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ABSTRACT

As the computational power of GPUs continues to scale with
Moore’s Law, an increasing number of applications are be-
coming limited by memory bandwidth. We propose an ap-
proach for programming GPUs with tightly-coupled special-
ized DMA warps for performing memory transfers between
on-chip and off-chip memories. Separate DMA warps im-
prove memory bandwidth utilization by better exploiting
available memory-level parallelism and by leveraging effi-
cient inter-warp producer-consumer synchronization mecha-
nisms. DMA warps also improve programmer productivity
by decoupling the need for thread array shapes to match
data layout. To illustrate the benefits of this approach,
we present an extensible API, CudaDMA, that encapsu-
lates synchronization and common sequential and strided
data transfer patterns. Using CudaDMA, we demonstrate
speedup of up to 1.37x on representative synthetic micro-
benchmarks, and 1.15x-3.2x on several kernels from scientific
applications written in CUDA running on NVIDIA Fermi
GPUs.

1. INTRODUCTION

The merits of using GPUs for scientific and HPC applica-
tions are clear. GPUs are being incorporated into large-scale
supercomputing installations throughout the world. On the
June 2011 Top500 list, GPUs were included in 3 of the top
ten installations [8], and on the Green500 list from the same
month, GPUs were included in 5 of the top ten machines [6].
Accelerators designed to exploit fine-grain data parallelism
are on track to be the next big advance in supercomputing.

In order for programmers to achieve peak performance
on installations with GPUs, their algorithms and code will
have to exploit the performance potential of these accelera-
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tors. Accomplishing this task mandates new software tools
to increase programmer productivity and boost achieved
performance. Tools for exploiting common algorithmic pat-
terns such as sorting [1] or canonical HPC algorithms [3, 4]
on GPUs have already been introduced. However, for pro-
grammers developing new algorithms, such libraries are only
small components of much larger applications.

For many programmers, the most difficult part of cre-
ating high-performance applications that leverage GPUs is
managing the balance between computational intensity and
memory bandwidth. Effectively exploiting both GPU com-
putational resources and memory bandwidth is critical to
achieving peak per-node performance. This task is compli-
cated because the programmer must use the same parallel
hierarchy of threads to carry out both the computation and
the transfer of data between memories. This model works
well for cases where the size and dimensionality of the data
transferred is geometrically similar to the size and dimen-
sionality of the thread hierarchy. However, for many appli-
cations there are sufficient differences to create difficulties
for the programmer.

In previous accelerators, such as the Cell Broadband En-
gine [14] and the Imagine Stream Processor [20], the issue
of moving data between on-chip and off-chip memories was
solved by the use of asynchronous hardware DMA engines.
These systems delegated the responsibility of data move-
ment to the hardware, enabling the programmer to focus on
optimizing the computation being performed. The driving
force behind the CudaDMA project is to provide a similar
feature for GPUs at a software level.

In this paper we present CudaDMA, an extensible API
for efficiently managing data transfers between the on-chip
and off-chip memories of GPUs. CudaDMA enables the pro-
grammer to decouple the size and dimensionality of the data
from the size and dimensionality of the computation, im-
proving both programmability and performance.

Decoupling is achieved by specializing warps into compute
warps and DMA warps. Compute warps are solely responsi-
ble for performing computation while DMA warps are solely
utilized for moving data between on-chip and off-chip mem-
ories. The CudaDMA API provides the abstractions and
synchronization primitives necessary for warp specialization.

We present two instances of CudaDMA that support DMA
warps for performing common sequential and strided data
transfer patterns. These instances encapsulate a variety
of expert-level bandwidth optimization techniques, allowing
them to be deployed with minimal programmer effort. We
also exhibit how custom instances of the CudaDMA API



can be created for application-specific transfer patterns or
leveraging advanced programming techniques.

This paper is organized into the following sections. In
Section 2 we cover the basics of the CUDA programming
model and the challenges it can present. Section 3 intro-
duces the CudaDMA API. We cover the benefits and use
cases of CudaDMA in Section 4. Sections 5 and 6 present
the performance of CudaDMA on microbenchmarks and real
applications. Related work is described in section 7. Sec-
tions 8 and 9 discuss future work and offer conclusions.

2. MOTIVATION
2.1 GPU Architecture and CUDA

CUDA is a general purpose programming language for
programming GPUs. Each CUDA-enabled GPU consists of
a collection of streaming multiprocessors (SMs). A SM pos-
sesses an on-chip register file, as well as an on-chip scratch-
pad memory that can be shared between threads executing
on the same SM. DRAM memory is off-chip, but is visible
to all SMs.

The CUDA programming model targets this GPU archi-
tecture using a hierarchy of threads. Threads are grouped
together into threadblocks, also known as cooperative thread
arrays (CTAs). CTAs are correspondingly grouped into a
subsequent array structure referred to as a grid.

When a grid is executed on the GPU, the hardware sched-
ules CTAs onto SMs. All the threads within a CTA execute
on the same SM in groups of 32 threads. This collection of
32 threads is referred to as a warp. All the threads within
a warp share the same instruction stream. Control diver-
gence within a warp can lead to performance degradation,
but inter-warp divergence will not harm performance. The
CUDA programming model encourages the view that all
warps will execute the same instruction stream, but there
are advantages to breaking through this abstraction.

From the perspective of a thread executing on an SM there
are three types of memory. First, each thread is allocated a
set of private, on-chip registers in the register file. Second, a
thread has access to the on-chip scratchpad memory, called
shared memory because it is visible to all the threads in
the same CTA. Finally, all of the threads on the GPU have
access to global memory which consists of off-chip DRAM.
On-chip memories are two orders of magnitude faster to ac-
cess than off-chip memory.

Due to the extreme difference in access latencies between
on-chip and off-chip memories, CUDA encourages programs
to be written in a way that first moves data into on-chip
memories. Computation is then performed through this on
chip memory. When the computation is completed, results
are written back to global memory. Figure 1 illustrates this
paradigm. To enable threads in a CTA to coordinate the
loading and storing of data, a light-weight barrier mecha-
nism is provided for synchronization.

