompted us to 
investigate whether a suffix array implementation can enable 
better utilization of the GPU. This section presents the suffix 
array-based algorithms used by MUMmerGPU++ while the 

structs = PreprocessReference(reference)  
subsets = DivideQuerys(queries) 

foreach subset in subsets do { 
   results = NULL 
   CopyIn(subset) 

   foreach struct in structs do { 
      CopyIn(struct) 
      LaunchMatchKernel(subset, struct) 
      CopyOut(results) /* append result */ 
   } 

   Postprocess(results) 
} 

Figure 4: High-level GPU offloading algorithm 
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Figure 5: Alignment of query ACACT to reference 
TACACA for a minimum-match length of one. The figure 
demonstrates the alignment for only the first subquery 
(i.e., the string ACACT, itself). The dotted path is 
traversed in the matching stage. Node Q, and the 
corresponding maximum match length of 4, are reported 
as the result of the traversal in the matching stage. The 
post-processing stage produces the final output through a 
depth-first traversal starting from node P. The output 
includes three alignments: at position 5 with length 1, at 
position 3 with length 3 and at position 1 with length 4. 



following section estimates analytically the potential performance 
gains brought by this data structure.  

At the high level, MUMmerGPU++ follows the same structure as 
MUMmerGPU (described in Figure 4). However, the core of 
MUMerGPU++ is significantly different as we replace the core 
data structure, the suffix tree, with a suffix array. This change 
entails completely different matching and post-processing 
algorithms, which we describe in the rest of this section. 

Matching. Similar to MUMmerGPU, queries are searched in the 
suffix array in parallel, and all subqueries of a query are processed 
sequentially by a single GPU thread. For each subquery, the 
match kernel reports the index in the suffix array corresponding to 
the longest match in the reference.  

The matching algorithm processes a query q as follows: the first 
subquery q0 is matched via a binary search on the suffix array, 
which, as discussed in §II.B.2), has O(m + log n) worst case 
complexity, where m is the query length and n is the reference 
string length. To process the next subquery and avoid processing 
the characters already processed by the previous subquery, we use 
a two-phase procedure (pseudo-code presented in Figure 6):  

 The first phase uses the result of the previous subquery to 
reduce the search space in the suffix array. This is done by 

combining the suffix array with another one called the rank 
array: the reverse index of the suffix array (see Table 2).  

For example, let Sj be the reference suffix that matched x 
characters of subquery qi, where x >= l, also let k be the rank of 
Sj in the suffix array (i.e., SuffixArray[k] = j and Rank[j] = k); 
then the subquery qi+1 matches x - 1 characters of the reference 
suffix Sj+1, and Rank[Sj+1] is the corresponding suffix array 
index. Conceptually, the Rank array has the same role as the 
suffix links in suffix trees.  

 The second phase searches for the longest match by 
sequentially comparing the subquery with the suffixes adjacent 
to the one produced by the first phase. The LCP array is used 
to avoid comparing a character more than once. 

Note that if a subquery does not have a match in the reference 
string, the search for the next subquery falls back to the binary 
search procedure. Hence, the efficiency of this approach is related 
to the characteristics of the workload: the larger the number of 
matching subqueries, the lower the number of times the algorithm 
searches the whole array. 

We anticipate that this approach is efficient for the read alignment 
problem since generally the queries are aligned to a reference 
genome of the same species; hence the percentage of positive 
matches is relatively high. 

Post-processing. The result reported by the match stage represents 
the longest match occurrence for each subquery. Since the suffix 
array is ordered lexicographically, the other occurrences are 
adjacent: above and under the result reported by the match phase. 
Getting the other occurrences, and their maximum match length, 
is done via a simple sequential scan on the LCP array. The 
algorithm is presented in Figure 7. 

