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Abstract

Frequent itemset mining (FIM) algorithms extract sub-
sets of items that occurs frequently in a collection of sets.
FIM is a key analysis in several data mining applications,
and the FIM tools are among the most computationally in-
tensive data mining ones.

In this work we present a many-core parallel version of a
state-of-the-art FIM algorithm, DCI, whose sequential ver-
sion resulted, for most of the tested datasets, better than
FP-Growth, one of the most efficient algorithms for FIM.
We propose a couple of parallelization strategies for Graph-
ics Processing Units (GPU) suitable for different resource
availability, and we present the results of several experi-
ments conducted on real-world and synthetic datasets.

1. Introduction

Frequent Itemset Mining (FIM) is one of the main and

most demanding task in the data mining (DM) field. As

an example of FIM analysis, consider a database where the

data records are shop sales transactions, each composed of

distinct bought items. The goal is to find the sets of items

(itemsets) that are bought together in not less than a given

number of transactions, namely the minimum support. FIM

is not only an interesting problem by itself and a crucial part

of Association Rules Mining (ARM)[16], but it also has a

key role in the solution of several other DM problems. For

this reason, even two decades after this problem was first

introduced [3], it is still an active research topic. Han et al.

in [9] provide a comprehensive survey of the state of the art

in FIM and devise future research directions.

The challenges in FIM derive from the large size of its

search space, which, in the worst case, corresponds to the

power set of the set of items, and thus is exponential in the

number of distinct items. Restricting as much as possible

this space and efficiently performing computations on it are

key issues for FIM algorithms. However, when the num-

ber of transactions/items are huge, or the minimum sup-

port is very small, analysts who need to quickly explore a

large dataset through a FIM tool, ask for new techniques

to improve algorithm performance, by taking advantage of

the evolutions in distributed computing systems and par-

allel computing. Indeed, since FIM introduction, several

works proposed distributed and parallel methods to deal

with larger scale problems. A classical survey on paral-

lel and distributed association-rule-mining algorithms was

presented by Zaki a decade ago in [18].

In the last years, two factors stimulated a renewed in-

terest respectively in distributed and parallel methods for

data mining, and in particular for high performance FIM

methods. The first is the wide availability of commer-

cial, large-scale, distributed computing facilities, such as

the Amazon Elastic Compute Cloud; the second is the in-

creasing number of cores available in microprocessors, for

example the recent NVIDIA GF110 microprocessor (the

one used in Tesla M2090 and GeForce GTX 580 cards) fea-

tures 512 core and the SPARC T3 microprocessor sports

16 CPU cores, with 8 hardware threads per core. These

innovations open new scalability opportunities on the one

hand and demand for additional care to handle their pe-

culiarities on the other. Thus, to effectively exploit these

opportunities, there is a need for a new generation of data

mining algorithms, in particular able to exploit the General-

Purpose computing paradigm on Graphics Processing Units

(GP-GPU: http://gpgpu.org). This is due to the rad-

ically different architecture design and programming model

of GPUs (many-core) with respect to traditional multi-core

and multi-processor platforms.

In the case of FIM the optimizations that are conceived

with multi-core CPU in mind and for a specific memory

hierarchy, such as the ones described in [12], would be of

little help in a completely different memory hierarchy and

processor architecture. For example, the CUDA framework

allows for, and in some cases forces to use, explicit move-

ments of data between slower and faster memories and, at

the same time, organizing threads in a hierarchy, posing

strong constraints on the order in which data are accessed by

concurrent threads. Whenever these constraint are not satis-

fied, partial serialization of the execution is forced, causing

a large part of cores to remain idle. In these conditions it

2012 20th Euromicro International Conference on Parallel, Distributed and Network-based Processing

978-0-7695-4633-9/12 $26.00 © 2012 IEEE

DOI 10.1109/PDP.2012.94

416



is not uncommon to observe a GPU processor occupancy

falling below 10% (the actual fraction depends on the de-

vice in use), thus obtaining a slowdown in the execution of

the parallel algorithm.