2.2 GPU Programmability Challenges

The first challenge encountered by programmers when
they attempt to program GPUs using the paradigm in Fig-
ure 1 revolves around programmability. Programmers rou-
tinely choose the size and dimensionality of their CTAs based
on the computation being performed as opposed to the size
and dimensionality of the data being accessed.

The example paradigm is extremely easy to code and
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Figure 1: Common CUDA programming paradigm
illustrating the movement of data between on-chip
and off-chip memories.

maintain when both the size and dimensionality of a CTA
closely matches the properties of the data to be used in
shared memory. Each thread loads an element, operates on
that element, and then stores the result.

For applications where the size and dimensionality of the
CTA and the data are sufficiently different, it is unclear
which data elements a thread should be responsible for load-
ing and storing from global memory. An example of such an
application would be one that performs a multi-dimensional
stencil algorithm. The CTA size is based on the number
of output points, but the data that must be transferred to
perform the computation is based on the order of the stencil
which is unrelated to CTA shape. This mismatch between
CTA and data properties will result in many conditional
statements that clutter the code and make it more difficult
to discern the intention of the programmer when maintain-
ing the code in the future.

2.3 GPU Performance Challenges

In addition to programmability, the other challenge to pro-
gramming using the paradigm in Figure 1 is performance.
A common approach to classifying application performance
has been to examine the compute-to-memory ratio of a com-
putation [23]. Algorithms with low compute-to-memory ra-
tios (e.g. BLAS 1 kernels, sparse matrix-vector multiply)
typically have little data reuse and can easily saturate the
memory system. Algorithms with high compute-to-memory
ratios (e.g. BLAS 3 kernels) often have significant spatial
and temporal data locality; their performance is dominated
by instructions per clock (IPC) limits encountered when con-
suming on-chip data. The performance of both these classes
of applications is dominated by the inherent limits of the
underlying computer architecture and cannot be improved
beyond these limits at the software level.

With this performance model in mind, we created a syn-
thetic micro-benchmark to illustrate how staging data through
shared memory affects application performance. The micro-
benchmark runs a generic load/store loop with variable com-
pute intensity over a large dataset by having each CTA pro-
cess a segment of the data. In order to model the perfor-
mance effects of staging through shared memory, every CTA
executes the first three steps of the programming paradigm
shown in Figure 1. CTAs copy 2 KB of data from DRAM
to shared memory, synchronize, and perform a computation
on the data in shared memory. We ran our benchmark on a
Tesla C2050 GPU (ECC off) with 14 SMs and a 1.15 GHz
clock. Our kernel launches 2 CTAs per SM (28 CTAs total).

Throughput on the micro-benchmark, plotted as DRAM
GB/s, is shown in Figure 2. We vary the number of multiply-



C2050 B/FLOP

GB/s

028 2% 24 2 2% 2# 7 vl 2%
B/FLOP

Figure 2: Shared memory staging micro-benchmark
performance, with naive transfer implementation.

adds in each loop iteration to perform a sweep from very
low compute-to-memory ratios (expressed as bytes/FLOP)
to very high. At low compute intensity (BLAS1), through-
put is memory-bandwidth limited, sustaining around 75%
of the 144 GB/s peak memory bandwidth, compared to a
practical limit of 85% of peak when accounting for overheads
such as DRAM refresh. At high compute intensity (BLAS3),
throughput is limited by instruction-issue bandwidth.

The interesting region is where the application compute
intensity approaches the B/FLOP ratio of the underlying
hardware. This region is where the most slowdown from
staging data through shared memory takes place. At the ra-
tio for our Tesla platform, 0.14 B/FLOP, the benchmark is
only sustaining around 50% of peak DRAM bandwidth. For
applications with “balanced” computational intensities sim-
ilar to that of the underlying machine, performance degra-
dation is caused by bottlenecks in both the memory system
as well as the computational resources. We now elaborate
on the potential bottlenecks in both areas in more detail.

2.3.1 Computational Bottlenecks

For an application that has adopted the CUDA program-
ming paradigm introduced in Figure 1, there are three com-
mon factors related to data transfers between off-chip and
on-chip memories that could limit instruction issue band-
width and prevent full utilization of all the GPU’s compu-
tational resources.

Many long-latency memory accesses: If enough long-
latency memory accesses fill up the memory system’s
buffers, then a warp’s instruction stream will stall due
to the in-order nature of SMs, preventing independent
computational instructions from being issued.

Coarse-grained synchronization: Using coarse grained
barriers implies that all threads within a CTA must
always wait for the slowest warp to finish executing
before execution on all warps can continue, even when
independent work could be executed.

Data Access Patterns: Accessing data different from the
CTA size and dimensionality will require conditional
branches which can lead to intra-warp divergence and
bank conflicts in accessing shared memory.

2.3.2  Memory System Bottlenecks

The other challenge for applications with balanced compute-
to-memory ratios is fully exploiting the available memory
system resources. The GPU memory system is designed to
support many parallel loads and stores in flight simultane-
ously. Issuing multiple memory accesses simultaneously and
allowing the memory system to handle them in parallel is
referred to as Memory Level Parallelism (MLP).

Achieving high MLP on a GPU can commonly be impeded
by two factors.

Instruction Issue: If a warp’s instruction stream stalls due
to computational resources being over-subscribed then
independent memory operations could be prevented
from issuing.

Data Access Patterns: Accessing data sufficiently differ-
ent from the CTA size and dimensionality can prevent
memory operations from coalescing, which would re-
sult in serialization. This effect severely decreases the
MLP achieved by a GPU.

The critical insight into these problems, and the motiva-
tion for CudaDMA, is that the bottlenecks in both areas are
coupled. The root cause of this entanglement is the require-
ment encouraged by the CUDA programming model that
threads of a CTA perform both memory accesses and com-
putation. By creating specialized warps that perform inde-
pendent compute and memory operations we can tease apart
the issues that affect memory performance from those that
affect compute performance. By decoupling the problems,
we remove the entanglement and enable the programmer to
address performance bottlenecks in balanced compute-to-
memory ratio applications in isolation.