D. Evaluating the Opportunity: A Detailed Analysis of 
Space/Time Tradeoffs  

This section uses simple complexity analysis to shed light on the 
effect of using suffix arrays instead of suffix trees on the running 
time of each of the matching, data transfer, and post-processing 
stages. In brief this section argues that even though suffix arrays 
will not enable a faster matching stage, they will enable 
significantly lower data transfer volumes and faster post-

/* Assumes SA, LCP and l global variables */ 
procedure Match(q, qlen) { 
   i = 0 
   while i  qlen – l do { 
      (si, ml) = BinarySearch(qi) 
      RecordResult(qi, si, ml) 
      i = i + 1 
      while si != NULL and i  qlen – l do { 
  /* phase 1: cut the search space */  
         i = i + 1 
         s = ml – 1 
         si = Rank[SA[si] + 1] 
         j = SA[si] + s 
         (r, ml) = Comp(Sj, qi+s) 
  /* phase 2: find the longest */ 
         if r > 0 then { 
            (si, ml) = ScanUp(s+ml, qi) 
         } else { 
            (si, ml) = ScanDown(s+ml, si, qi) 
         } 
         RecordResult(qi, si, ml) 
         i = i + 1 
      } 
   } 
} 
procedure ScanUp(s, si, qi) { 
   r = 1 
   while LCP[si] > s and r > 0 do { 
      si = si – 1 
      j = SA[si] + s 
      (r, ml) = Comp(Sj, qi+s) 
      s = s + ml  
   } 
   return (si, s) 
} 
 

Figure 6: Pseudo-code of the core matching algorithm of 
MUMmerGPU++. The procedure “Match” is executed for 
each query by a dedicated GPU thread. The following is a 
summary of the variables names used: i=subquery index, 
l=minimum match length, ml=match length, s=skip 
(processed characters), si=suffix index. The procedure 
“Comp” evaluates which string is greater lexicographically 
and returns the maximum match length. Finally, the 
procedure “ScanDown” is similar to “ScanUP” but 
examines the entries in the other direction by incrementing 
the suffix index si. 

/* Assumes SA, LCP and l global variables */ 
procedure PrintSubQueryAlignments(i, si, ml){ 
   /* print the longest one */ 
   PRINT(SA[si], i, ml) 
   /* Scan up */ 
   v = si 
   m = ml 
   while v > 0 and m  l do { 
   /* the lcp could be longer than the  
      match length, hence the minimum */ 
      m = MIN(m, LCP[v]) 
      v = v - 1 
      PRINT(SA[v], i, m) 
   } 
   /* Scan down */ 
   v = si + 1 
   m = MIN(ml, LCP[v]) 
   while v < reflen and m  l do { 
      PRINT(SA[si], i, ml) 
      v = v + 1 
      m = MIN(m, LCP[si]) 
   } 
} 
 

Figure 7: Pseudo-code of the core post-processing procedure. 
This procedure is invoked for each subquery in each query 
to decompress the result of the matching stage. 



processing. These gains can be significant as these two stages 
consume a large share of MUMmerGPU processing time (between 
50% and 93% depending on the workload as seen in Figure 1).  
The evaluation using real workloads presented in §IV supports 
these conclusions. 

1) The Matching Stage 
Suffix trees and suffix arrays provide different trade-offs in search 
and space complexity which can be summarized as follows: on the 
one hand, suffix trees support O(m) search complexity, while 
suffix arrays support O(m + log n) to align a string of length m to 
a reference string of length n; on the other hand, although their 
asymptotic space complexity is similar, in practice suffix arrays 
are 3-5x more space efficient than suffix trees. 

As mentioned before, tackling the constraints imposed by limited 
memory requires dividing the large query set into smaller subsets, 
and the long reference sequence into shorter segments.  

To compare the time complexity of the matching stage for suffix 
trees and suffix arrays we use the following notations: let k be the 
number of query subsets and cd be the number of segments the 
reference is divided into when using data structure d. Also, let td 
be the time complexity of matching a single query on the GPU. 
Finally, let  be the ratio between the number of queries in a 
query subset and the number of SIMD processors in the GPU. 
Note that, by assuming that  does not depend on the data 
structure used, we implicitly assume that the size of a query subset 
is the same for both the array- and tree- based solutions, and that 
the space savings achieved in the suffix array-based solution will 
be used to increase the segment size (i.e., reduce the number of 
segments cd). 