In this work we present the GP-GPU version of a state-

of-the-art FIM algorithm, DCI [15, 13], whose sequential

version resulted orders of magnitude better than the well-

known Apriori [3]. In addition, for most of the tested

datasets, DCI resulted also better than FP-Growth [10], a

famous divide&conquer FIM algorithm. While the paral-

lelization of Apriori has been deeply studied [8], the effec-

tive parallelization of other more efficient algorithms that

use dynamic data structures results much harder. Since

DCI uses simple static data structures, and permits a lot

of data parallelism (involving bitwise operations) to be ex-

ploited, it could be a good candidate for a GPU porting.

However, many issues remain to be investigated, mainly

concerning (i) the parallelizing strategies to adopt, (ii) the

data access patterns, and (iii) the careful management of

the GPU memory hierarchy. In this paper we focus on a

pair of parallelization strategies. The former uses a simple

map-reduce paradigm to realize in parallel collective logical

operations between bitmaps with a final bitcount: we call

this technique transaction-wise, since each bitmap records

the presence/absence of a given item in all the transactions

of the dataset. The latter adopts a nested data-parallelism,

where blocks of (candidate) itemsets are assigned to dis-

tinct GPU’s multiprocessors for computing their supports

(number of occurrence of each candidate itemset in the

dataset transactions), where each GPU’s multiprocessor in

turn adopts a map-reduce paradigm like in the previous ap-

proach. We call this strategy candidate-wise, and its ex-

ploitation affects a crucial feature of DCI: the management

of the special cache used to store intermediate results and

save work. We conducted several experiments on real-

world and synthetic datasets. The GPU porting of DCI gives

clear performance advantages over the CPU-based one, and

the candidate-wise strategy unquestionably wins over the

transaction-wise approach for most of the tested datasets,

due to the better multiprocessor occupancy.

The rest of the paper is organized as follows. In Sec-

tion 2 we describe the CUDA framework for GP-GPU and

the DCI algorithm. In Section 3 we analyze the opportuni-

ties for parallelization in DCI and describe the implemen-

tation of two different strategies. Then, in Section 4 we

assess the performances of the proposed methods. Finally,

in Section 5, we survey some relevant related work and, in

Section 6, we describe some possible extension of the pro-

posed approaches.

2. Background

In this section we give an overview of two topics that

are particular important to better understand the following

parts of the paper. Specifically, the essentials of the CUDA

framework for General Purpose GPU computing (GPGPU),

which is used by the algorithm proposed in this paper, and a

description of the DCI algorithm for Frequent Itemset Min-

ing, which is the sequential algorithm that inspired our par-

allel algorithm.

2.1. GPGPU: the CUDA framework

The core of the CUDA parallel kit [1] are three abstrac-

tions: a hierarchy of thread groups, shared memories, and

barrier synchronization. These abstractions provide a mix

of data parallelism and task parallelism at different granu-

larities. Typically a problem is split into independent sub-

problems that are mapped to blocks of threads. Each sub-

problem is split again and the atomic pieces are assigned to

individual threads of the same block that cooperate to solve

the sub-problem.

A GPU usually is composed of several multiprocessors,

sharing a common device memory (also called global mem-

ory). Each multiprocessor consists of several cores (8-32-48

depending on device kind) and a shared memory. Thread

blocks are granted to be mapped to a specific multipro-

cessors, thus the threads in the same block can cooperate

by sharing data in the same fast memory and synchronize

by means of barriers. On the other hand, there is no kind

of warranty on the multiprocessor assignement of different

blocks or on their order of execution. Each block is further

divided in several warps, that are groups of threads always

scheduled at the same time and at the same program ad-

dress.

2.2. The DCI algorithm

DCI is a multi-strategy algorithm for Frequent Itemset

Mining (FIM), characterized by several phases, each ex-

ploiting a different strategy. The key idea, common to sev-

eral other FIM algorithms, is to exploit the apriori principle:

all the subsets of a frequent set must be frequent. Thus, the

algorithm performs several iterations, starting with on item

patterns and increasing the size of searched pattern at each

iteration.