3. CUDADMA API

The CudaDMA library provides the basis for moving data
between on-chip shared memory and off-chip global memory
of CUDA-enabled GPUs. The fundamental assumption un-
derlying the library’s API is that, for many algorithms, the
most efficient transfer implementation is to divide a thread
block into differentiated subsets of threads. As long as this
partitioning is performed at warp granularity, there is no
performance penalty for divergence. We call this differenti-
ation technique warp specialization. Warp specialization has
been employed previously for efficient parallel implementa-
tions of sorting algorithms on GPUs [17]. CudaDMA en-
capsulates this technique into a library to make it generally
available to a wider range of application workloads.

There are two classes of warps into which threads can
be assigned using CudaDMA. DMA warps are exclusively
in charge of transferring data between global and shared
memory. Compute warps perform the actual computation
by processing the data that has been transferred to on-chip
memory. The API is designed to aid programmers in spe-
cializing their warps by making it clear what code will be
executed by compute warps and what code by DMA warps.

The CudaDMA APIis object based. Users create a cudaDMA
object within a device kernel to manage the transfer of data
for a shared memory buffer. Multiple cudaDMA objects can be
created to manage multiple buffers. Every cudaDMA object
implements the CudaDMA API seen in Figure 3. The base
class of the CudaDMA API provides synchronization meth-
ods for coordinating between compute and DMA warps as



class cudaDMA {

__device__ cudaDMA (

const int dmalD,

const int num_dma_threads,

const int num_compute_threads,

const int dma_threadIdx_start );
__device__ void execute_dma(

void* src_ptr,

void* dst_ptr );
__device__ bool owns_this_thread();
__device__ void start_async_dma();
__device__ void wait_for_dma_start ();
__device__ void finish_async_dma();
__device__ void wait_for_dma_finish();

};
Figure 3: Interface for CudaDMA objects.

well as a call for transferring data between on-chip and off-
chip memories. Sub-classes of the CudaDMA API are cre-
ated for specific transfer patterns by overriding the transfer
method. To illustrate specifically how the CudaDMA API
works we now present a working example.

3.1 API Example: SGEMV

The most straightforward way of illustrating the use of the
CudaDMA API is to examine how it is employed in a piece
of application code. Figure 4 presents code implementing a
single-precision matrix-vector multiplication (SGEMYV) rou-
tine from the BLAS dense linear algebra library.

In our implementation, each CTA is responsible for com-
puting the inner product of a subset of rows in the matrix
and the vector. To do so, every thread must access every el-
ement of the vector, making it beneficial to load the vector
into shared memory. However, the vectors are often suffi-
ciently large that they must be loaded iteratively in small
blocks. In this example, we also load subsets of the matrix
into shared memory as well as the vector for performance
reasons that are explained in detail in Section 6.1.

The subsets of matrix data and vector data have differ-
ent layouts in memory. The 1-D vector data are all se-
quential, whereas the 2-D matrix data are strided across
memory. Handling these different access patterns with Cu-
daDMA simply requires employing two predefined instances
of cudaDMA objects. These objects are instantiated on lines
7-17 of the code in Figure 4 and are described in further
detail in Section 3.2.

The cudaDMA objects are declared at the beginning of the
kernel, outside of the iterative loop. Once the cudaDMA ob-
jects are instantiated, we differentiate the warps according
to the assignments given to the constructors. This differen-
tiation is implemented by the conditionals on lines 19, 35,
and 44 of Figure 4.

By convention, compute warps contain the threads with
the lowest thread IDs. These warps enter the main compu-
tation loop, lines 20-33, in which they calculate the inner
product of the matrix and vector data stored in the shared
memory buffers declared on lines 4 and 5.

The DMA warps determine which cudaDMA object they are
managed by using the API call owns_this_thread(). The
specialized DMA warps each have their own inner loop (lines
36-42 and 45-51), in which they repeatedly call their trans-
fer object’s execute_dma() method. Calling execute_dma()
causes the DMA warps to perform a single execution of
that transfer. As SGEMYV demonstrates, many transfers can
be iteratively launched based on a single cudaDMA instance,
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__global__ void

sgemv_cuda_dma (int n, int m, float alpha,
float *x, float *y) {

float buff [VEC_ELMTSI];

float mat [VEC_ELMTS][COMPUTE_THREADS];

float =*A,

__shared__
__shared_

cudaDMASequential <sizeof (float)*VEC_ELMTS/DMA_THREADS_SEQ>

dma_1d_0( 1, DMA_THREADS_SEQ, COMPUTE_THREADS,
COMPUTE_THREADS, sizeof (float)*VEC_ELMTS);

cudaDMAStrided<sizeof (float)*VEC_ELMTS*
COMPUTE_THREADS/DMA_THREADS_STRD >
dma_1d_1( 2, DMA_THREADS_STRD, COMPUTE_THREADS,
COMPUTE_THREADS+DMA_THREADS_SEQ,
sizeof (float)*COMPUTE_THREADS,
VEC_ELMTS, sizeof (float)x*n,
sizeof (float)*COMPUTE_THREADS);

if (threadIdx.x < COMPUTE_THREADS) {
dma_1d_0.start_async_dma();
dma_1ld_1.start_async_dma();
float res = 0.f;
for(int i=0; i<n; i += VEC_ELMTS) {
dma_1d_O0.wait_for_dma_finish();
dma_ld_1.wait_for_dma_finish();
for (int j=0; j < VEC_ELMTS; j++) {
res+=mat [j] [threadIdx.x]*buff[j];
¥
dma_1d_0.start_async_dma();
dma_ld_1.start_async_dma();
}
ind = blockIdx.x*COMPUTE_THREADS+threadIdx.x;
if (ind < n) y[ind] = alpha * res;
}
else if (dma_ld_O.owns_this_thread()) {
dma_1d_O0.wait_for_dma_start();
for (int idx=0; idx<n; idx += VEC_ELMTS) {
dma_1d_0.execute_dma (x,buff);
dma_1d_0.finish_async_dma();
dma_1d_0.wait_for_dma_start ();
x += VEC_ELMTS;
¥
}
else if (dma_1d_1.owns_this_thread()) {
dma_ld_1.wait_for_dma_start();
for (int idx=0; idx<n; idx += VEC_ELMTS) {
dma_1d_1.execute_dma (
A+idx*m+blockIdx.x*COMPUTE_THREADS, mat);
dma_1d_1.finish_async_dma();
dma_1ld_1.wait_for_dma_start();
¥
¥
}

Figure 4: A CudaDMA-based implementation of the
SGEMY routine from BLAS.

where the pointers passed to execute_dma() are changed
with every iteration (lines 41, 48).