Since processing all queries requires matching all query subsets to 
all reference segments, the time complexity of matching all 
queries using data structure d can be expressed as:  

αddd tkcT =  

Suffix tree-based tool. As discussed in §II.B.1), suffix links 
enable O(m) search time for all subqueries (suffixes) of a single 
query. As a result, the time complexity to search a query on the 
GPU using suffix trees can be expressed as: )(mOttree = . Thus, 

the time to process the query on all segments using suffix trees 
can be expressed as: 

)(mOkcT treetree α=  

Suffix array-based tool. In the case of suffix arrays, 

)/))/log((( arrayarrayarray rcnmOt += , where rarray is the 

efficiency of calculating the subqueries of a query. Note that rarray 
is less than or equal to one: the value is close to one for workloads 
with high similarity with the reference, and lower values for 
workloads with lower similarity. Therefore, the overall time 
complexity when using suffix arrays:  

)/))/log((( arrayarrayarrayarray rcnmOkcT += α  

Speedup. The speedup for the matching stage is: 
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Since the search procedures for both suffix array and suffix tree 
exhibit similar behavior: excessive memory access and byte-to-
byte comparisons, we assume that the constants in the asymptotic 

bound of the search complexity for the suffix array and the suffix 
tree are close, hence the speedup ratio becomes:  
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We analyze the three terms that influence the speedup in the 
formula above. First, from a practical view point, the query length 
m ranges from 35 to 700 depending on the sequencing technology 
used; while a reference segment length is up to hundreds of 
millions of nucleotides (leading to sizes in the order of gigabytes 
limited by the available memory on the GPU), hence the term 

)/log( arraycn  ranges from 20 to up to 30. As a result, the ratio 

)/log( arraycnm

m

+

 is practically between ½, for short queries 

(small values of m), and one, for long queries. Second, suffix 
arrays are more space efficient than suffix trees, with a space ratio 
ctree/carray  greater than one, typically three. Finally, as mentioned 
before, the value rarray is less than one, and depends on the 
workload characteristics. 

Summary. The main factors that affect the speedup ratio are: (i) 
the space ratio, which is typically three (ii) the query to segment 
length ratio, which is typically between ½ and 1, and (iii) the 
efficiency of calculating maximal matches in suffix arrays, which 
depends on the workload. In conclusion, a value of rarray larger 
than 50% makes the running time of the matching phase of a 
suffix array-based tool comparable with that of a suffix tree-based 
one, which we anticipate to be the case in realistic workloads as 
the query-set is aligned to a related reference sequence. 

2) The Post-processing Stage 
The post-processing stage decompresses the result of the matching 
stage, and writes the final results to the output file.  

Suffix tree-based tool. In the MUMmerGPU case, the matching 
stage produces a single match for each subquery. Decompressing 
this into the final result is done via a depth-first traversal for each 
subquery as discussed in §III.B. This is an expensive pointer 
chasing procedure, especially when considering typical workloads 
with millions of queries. 

To accelerate this stage, MUMmerGPU performs the 
decompression on the GPU using a second kernel. Therefore, the 
post-processing stage is executed as a three-stage GPU offloading 
process itself: (i) copy-in the information required to facilitate 
post-processing, (ii) launch the post-processing kernel which 
determines the matches for each subquery in parallel and (iii) 
copy-out the final results from the GPU. Note that, due to the 
same reasons related to GPU memory limitations and the massive 
output size, offloading the post-processing stage is also done in 
rounds on the GPU. Finally, once transferred to main memory 
from the GPU, the results are written to the output file. 