During the first phase, DCI adopt an Apriori-like strat-

egy, by scanning the database by transaction, using spe-

cific direct-count data structure to update the counters of

the itemsets, and operating a strong pruning of the on-disk

dataset. This initial phase is named Direct Count (DC,

which is the first part of the DCI acronym).
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After the DC phase, when the number of surviving

transactions and items does allow the vertical representation

of the pruned dataset in memory, DCI switches to the Inter-
section phase (where I is the last part of the DCI acronym).

In the vertical representation, for each item we have a Tid-
set, which is composed of the identifiers of all the trans-

actions including the item itself. Indeed, DCI uses a bit-

wise data structure: each retained frequent item is associ-

ated with a bitmap, where the bit in the nth position is equal

to 1 iif the nth transaction contains the item. The algorithm

still processes candidates of increasing length, but now the

support of a candidate can be immediately computed by

a bitwise logical And operation on the bitmaps associated

with the single items contained in the pattern, followed by

a count of the bits set to 1 in the resulting bitmap (map-

reduce).

The adoption in DCI of a suitable data structure for the

management of the frequent patterns, featuring an itera-

tion by common prefix in lexicographical order, gives two

substantial benefits: an easy and efficient way to gener-

ate candidates (already in lexicographical order and, thus,

ready to be stored in case they are frequent) by merg-

ing frequent patterns that share a common prefix, and a

substantial item overlap between consecutive candidates.

This last fact allows for the reuse of of intermediate re-

sults during the computation of bitwise ands. For example

when computing the support of the following four candi-

date itemsets {2, 4, 7, 80}, {2, 4, 7, 81}, {2, 4, 7, 82}, and

{2, 4, 82, 90}, where each item is represented as an integer,

a straightforward approach would need 3 × 4 = 12 bitmap

intersections (3 bitmap intersections for each 4-itemset),

whereas, by caching and reusing the intermediate results,

just 3+1+1+2 = 7 are enough. Indeed, only the first candi-

date requires the intersection of all of the bitmaps, whereas

the following ones have prefix overlaps with the preceding

candidates and require a number of intersection which is

equal to the number of different items.

3. FIM on GPUs: the gpuDCI algorithm

In this section we will describe gpuDCI, a parallel algo-

rithm inspired by DCI that exploits GPUs to efficiently mine

frequent itemsets from transactional datasets. Before dis-

cussing in depth the implementation details, in Section 3.5,

we first address the opportunities for parallelization that the

different phases of the DCI algorithm present and the paral-

lelization strategies that are behind the two versions of the

proposed algorithm.

3.1. GPU Parallelization opportunities

As we previously highlighted, DCI is a multi-strategy

algorithm characterized by a Direct Count phase and an In-

tersection phase. According to our tests, the Direct Count

phase accounts for a limited part of the running time of

the algorithm, at least in the most computational intensive

cases. Indeed, even if the later described Intersection phase

is more efficient than the Direct Count phase, usually it has

to deal with a much higher number of candidates and fre-

quent patterns due to combinatorial explosion and, thus, ac-

count for the most significant part of the overall running

time.
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Figure 1. Number of frequent patterns for dif-
ferent pattern length

In support of this intuition, the reader can find in Fig-

ure 1 an example of the relation between the number of

frequent patterns and their length for two different dataset

(see the experimental result section for a description of the

datasets). On the other hand, the peculiarities of the count

phase would hinder the efficient exploitation of GPUs dur-

ing this phase. To ensure an high efficiency, the GPU cores

in the same GPU multiprocessor has to execute the very

same code on data characterized by high spatial locality

and accessed according to quite strict memory access pat-

tern. This is hardly the case with a large number of coun-

ters. Moreover, if the number of counters is limited, for

example during the item count phase for some problem set-

ting, the running time is usually I/O bound and transfering

the (still unpruned) dataset to the GPU memory could entail

even worst performances.