There are two synchronization points defined for every
cudaDMA object. One synchronization point corresponds to
the data having been consumed and the buffer standing
empty awaiting the next transfer. The compute threads in-

dicate this status using a non-blocking call to start_async_dma()

(lines 20,21,29,30). The DMA threads wait to begin this
transfer using the blocking call wait_for_dma_start () (lines
36,40,45,50). The other synchronization point corresponds
to the transfer being complete and the buffer being ready
for processing. DMA warps indicate that a transfer is com-
plete using a non-blocking call to finish_async_dma() (lines
39,49). The compute warps wait for a transfer to com-
plete using a blocking call to wait_for_dma_finish() (lines
24,25). The DMA-side calls are usually abstracted behind
execute_dma() but are shown here for clarity. The imple-
mentation of these four calls is described in Section 4.2. The
producer/consumer nature of our synchronization mecha-



nisms allow the programmer to employ a variety of tech-
niques to overlap communication and computation described
in more detail in Section 4.3.

3.2 CudaDMA Instances

In section 3.1 we mentioned two specific instances of the

CudaDMA interface: cudaDMASequential and cudaDMAStrided.
These two classes are optimized instances of CudaDMA classes.

The classes are characterized by their memory access pat-
tern and a few specific parameters that serve to define that
pattern. In this section we describe the use of these classes
from a programmer’s perspective. The techniques used to
implement these classes are covered in Section 4.1.

In the example in Figure 4 the sequential access pattern
required by the vector data and the strided access pattern
required by the matrix data are performed by the cudaDMA
subclasses cudaDMASequential and cudaDMAStrided respec-
tively. Figure 5 presents the declaration of the subclass con-
structors that are used in our SGEMV code.

Both subclasses are defined by the following parameters,
which are used in all classes derived from cudaDMA:

e int dmaID: A unique identifier for synchronization

e int num_dma_threads: The number of DMA threads
that will be used to carry out this transfer.

e int num_compute_threads: The number of compute
threads that will synchronize with this transfer.

e int dma_threadIdx_start: The starting location of
this transfer’s assigned threads within the thread block.

In addition to the default parameters, each subclass intro-
duces additional parameters that define specific aspects of
their behavior. cudaDMASequential transfers simply move a
contiguous block of memory; the only parameter they need
is the size of the transfer in bytes (line 10). cudaDMAStrided
transfers fetch multiple chunks of data, each offset from the
other by a user-defined stride; they have additional param-
eters to define element size, element count, and source and
destination strides (lines 16-17).

The template parameter, MAX_BYTES_PER_THREAD, is used
by both classes to calculate constant offset values used within
the transfer functionality. This value is the maximum num-
ber of bytes that each thread might have to transfer at
runtime; smaller transfer sizes will work correctly as well.
Requiring a maximum value to be defined at compile time
increases code efficiency but is not as restrictive as requiring
the actual transfer size to be defined at compile time.

The critical insight concerning both of these CudaDMA
instances is that they do not require the programmer to
specify how the transfer should actually be performed. By
allowing the programmer to state the nature and parameters
of the access pattern explicitly and separately from the im-
plementation of that transfer, our library abstracts away the
logic involved in determining how best to perform the trans-
fer. Optimized versions of CudaDMA instances for common
transfer patterns can be written by expert programmers and
then re-used by application programmers, providing good
performance and high productivity.

In some cases, programmers would prefer to define their
own data transfer pattern while still leveraging the power of
the CudaDMA API. To make the CudaDMA library more
easily extensible, we provide a cudaDMACustom class which
contains implementations of the synchronization functions
but leaves the behavior of the transfer unspecified. The

template <int MAX_BYTES_PER_THREAD >
class cudaDMASequential : public cudaDMA {
__device__ cudaDMASequential (

const int dmalD,
const int num_dma_threads,
const int num_compute_threads,
const int dma_threadIdx_start,
const int sz )

template <int MAX_BYTES_PER_THREAD >
class cudaDMAStrided : public cudaDMA {
__device__ cudaDMAStrided (

const int dmalD,
const int num_dma_threads,
const int num_compute_threads,
const int dma_threadIdx_start,
const int el_sz,
const int el_cnt,
const int src_stride,
const int dst_stride )

Figure 5: Constructors for the two access patterns
used in SGEMV.

techniques used for optimizing custom implementations of
the CudaDMA API are covered in section 4.1. Further in-
formation on CudaDMA instances can be found in the Cu-
daDMA user manual [5].

3.3 CudaDMA Generality

Use of the CudaDMA API is predicated on the computa-
tion being a streaming computation [20,21]. Our definition
of streaming is a computation which loops over a dataset
too large to fit in on-chip memory by processing a sub-block
of that dataset during each loop iteration. For example, the
SGEMYV application from Section 3.1 loads the input vector
in multiple loop iterations or stages. For each stage, data is
first loaded into shared memory and then is consumed. This
process is repeated multiple times to compute each output
value. Requiring that a computation be streaming allows us
to amortize the overhead of the coordination between the
compute and DMA warps over the many inputs that will be
processed by a single CTA.

While many CUDA applications are explicitly streaming
computations, many more are not. However, any application
written in CUDA can easily be transformed into a streaming
computation. This transformation is accomplished by mak-
ing a single CTA in a CudaDMA application responsible for
the work of multiple CTAs from the original application.
The CudaDMA approach to GPU programming is therefore
general enough to be applied to any CUDA program.

4. CUDADMA METHODOLOGY

In Section 3 we demonstrated how the CudaDMA API
operates from a programmer’s perspective. In this section
we investigate the performance-enhancing techniques that
are enabled by the CudaDMA API.

4.1 Optimizing Performance with Warp Spe-
cialization

Optimizing the performance of a GPU kernel is primar-
ily about managing constrained resources such as registers,
shared memory, instruction issue slots, and memory band-
width. Warp specialization allows subsets of threads within
a CTA to have their behavior tuned for a particular purpose
which enables more efficient consumption of constrained re-
sources. There are several techniques that we use in con-
junction with warp specialization to conserve resources.