Two issues related to the above described GPU offloading process 
are worth mentioning. First, as mentioned before, it is essential to 
know the result size of a GPU kernel launch. Hence, in this case, 
the algorithm needs to know the number of matches for each 
subquery. MUMmerGPU addresses this is by storing additional 
information in the suffix tree: each node in the tree stores the 
number of leaves of the subtree rooted at that node. The post-
processing stage is then performed in two phases: the first phase is 
processed on the CPU wherein, for each subquery, the algorithm 
traverses back to the node at which the match length equals the 



minimum-match length (labeled node P in Figure 5). The number 
of leaves stored in node P is in fact the number of matches for that 
subquery, and is used to allocate the required result space on the 
GPU. The second phase is performed on the GPU where the 
algorithm determines the matches through a depth-first traversal 
for each subqeury. 

Second, MUMmerGPU designers adopted a stackless depth-first 
traversal algorithm as, on the GPU, a stackless tree traversal has 
been shown to be significantly more efficient than an approach 
that maintains a stack [26]. However, this improvement comes at 
the cost of, again, storing additional information in the tree: each 
node in the tree has to store a pointer to its parent node to 
facilitate this approach. 

MUMmerGPU implementers report that offloading the post-
processing stage to the GPU enabled a 4x speedup of this stage 
compared to performing it on the CPU [9]. However, as 
demonstrated in Figure 1, this stage is still time consuming: it 
occupies more than 20% of the total processing time. Note that 
this percentage represents only the post-processing GPU kernel 
time (i.e., copy-in and copy-out are considered as part of the data 
transfer overhead discussed in the next section) and writing the 
final result to the output file. 

Suffix array-based tool. MUMmerGPU++ design places the 
entire post-processing stage on the CPU. As described in §III.C, 
the matching stage produces a suffix array entry index for each 
matching subquery. The LCP array is then used to determine all 
other alignments by directly scanning (practically just writing the 
results to the output file) the entries above and below the reported 
index with a minimum longest common prefix of l. 

Summary. On the one hand, a suffix tree-based alignment tool 
requires costly additional traversal steps in the post-processing 
stage. MUMmerGPU offloads this stage to the GPU as a second 
processing round which, by itself, requires a post-processing 
phase that writes the final results to the output file. On the other 
hand, a suffix array based tool requires only a simple sequential 
scan to post-process the results. Hence, we expect the later 
approach to enable significant time savings for the post-
processing stage. 

3) The Data Transfer Stage 
The GPU is connected to the host via an I/O bus. For a data-
intensive application, data transfers represent a significant 
overhead. As Figure 1 shows, in the case of MUMmerGPU, this 
stage can take more than 20% of the total execution time.  

The main advantage of suffix arrays over suffix trees is space 
efficiency. A suffix array typically enables three times better space 
efficiency compared to its suffix tree counterpart. As discussed 
previously, this space saving enables a suffix array-based 
alignment tool to divide the long reference sequence into a smaller 
number of segments, thus reducing the number of GPU execution 
rounds and the data transfer overhead associated with moving the 
query set to the GPU. 

Additionally, we note that offloading the post-processing stage to 
the GPU in the suffix tree-based approach entails extra data 
transfers, which we anticipate to be relatively significant 
especially when the number of positive matches is large. 

IV. EVALUATION 

This section presents MUMmerGPU++ performance evaluation: it 
discusses the experimental setup (§IV.A), presents an evaluation 

of the speedup delivered by MUMmerGPU++ compared to the 
most recent version of MUMmerGPU (§IV.B), and investigates 
the factors that influence the observed performance and the effect 
of each processing stage on the total execution time (§IV.C). 

A. Experimental Setup 

The machine used to conduct the experiments has the following 
characteristics: Intel Core 2 Quad CPU (Q6700) clocked at 2.66 
GHz per core, 8GB of host memory, an NVIDIA GeForce 
9800GX2 GPU: a dual-GPU card with 128 cores clocked at 
1500MHz for each GPU, 1GB of memory. The card is connected 
to the host via a PCI Express 2.0 x16 bus. (Note that we use only 
one of the two GPUs on the card). Both MUMmerGPU and 
MUMmerGPU++ are implemented using CUDA. 

The evaluation was done under the real sequencing workloads 
introduced in Table 1. Unless otherwise mentioned, config2 (see 
Table 1) is used as the default configuration for the minimum-
match length in the experiments. 

It is important to note that our implementation focuses on 
achieving a good match between the core data structure used and 
the GPU characteristics. To this end, our implementation is a 
‘common sense’ one that does not aggressively optimize for 
caching, optimal use of shared memories, or coalesced data access 
– to enumerate only a few of the optimizations often used. 

As a baseline for comparison we use an optimized, recent version 
(v2.0) of the suffix tree-based MUMmerGPU. This version allows 
for seven data layout alternatives which determine: first, on which 
GPU memory type (i.e., global, texture, and constant memory) 
different parts of the input data (i.e., the reference string, suffix 
tree, and queries) are placed; and, second, how the suffix tree is 
stored in memory to enable maximum data access locality to 
improve cache hit rate when placed in texture memory. For 
MUMmerGPU (v2.0), these choices resulted in a total of 128 
different configuration combinations which affect the performance 
of the matching and post-processing stages. In their extensive 
analysis, Trapnell et al. [9] illustrated that the performance of 
different configuration combinations is sensitive to the workload. 
However, they concluded that a single configuration provides 
reasonably good performance across all workloads. This 
configuration uses “a reordered one-dimensional texture for the 
suffix tree, global linear memory for the queries and reference”, 
and we use it to configure MUMmerGPU in all our experiments. 
For a detailed discussion on these configurations, we refer the 
reader to [9]. 

As discussed before, due to the limited GPU onboard memory 
space, the workload is divided into smaller chunks by dividing the 
reference string into segments, and the query set into subsets 
processed in rounds. This raises the question on how to divide the 
onboard memory space between the queries and the reference in 
each round. Both MUMmerGPU and MUMmerGPU++ follow the 
same policy: maximize the segment size, while leaving space to 
accommodate enough queries to feed all cores on the device and 
extract maximum parallelism. Maximizing the segment size 
results in reducing the number of segments; this proportionally 
reduces the matching time as each query is processed fewer times.  

For all experiments we exclude the time spent reading queries 
from the disk as this overhead is the same regardless of the used 
data structure and lies outside our optimization space. We note 
that the disk I/O overhead represents 10% to 15% of the total 
MUMmerGPU execution time for the workloads we used. 



Each experiment was run several times, and the execution time 
was stable in all experiments; hence, we plot only averages (the 
variations in performance were too small to be visible on the 
graphs as 95% confidence intervals). Finally, we validated the 
correctness of our implementation by comparing its output with 
the one produced by MUMmerGPU over a large number of input 
sets. 

B. Overall Speedup 

Figure 8 presents the speedup achieved by MUMmerGPU++ 
compared to MUMmerGPU for all configurations and workloads 
presented in Table 1.  

While the speedup varies with the workload, MUMmerGPU++ 
performs better for all workloads: it delivers between 1.25x and 
3.83x speedup compared to MUMmerGPU. This significant 
performance gain is achieved by a better match between the data 
structure used and the GPU’s characteristics. MUMmerGPU++ 
achieves between 1.52x to 3.43x speedup for what we estimate is 
the most frequently used configuration (config2). The speedup is 
lower (between 1.25x and 2.21x) for configurations with a longer 
minimum-match length (config3). This is because increasing the 
minimum-match length decreases the probability of finding 
matches, hence, as discussed previously, decreases the efficiency 
of subquery processing when using suffix arrays (represented by 
rarray in §III.D.1), and hurts the performance of the matching stage 
in MUMmerGPU++. Finally, as expected for a short minimum-
match length (config1), MUMmerGPU++ offers the best speedup: 
from 1.7x up to 3.83x.  

C. Dissecting the Overheads 

To validate our analysis in §III.D, better understand the source of 
the performance gains observed, and explore the opportunity for 
further performance tuning, this section explores the absolute and 
relative time spent in each processing stage.  

Figure 9 compares the absolute time spent in each of the 
processing stages by both MUMmerGPU++ and MUMmerGPU 
for the largest workload: HS1. We note the following: 

First, as discussed in §III.D.1), although the suffix tree-based tool, 
MUMmerGPU, has better asymptotic time complexity per query; 
MUMmerGPU++, the suffix array-based tool, achieves almost 
equal overall performance because it is more memory efficient 
and, as a result, requires a fewer matching rounds on the GPU 
when all queries are considered. 