Hoisting Pointer Arithmetic: The CudaDMA API al-
lows hoisting of pointer arithmetic out of inner loops
and into constructors which permits us to pre-compute
offsets and save integer arithmetic issue slots. By re-
ducing the number of intermediate temporaries required
for pointer arithmetic we can also save registers.

Templating Parameters: Although we avoid using tem-
plate parameters for exact values for programmability
reasons, we do employ them to place bounds on pa-
rameters to CudaDMA classes. Template parameters
enable the compiler to perform constant folding, sav-
ing both integer arithmetic and registers.

Exploiting MLP: DMA warps can issue loads and stores
of vector data types (i.e. float4) to fully saturate
memory bandwidth [22]. This optimization also saves
memory instruction issue slots enabling DMA warps
to exploit even greater application MLP.

Exploiting ILP: Exploiting application ILP at lower occu-
pancy has been shown to be an effective performance
technique [22]. By decoupling the compute and DMA
warps, CudaDMA enables this approach without sac-
rificing memory system performance. Fewer compute
threads can also save registers.

Fine-Grained Synchronization: Using fine-grained producer-

consumer synchronization primitives reduces barrier
overheads and ensures that there will always be active
warps available for the SM to schedule.

Prefetching Data: The CudaDMA API enables DMA warps

to prefetch data into registers before waiting for the
compute warps to instruct them to write the values
into shared memory. Prefetching enables better over-
lapping of computation and memory accesses.

Avoiding Memory Conflicts: DMA warp behavior is not
constrained by the logical structure of the data trans-
ferred, enabling loads and stores from DMA warps to
be engineered for maximal global memory coalescing
and minimal shared memory bank conflicts. This op-
timization saves instruction issue slots by avoiding in-
struction replays and optimizes both global and shared
memory bandwidth usage.

In addition to these explicit techniques, warp specializa-
tion improves performance by allowing the compiler to do
a better job of instruction scheduling and resource alloca-
tion. Warp specialization separates memory and compute
operations into two different instruction streams. The com-
piler’s job is greatly simplified by only having to optimize a
few metrics in independent instruction streams, rather than
multiple performance metrics across a single, mixed stream
leading to better machine code.

4.2 Fine-Grained Synchronization

The efficacy of the CudaDMA API and the technique of
warp specialization is contingent on the ability to perform ef-
ficient synchronization events at a finer granularity than the
width of an entire CTA. The canonical __syncthreads()
intrinsic generates a CTA-wide barrier instruction. Every
thread in the CTA must issue the instruction, and every
thread must wait until all others arrive at the barrier, pos-
sibly leading to unused warp-issue slots when waiting for
the last warps to arrive at a barrier. More parallelism and
higher efficiency can be achieved by leveraging the advan-
tages of fine-grained, named producer-consumer synchro-
nization events between threads in a CTA [9].

Compute Warps DMA Warps

wait_for_dma_start()
(bar.sync)
y

start_async_dma()
(bar.arrive)
Named Barrier 0

Y

wait_for_dma_finish()
(bar.sync)
y

finish_async_dmal()
(bar.arrive)

Named Barrier 1

 Z
Figure 6: Use of named barriers in CudaDMA.

We accomplish fine-grained synchronization by using in-
lined PTX assembly to express named barriers. Named bar-
riers are hardware resources that support a barrier opera-
tion for a subset of warps in a CTA and can be identified by
a unique name (e.g. immediate value in PTX). There are
two named barriers associated with every cudaDMA object.
Two barriers are required to track whether the data buffer
in shared memory is full or empty. We use the PTX in-
struction bar.arrive, which allows a thread to signal its ar-
rival at a named barrier without blocking the thread’s execu-
tion [7]. This functionality is useful for producer-consumer
synchronization by allowing a producer to indicate that a
data transfer has finished filling a buffer while permitting
the producer thread to continue to perform work. Similarly,
a consuming thread can use the same instruction to indicate
that a buffer has been read and is now empty. For blocking
operations we use the PTX instruction bar.sync to block
on a named barrier. Figure 6 presents a graphical depiction
of the way named barriers operate as well as their relation
to the CudaDMA API calls described in Section 3.1. Sec-
tion 4.3 demonstrates the power of the producer/consumer
abstraction by illustrating several different ways to use these
named barriers for buffering data transfers.

4.3 Buffering Techniques

The simplest approach to writing code using CudaDMA is
to allocate a separate buffer for each transfer to be performed
and to associate a cudaDMA object with each buffer. We refer
to this approach as single buffering since there is a single
buffer for each transfer being performed by a set of DMA
warps. Figure 7(a) illustrates how single buffering works in
CudaDMA. The important aspect of single buffering is that
at any point in time only the DMA threads or the compute
threads are active, indicating that the memory system or
computational resources may not be fully utilized. Despite
this possibility, single buffering is still an effective technique,
especially if the programmer ensures that multiple CTAs are
concurrently resident on an SM. This concurrency will allow
the hardware to overlap the compute threads of one CTA
with the DMA warps of another.

If single buffering is not exploiting enough MLP to keep
the memory system busy, an alternative is to create two
buffers with two sets of DMA warps for transferring data.
We call this two-buffer technique double buffering. Figure
7(b) shows how double buffering works with CudaDMA. The
compute threads will always be busy computing on one of
the two buffers. Additionally at least one set of DMA warps
will be issuing memory operations at all times ensuring bet-
ter MLP. Double buffering does incur a cost by having many
DMA warps. If an application is limited by registers, then
double buffering will waste these resources as some DMA
warps will be inactive at all points in time.