Second, although the post-processing stage in MUMmerGPU is 
performed on the GPU, the time spent in this stage is reduced by 
more than a factor of three by MUMmerGPU++, where it is 

performed on a single CPU core. This translates to 17% overall 
speedup improvement, hence supporting our argument in 
§III.D.2). 

Third, the experiment validates our insight in §III.D.3) that a 
suffix array-based tool, like MUMmerGPU++, significantly 
reduces the data transfer effort from/to the GPU: the total time 
spent transferring data is reduced by a factor of seven or more, 
which translates to more than 31% overall speedup improvement.  

Finally, for both tools, the time spent in the construction stage is 
almost negligible compared to other stages.  

Figure 10 demonstrates the proportion of total processing time 
that corresponds to each processing stage for MUMmerGPU++ 
for all workloads. Compared to Figure 1, which presents similar 
data for MUMmerGPU, MUMmerGPU++ significantly changes 
the distribution of processing effort across stages. It significantly 
reduces the share of post-processing and data-transfer stages, and 
increases the share of the matching stage. 

This is important from two perspectives. First, we expect that the 
tools will be executed on multi-GPU systems. From this 
perspective, the intense data-transfers employed by 
MUMmerGPU make the PCI bus a bottleneck and limit the 
feasibility of using multiple GPUs on the same host. 
MUMmerGPU++ reduces the I/O overhead (by a factor of 6x-12x 
in our experiments) and thus eliminates the shared communication 
(PCI bus) as a potential scalability bottleneck.  Second, from a 
performance optimization perspective, the fact that the compute 
(matching) stage now takes 75%-80% of the time for the large 
workloads, including the human genome, allow focusing the 
performance optimizations on this stage only. 
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Figure 10: Percentage of total execution time spent in each 
processing stage for MUMmerGPU++. The numbers on the 
bars show the absolute time spent in each stage. 

MUMmerGPU++ MUMmerGPU
0

2

4

6

8
Matching
Post.Processing
Data.Structure.Construction
Data.Transfer.from.to.GPU

Tool

H
ou

rs

 
Figure 9: Absolute time spent in each processing stage for 
workload HS1 for both MUMmerGPU++ and MUMmerGPU 
(for the default configuration config2). 
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Figure 8: MUMmerGPU++ speedup compared to 
MUMmerGPU. 



V. DISCUSSION 

This section discusses several interrelated questions. 

1) Are the speedups offered by MUMmerGPU++ significant? 
DNA sequencing technologies have taken major steps towards 
commoditization [27]. Moreover, sequencing rates have 
drastically increased: almost 100 billion nucleotides per day per 
machine, which is 50,000 times faster than ten years ago [27]. In 
fact, this considerable improvement encouraged large scale 
sequencing projects. For example, the 1,000 Genomes project 
aims to sequence 1,000 human genomes, and will produce more 
than six trillion nucleotides of data [28]. The widespread 
availability of sequencing machines, and the associated dramatic 
increase in daily sequencing rates, must be supported by sequence 
analysis tools, such as read alignment tools. Indeed, McPherson 
[10] argues that there is an increasingly growing gap between 
sequence generation and processing, and that the bottleneck in the 
ability to generate new knowledge has, in fact, moved from 
sequencing to the data analysis pipeline, especially for individual 
investigators and small-scale research laboratories. Accordingly, 
any performance improvement to these tools translates to saving 
thousands of much-needed computational hours. 

Hence, the speedup offered by MUMmerGPU++ has significant 
practical implications, especially given the fact that these 
improvements were achieved only by a better software design, and 
on commodity hardware. 