In order to deal with the resource constraints of double
buffering and to ensure all DMA warps are active at all



Compute Warps DMA Warps

Compute
on Buffer A

l Wait for Transfer

Synchronization

Synchronization

(a) Single-Buffering
Compute Warps DMA Warps Buffer A

Compute Wait for
on Buffer A Computation

Synchronization A

lWait for Computation

Transfer into
Buffer A
DMA Warps Buffer B

Transfer into
Buffer B

- Compute - Transfer into l Wait for
on Buffer B Buffer A Computation

Synchronization B

(b) Double-Buffering

Compute Warps

Compute
on Buffer A

DMA Warps

Synchronization A

Transfer into

- Buffer B
Compute
on Buffer B

Buffer A
Synchronization B

Transfer into

(¢) Manual Double-Buffering

Figure 7: Different buffering techniques using Cud-
aDMA. Large blocks indicate warps are performing
useful work, while thin arrows indicate warps move
quickly to the next synchronization point. Different
colors correspond to different buffers.

times, we introduce a third buffering technique where one
set of DMA warps are shared across two buffers and two
CudaDMA objects. We call this buffering approach manual
double buffering since it requires managing the same set of
DMA warps with two CudaDMA objects. Manual double
buffering is demonstrated in Figure 7(c). In this technique
all warps are active at all times ensuring that resources are
efficiently utilized. Manual double buffering also gives the
programmer the most control over how warps are sched-
uled on an SM. Manual double buffering is not strictly bet-
ter than double buffering; Section 6.1 provides an example
where double buffering exploits MLP better than manual
double buffering.

5. MICRO-BENCHMARKS

To predict the potential benefits of the CudaDMA library
on real applications, we evaluated a number of common us-
age patterns using standalone micro-benchmarks. All ex-
periments were run on an NVIDIA Tesla C2050 GPU with
14 streaming multiprocessors and ECC disabled. All appli-
cations were compiled using CUDA 4.0 RC versions of the
NVIDIA software toolchain and executed using 270.* ver-
sions of the CUDA driver.

The first micro-benchmark evaluates the benefits of stag-
ing data from global memory through shared memory using
CudaDMA with compute and DMA warp specialization, us-
ing the same synthetic micro-benchmark described in Sec-
tion 2.3 across a range of compute intensities. Results com-
paring the CudaDMA approach to the baseline approach
without warp specialization are shown in Figure 8. The
baseline approach uses 16 total warps (512 threads) and
transfers 4 bytes per thread on each loop iteration (2 KB to-
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tal). The CudaDMA approach uses 16 compute warps and 4
DMA warps, staging the same 2 KB of data through shared
memory every loop iteration. At very low compute intensity
(>1 B/FLOP), execution time is memory-bandwidth limited
and CudaDMA shows moderate speedup from using low-
overhead producer-consumer synchronization instead of the
heavier-weight barriers. At moderate compute intensity sim-
ilar to the machine ratio, greater speedups are achieved by
exposing more MLP via warp specialization. At high com-
pute intensity, the synchronization overhead and require-
ment for good MLP become lower and the speedups using
CudaDMA decrease.

Having investigated how compute intensity influences mem-
ory bandwidth, we are also interested in determining the
number of DMA warps required to saturate memory band-
width. Figure 9 shows the impact that the number of DMA
warps has on the ability of CudaDMA to saturate memory
bandwidth. In this graph, the micro-benchmark is executing
a saxpy kernel with a fixed B/FLOP ratio of 6. Rather than
vary the compute intensity, we vary the number of active
warps on each SM and plot sustained memory bandwidth as
a function of active warps per SM (32 warps per SM would
correspond to the baseline data plotted in Figure 8). While
the baseline approach requires a total of 40 warps to expose
enough MLP and reach the achievable peak bandwidth of
120 GB/s, the CudaDMA approach is able to saturate the
memory system with just 4 DMA warps per SM, indepen-
dent of the number of compute warps.

Saturating memory bandwidth at low warp counts is rel-
evant to application performance for several reasons. First,
since many applications have smaller dataset sizes, there
may not be sufficient parallel threads to fully saturate the
memory system. In such cases, CudaDMA could be used
to expose more MLP by launching additional DMA threads
within each CTA to load data from DRAM and stage it
through shared memory, even if the underlying computa-
tion had no reuse. Second, for some workloads, CudaDMA
has the potential for being more register-efficient than the
baseline approach for medium compute-intensity kernels. If
all global memory accesses are moved from compute warps
to DMA warps, that frees up registers within the compute
warps that would have been needed for address calculations
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or for load return data. Once register space for these values
is no longer needed by the compute warps, the space can
instead be used to store intermediate results related to the
actual computation.

Sequential DMA patterns are convenient for measuring
issues related to MLP and thread coordination, as all their
memory accesses are fully coalesced and exhibit ample spa-
tial locality for good memory system performance. Strided
DMA patterns introduce further performance effects related
to the strided transfer’s parameters: the number of elements
being transferred, the size of each of those elements, and
the stride between successive elements. CudaDMA employs
three different implementations of the strided transfer pat-
tern in order to reduce performance variation for different
element sizes and counts. We investigate the performance
of CudaDMAStrided in greater detail in [5], but the perfor-
mance is comparable to that of CudaDMASequential for most
elements sizes and counts.

6. APPLICATION KERNELS

In addition to the micro-benchmarks described above, we
ported several benchmarks, indicative of common supercom-
puting applications with moderate FLOP /byte ratios, to
CudaDMA in order to better understand the advantages of
warp specialization and the features of CudaDMA.

6.1 BLAS2: SGEMV

BLAS is a collection of library calls used by many scientific
applications for performing math operations on dense vec-
tors and matrices. BLAS is decomposed into three groups of
calls: vector-vector operations in BLAS1, matrix-vector op-
erations in BLAS2, and matrix-matrix operations in BLAS3.
BLAS2 calls have moderate compute-to-memory ratios and
therefore represent the ideal case for achieving good perfor-
mance with CudaDMA. We selected single-precision matrix-
vector multiplication (SGEMYV) as an example from the set
of BLAS2 calls.

We implemented SGEMV using several different imple-
mentations, each using CudaDMA. In every implementa-
tion, we launch CTAs responsible for handling an inner prod-
uct between a group of rows in the matrix and the vector.
We implemented six versions of SGEMV using CudaDMA:
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Figure 10: Performance on SGEMV

e vec-single: Uses cudaDMASequential to move the
vector data into shared memory.

e vec-double: Double-buffered variant of vec-single.

e vec-manual: Manually double-buffered variant of vec-
single.

e both-single: Both matrix and vector data are loaded
into shared memory. Vector data is still loaded by
cudaDMASequential, but a cudaDMAStrided instance
was used for loading the matrix elements. Note that
unlike the vector data, staging the matrix data through
shared memory is only used for communication be-
tween DMA and compute warps, not because there is
any reuse of the matrix data by the compute warps.

e both-double: Double-buffered variant of both-single.

e both-manual: Manually double-buffered variant of both-
single.