2) Is it fair to use MUMmerGPU as a baseline to evaluate the 
advantages of the suffix array-based approach? Otherwise said, 
is it possible that the speedup offered by MUMmerGPU++ is 
simply due to a better optimized GPU implementation and not to 
the choice of a data-structure that inherently offers a better fit to 
for the computing platform at hand? 
We have three arguments to support our choice of MUMmerGPU 
as the reference for a suffix tree-based tool. First, our analysis of 
the opportunities a suffix array-based implementation offers 
(§III.D.1) is solely based on the characteristics of the core data 
structure, and is agnostic to the detailed GPU implementation of 
the tool. Second, MUMmerGPU is a well optimized GPU-based 
tool. The tool’s authors exhaustively examined 128 data layout 
configurations to select the configuration which delivers the best 
overall performance. The results were presented in two previous 
publications [8, 9]. Finally, as mentioned in (§IV.A) we have not 
specifically optimized the MUMmerGPU++: apart from placing 
the reference string in texture memory, the kernel places all input 
and output data in global memory, it does not employ the shared 
memory available on each multiprocessor and does not try to 
improve memory throughput by coalescing memory accesses.  

3) Can the data transfer overheads be hidden by overlapping 
the transfers with the GPU kernel execution? 
No, especially for large-scale workloads. The reason is that the 
computation on the GPU requires a set of input/output buffers. 
Facilitating communication-computation overlap requires double 
buffering for the input and output (such that the GPU computes 
on one set of buffers while the transfers are concurrently 
performed to/from the others). This entails allocating two sets of 
input/output buffers on a scarce resource: GPU’s onboard 
memory.  

To further investigate this opportunity, we ran an experiment (for 
both MUMmerGPU and MUMmerGPU++) in which the tool 
assumed half of the memory available on the device to simulate a 

double buffering condition. The results demonstrated that the 
increase in the time spent in the matching stage was larger than 
the total time spent transferring data from/to the GPU (and could 
potentially be hidden by the overlapping technique mentioned). 
Hence, for this application, overlapping would actually hurt the 
performance. Thus we believe that the opportunity to overlap data 
transfers with kernel execution has no practical value in this case.  

4) How does MUMmerGPU++ perform in terms of energy 
consumption compared to its counterparts? 
We measured the total energy consumption of the test machine 
when running the three tools. Note that while the CPU-based 
version, MUMmer, is widely used and has undergone numerous 
optimizations [5-7], we have simply used an out-of-the box 
version of this single-threaded code. 

The energy is measured at the wall socket for the execution of an 
entire workload, hence taking into account the energy usage of the 
whole compute node (i.e., including the host CPU, I/O, etc.). Two 
observations are worth noting: first, for all three tools, the energy 
consumed was linearly proportional to the computation time of 
the tool; therefore, we show the results (Table 3) for one 
workload, HS2, as all other workloads exhibited similar behavior. 
Second, both GPU-based tools, MUMmerGPU and 
MUMmerGPU++, consume energy at the same rate (200 Watt), 
while MUMmer, the CPU-based tool consumes energy at a lower 
rate (178 Watt).  

Although the CPU-based tool uses energy at a lower rate, the 
significant runtime reduction achieved by the GPU-based tools 
renders their total consumed energy much lower than the CPU-
based one. For the same reason, MUMmerGPU++ consumes 40% 
less energy than MUMmerGPU. 

Finally, it is important to note that the ratio of the energy 
consumption rate between the hybrid architecture that includes 
the GPU and the traditional architecture that only includes a CPU 
reveals that, for our setup, the application running on the hybrid 
architecture has to offer only 13% better performance to be more 
energy efficient. 

 

5) How do the GPU-based solutions compare when using a 
high-end GPU model? 
We use a recent high-end GPU model: Tesla C1060. Unlike the 
GeForce series, which targets (gaming) workstations, Tesla targets 
high-performance computing applications. Compared to GeForce 
9800 GX2, Tesla C1060 is more power efficient, has a 4x larger 
onboard memory (4GB) and 240 cores @ 1.5GHz. Our goal is to 
evaluate the performance and the portability of MUMmerGPU++ 
on this new device. 

Figure 11 (left) shows that MUMmerGPU++ is at least two times 
faster than MUMmerGPU. Compared to the speedups achieved 
over MUMmerGPU on the commodity card (GeForce 9800GX2), 
MUMmerGPU++ offers significantly better speedups for the 
larger workloads, HS1 and HS2, while for the relatively small-

Table 3: Total energy consumption of the test machine in kWh 
(Killowatt-Hour) for workload HS2. The running time and the 
energy consumption rate in watts are also shown. 

Tool kWh 
Running time  

(minutes) 
Watt 

MUMmerGPU++ 0.07 21 200 
MUMmerGPU 0.12 36 200 

MUMmer 0.76 256 178 



scale workloads, MONO and SUIS, the speedup achieved is 
almost the same.  

A closer look at the MUMmerGPU code explains this result: to 
limit the space consumed by the suffix tree, MUMmerGPU 
designers assumed that the maximum tree size to be 16M nodes, 
which puts a limit on the maximum reference segment length. 
This assumption was made to reduce the length of the indices 
used to access the 2D texture memory, where the tree is placed, to 
12-bits in each dimension. This enabled reducing the total size of 
the suffix tree significantly, while, at the same time, still using the 
entire memory space low-end cards, such as the GeForce, offer. 
Our tool, MUMmerGPU++, does not make such assumptions and 
uses full 32-bit indices for the suffix array; thus it does not 
implicitly limit its size. 

In the case of MONO and SUIS, the reference strings are short, 
and do not require segmentation, thus the size limitations 
mentioned above do not play any role, and the speedup achieved 
by MUMmerGPU++ over MUMmerGPU is the same as in the 
previous experiments on GeForce (see Figure 8 for comparison). 
For the HS1 and HS2 workloads which have long reference 
strings, MUMmerGPU++ is able to use longer reference segments 
than MUMmerGPU, thus to perform fewer computation rounds 
and consequently to obtain additional speedup. 

Finally, the speedups obtained by MUMmerGPU++ when running 
on the high-end Tesla card compared to running on the 
commodity GeForce card (Figure 11, right), support the choice of 
our policy (discussed in §IV.A) to divide the GPU memory 
between the reference and the queries, which revolves around 
maximizing the segment length. As argued above, the MONO and 
SUIS have short sequences, hence the extra space offered by the 
high-end card is used to increase the size of the query subset; 
however, this does not translate to significant speedups as the 
GPU memory bandwidth is already saturated. In contrast, on the 
large-scale workloads, HS1 and HS2, the performance improves 
significantly due to the opportunity to increase the segment 
length. 

VI. CONCLUSIONS 

GPUs have drastically different performance characteristics 
compared to traditional multicore architectures: up to two orders 
of magnitude higher peak memory access bandwidth, one order of 
magnitude higher peak computational power per Byte of memory, 
yet one order of magnitude lower internal memory space.  

We argue that these differences make reconsidering the choice of 
the data structures used a necessary step when porting 
applications to hybrid, GPU-supported platforms.  

Our experience with MUMmerGPU++, a fully compatible GPU 
port of the widely used sequence alignment tool MUMmer, 
supports this conclusion. Our evaluation, performed on a two 
commodity GPU cards using realistic workloads, which include 
large-scale human genome sequencing data, demonstrates that 
MUMmerGPU++ enables up to 4x speedup compared to 
MUMmerGPU, a highly optimized GPU port that uses, however, 
the same data structure as the original CPU-based 
implementation. 

We synthesize our experience with porting MUMmer as three 
guidelines to design efficient GPU-based applications. First, a 
solution that supports minimum computational overhead does not 
necessarily enable maximum overall performance: a better 
optimization point is one that maintains a balance between 
communication and computation overheads. Second, GPUs’ high 
computational power per Byte of memory compared to traditional 
multiprocessor architectures, makes trading-off additional per 
thread processing time for a more compact in-memory data 
representation an attractive technique to increase overall 
performance (by enabling higher parallelism levels and reducing 
data transfer overheads). Finally, ensuring that the chosen GPU-
offloaded part of the application entails low pre- and post-
processing overheads is essential to maximize the overall 
performance gains. 
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