Performance results on a sweep of square matrix sizes for
four of these SGEMV implementations are shown in Fig-
ure 10, compared to a reference implementation in the open-
source Magma BLAS library [19]. Similar to the vec-single
implementation, the Magma implementation of SGEMYV also
loads vector data into shared memory and directly loads ma-
trix data from global memory into thread registers. How-
ever, all threads in a CTA in the Magma implementation
are responsible for both loading data and performing math
operations whereas CudaDMA uses warp specialization.

For smaller matrices, the both-* implementations show
speedups of up to 3.2x compared to the reference implemen-
tation whereas the vec-single implementation shows no
speedup. Although staging the matrix data through shared
increases the instruction count and synchronization events
in the CTA, for smaller sizes the additional MLP exposed by
launching CudaDMA threads to load the matrix data sig-
nificantly improves the sustained memory bandwidth. As
matrix size increases, the number of rows processed in par-
allel on each SM also increases, and performance improves
due to more available MLP. For these sizes, the additional
MLP exposed by the both-* implementations is not ben-
eficial and the launching of additional threads can in fact
be counterproductive and lead to slowdowns. However, the
vec-single case shows moderate improvements of 2%-10%
for most matrix sizes due to lower synchronization overheads
compared to the Magma reference implementation.
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Figure 11: Data usage of an 8*" order stencil [18].

6.2 3D Finite Difference Stencil

Stencil computations are common in many scientific appli-
cations that leverage numerical solvers to implicitly compute
solutions to differential equations. Stencil computations re-
quire reads of many different data values to compute an
output value. There is good locality in stencil computations
due to the significant overlap between the input data used
by adjacent output points. The difficulty in performing sten-
cil computations originates from dealing with the boundary
conditions of the stencil. The boundary output points at
the edge of the region assigned to a particular CTA require
reading additional blocks of data from outside the set of data
shared between the CTA’s internal output points. We refer
to this extra boundary data as halo data. Loading the halo
data is challenging on a GPU because CTA dimensionality
and size is often tied to the dimensionality and size of the
output data instead of the input data. Using CudaDMA we
were able to decouple the loading of the halo data from the
shape of the CTA.

As an example, we implemented the 8 order in space,
three-dimensional stencil algorithm described by Micikevi-
cius [18]. The algorithm works by slicing the 3D space in
the X and Y dimensions. Each CTA is assigned an X-Y slice
and walks through space in the Z direction. Figure 11 shows
the data read by each of four threads in a CTA for comput-
ing a single output point. The key feature expressed in the
read pattern is the large number of cells that are accessed
by multiple threads in the same X-Y slice. To facilitate this
sharing, the data for the current X-Y slice is placed in shared
memory. Each thread then keeps the remaining forward and
backwards elements in the Z dimension in on-chip registers.

Since this is an 8™ order stencil, a CTA must load the
halo data for any thread within 4 elements of the boundary.
Figure 12 shows the shape of the halo cells. To load these
halo cells for a given slice, our implementation used a custom
cudaDMA object. The custom instance of cudaDMA used two
DMA warps for loading the vertical halo regions (one for
the top and one for the bottom), as well as a DMA warp for
every sixteen rows to load the horizontal halo regions.

Using our custom CudaDMA halo-cell loader we imple-
mented single-buffer, double-buffer, and manual double-buffer
versions of the stencil computation, referred to as halo-
only-single, halo-only-double, and halo-only-manual re-
spectively. We also implemented a version, called block-
halo-single, that, in addition to loading the halo cells with
CudaDMA using single-buffering, also loaded the leading el-
ements of the primary block cells with a separate cudaDMA
object using single-buffering.

We compared our kernels against the tuned stencil-only
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Figure 12: Halo cells for an 8*" order stencil [18].

computation in [18] over three different problem sizes. Ta-
bles 1, 2, and 3 show the results. Execution time is averaged
over 100 runs of the experiment.

Performance gains of 13-15% over the optimized Micike-
vicius code are achieved by loading both the halo cells as
well as the main block data using DMA warps in a single-
buffered approach. As shown by the performance of halo-
only-single, part of this performance gain is due to using
DMA warps to get as many halo loads in flight as possi-
ble. The rest of the performance is achieved by loading
the main block using data transfers of float4 elements to
achieve more MLP and reduce instruction count.

halo-only-double performs worse than halo-only-single
because the additional DMA warps oversubscribed memory
resources, causing loads to take longer than in the single-
buffer case. Manual double-buffering is able to recoup this
performance. In some cases, manual double-buffering ex-
ceeds the performance of single-buffering by exploiting MLP
in a more controlled manner, instead of relying on the hard-
ware to intelligently schedule the DMA warps.

6.3 1D Fast Fourier Transform

One dimensional fast Fourier transforms are a critical com-
ponent of many signal processing applications and form the
basis for higher dimensional Fourier transforms. Fast Fourier
transforms have balanced compute-to-memory ratios that
can be adjusted depending on the choice of radix sizes. We
implemented CudaDMA versions of the single-precision 128
point and 256 point radix kernels from the CUFFT library
[3] that have been highly-optimized for large powers of two.

After analyzing CUFFT’s performance we discovered that
it was already saturating memory bandwidth and there was
little potential for speedup. However, CUFFT required 32
warps per SM to saturate memory bandwidth and was spilling
registers to local memory as a result. Rather than attempt
to improve memory bandwidth, we used CudaDMA to achieve
the same memory bandwidth at lower occupancy which saved
registers and prevented spilling. Instead of the 32 warps
per SM required by CUFFT, our CudaDMA implementa-
tion used only 16 compute warps and 8 DMA warps.

The CudaDMA API enabled us to explore a large slice of
the possible performance space. We implemented 48 differ-
ent CudaDMA object variations that included performing
loads by float2 or float4, using main memory or texture
cache for loads, loading 4 or 8 or 16 points per DMA thread,
and performing different transposes through shared memory
all in conjunction with the same compute kernel.



Kernel Time | Throughput | Bandwidth | Speedup
| (ms) | (Mpoints/s) (GB/s) |
Reference 27.83 4746.6 76.85 1.00
halo-only-single 26.38 5007.6 81.08 1.055
halo-only-double | 31.66 4173.8 67.58 0.879
halo-only-manual 26.12 5055.4 81.85 1.065
block-halo-single | 24.16 5467.6 88.53 1.152

Table 1: 3D Stencil: 512x512x512

Kernel Time | Throughput | Bandwidth | Speedup
(ms) | (Mpoints/s) (GB/s)

Reference 33.14 4845.0 78.41 1.00
halo-only-single 30.97 5185.1 83.92 1.058
halo-only-double 37.37 4296.2 69.53 0.887
halo-only-manual 31.33 5125.1 82.95 1.058
block-halo-single | 29.10 5517.7 89.30 1.139

Table 2: 3D Stencil: 640x640x400

Kernel Time | Throughput | Bandwidth | Speedup
| oy | Oiporeersy | 6By | |
Reference 25.22 4872.2 79.18 1.000
halo-only-single 23.74 5176.5 84.12 1.062
halo-only-double | 28.71 4280.0 69.55 0.878
halo-only-manual 24.20 5078.7 82.53 1.042
block-halo-single | 22.30 5509.4 89.53 1.131

Table 3: 3D Stencil: 800x800x200

Problem | CUFFT | CudaDMA | Speedup
Size (ms) (ms)

524288 0.231 0.227 1.017
1048576 0.457 0.489 0.935
2097152 0.916 0.982 0.933
4194304 1.909 1.939 0.985
8388608 3.894 3.827 1.017
16777216 8.040 7.995 1.006
33554432 18.309 18.154 1.008
67108864 37.191 36.978 1.006

Table 4: 1D FFT (averaged over 1000 runs)

Performance results for inputs that use the two kernels can
be seen in table 4. In most cases saving registers was enough
to create small speedups, while in a few cases the savings
were not enough to overcome the overhead of the additional
CudaDMA transfer through shared memory. In all cases
CudaDMA achieved the same memory bandwidth at lower
occupancy than CUFFT. While this lower-occupancy tech-
nique has a small benefit now, we believe it will have greater
impact on future architectures as the disparity between com-
putational power and memory bandwidth continues to grow
and on-chip memory becomes a scarcer resource.

7. RELATED WORK

Our work on CudaDMA was inspired by previous paral-
lel accelerators, such as the Cell Broadband Engine [14] and
the Imagine Stream Processor [20]. These systems addressed
the issue of moving data between on-chip and off-chip memo-
ries by including asynchronous hardware DMA engines. By
allowing the programmer to delegate the responsibility of
data movement to the hardware, their programming mod-
els enabled the programmer to focus solely on optimizing
the computation being performed. In creating CudaDMA,
our aim is to provide a similar abstraction for GPUs, albeit
implemented in software rather than hardware.

The OpenCL specification defines functions that provide
asynchronous copies between memory spaces [2]. These func-
tions are primarily intended to support the hardware DMA

engines of the Cell processor, and lack many of the fea-
tures of CudaDMA. The copies must be performed by all
threads in a threadblock, and so provide no opportunity for
warp specialization. The function assumes a sequential copy
pattern, and lacks the ability to offload pointer arithmetic
operations via a constructor. The barrier functionality is
coarse-grained, but does allow waiting on multiple named
barriers.

Warp specialization has previously been proposed for ef-
ficient implementations of sorting algorithms on GPUs [16].
CudaDMA encapsulates this technique in order to make it
more generally available to a range of application workloads.

Virtualized warps were proposed by [15] as a way to deal
with different tasks at a warp-granularity in CUDA. Unlike
CudaDMA, virtual warps still map onto physical warps that
execute the same instruction stream.

8. DISCUSSION AND FUTURE WORK

Any GPU application with a compute-to-memory ratio
that is close to the underlying hardware is likely to benefit
from being ported to CudaDMA. We plan to investigate
the performance benefits of CudaDMA on applications with
non-uniform memory access patterns such as sparse matrix
operations. Since CudaDMA consists primarily of a header
file and can run on current compiler technology it should be
easy to incorporate it into many existing applications.

To aid in the adoption of CudaDMA we plan to expand
the base set of CudaDMA instances to include additional
transfer patterns such as sparse patterns and transposes.
We also plan to support the use of CudaDMA without warp
specialization. Although this may not lead to performance
improvements, it could help with programmability and code
maintainability by abstracting the complexity of data access
patterns behind an API.

Another domain in which we expect CudaDMA to make
a valuable contribution is for frameworks that automati-
cally compile to GPU hardware by generating CUDA or
PTX code. Such frameworks leverage high-level [12] ab-
stractions in languages such as Python [11] and Scala [13]
to express parallelism and remove the burden of targeting
specific machines from the programmer. If these frameworks
choose to incorporate CudaDMA into their backends, they
can reap the benefits of its performance gains for managing
data transfers on a GPU. Programming frameworks that
enable the programmer to program directly to the memory
hierarchy, such as Sequoia [10], will likewise be able to ex-
ploit CudaDMA by using it as part of its generic runtime
target for performing transfers on GPUs.

While the CudaDMA interface is currently supported by
existing compilers, one area of future research is in the area

of programming models and compilers that are warp-specialized-

aware. These programming models and compilers would ex-
plicitly enable programmers to create specialized warps and
ensure that specialized warps were co-scheduled and could
share resources. Warp-specialization-aware compilers could
then compile code for different warps independently, opti-
mizing the usage of limited resources such as registers more
effectively than current compiler technology.

CudaDMA has shown the benefits of emulating an asyn-
chronous DMA engine in software on a GPU. Another area
of future research is to examine possible performance gains
that could be achieved by incorporating an actual hardware
DMA engine onto a GPU.



9. CONCLUSION

In this paper we presented CudaDMA, an extensible API
for efficiently managing data transfers between the on-chip
and off-chip memories of GPUs. CudaDMA enables the
programmer to decouple the shape of data from how the
data is transferred by creating specialized DMA warps for
memory transfers. CudaDMA performs best on applications
with balanced compute-to-memory ratios by allowing the
programmer to optimize the specialized DMA warps and
compute warps independently. We show speedups between
1.15x-3.2x on several GPU kernels from common scientific
applications.
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