The intersection phase, instead, accounts for a significant

part of the running time, and the computation of the single

intersection and set bits count operations require non trivial

computational resources. Further, both bitmap intersection

and count can be reasonably distributed among the cores of

the same GPU and the bitmaps can be accessed in sequential

strides, which is optimal to maximize GPU memory band-

width.

Moving the candidate generation to GPU could give

some advantage. However, according to our profiling tests,

the candidate generation contribution to the overall running

time is just a small fraction of the time due to bitmap in-

tersection and count. Further, performing candidate gener-
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ation in GPU would decrease the GPU memory available

for bitmap intersection and count, due to the need to main-

tain frequent patterns of the current and previous iteration

in GPU memory, possibly with negative effects on overall

performances.

For these reasons, we have decided to focus our paral-

lelization effort on the computation of candidate supports

during the Intersection phase.

3.2. An overview of gpuDCI

The basic idea behind gpuDCI is to start computation on

CPU, as in DCI, and move the pruned dataset to the GPU as

soon as the bitwise vertical dataset fits into the GPU global

memory. Afterward the support computation will be del-

egated to the GPU. However, after switching to GPU, the

CPU still manages patterns, generates candidates and store

patterns that are frequent according to the support computed

by the GPU.

Also the cache used by DCI to store and reuse intermedi-

ate intersection results is moved to the GPU. Since the cache

is only needed for support computation, and the CPU needs

to know just the support of each pattern, this approach will

limit the data transfer between system and GPU memories.

There are several conditions that have to be satisfied to

ensure optimal GPU usage. Among them, three particularly

important ones are related to processor utilization, block-

ing operations, and memory access patterns. The first is

quite obvious, but not always easy to obtain: not only we

have to provide enough workload for each core, but also to

ensure that every core has the resources needed to execute

the assigned computation. The second goal is to minimize

the number of synchronizations, in particular operations

causing global synchronization such as kernel launches and

memory transfers, and other blocking operations. Finally,

the last one subsumes several possible memory access opti-

mizations. One of the most important is to ensure coalesced

access to global memory by aligning memory accesses to

avoid serializations.

In the following subsection we will describe two strate-

gies that resulted suitable, thus producing good speedups,

for different kinds of datasets.

3.3. Transaction-wise parallelization

In this approach all the GPU cores, independently of the

GPU multiprocessor they belong to, work on the same in-

tersection or count operation. Each thread is in charge of an

interleaved portion of the bitmap, in such a way that threads

having consecutive indexes work on consecutive parts of the

bitmap (see Figure 2 left). Note that our bitmaps are actu-

ally vectors of integers (32 or 64 bit, depending on the ar-

chitecture). The contiguous blocks of 32-64 bits, processed

(a) Intersection

(b) Count

Figure 2. Transaction-wise parallelization

by the same thread, are thus separated by a fixed stride of

blocks × threads, where blocks and threads are respec-

tively the number of thread blocks and thread per blocks

decided at kernel launch time. In the case of intersection

(bitwise and), this access pattern applies both to reading

the bitmaps and writing the result of the operation. In the

case of counting (popcount), this only applies to fetching

the bitmaps from global memory, since the result is a sin-

gle number. In both cases, the global memory accesses to

bitmaps are coalesced.

The threads that are involved in the operations on a

bitmap are not in the same multiprocessor, and thus do not

have access to the same, fast, shared memory. For this rea-

son, the reduction of the count of bits set to 1 (sum of the

partial sums computed by each thread) has to be computed

in two steps: after each thread has termined the count on its

part of the bitmap, the counter of each thread is summed

on a per multiprocessor base (local reduction), and then

the partial sum for each multiprocessor are added to obtain

the final result (global reduction). Both reduction are per-
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formed by using a pair-wise, tree based, approach make use

of the fast shared memory that is present on each multipro-

cessor (see Figure 2 right). The key difference, however,

is that local reduction starts with data already stored in the

shared memory, whereas in the global reduction the multi-

processor that is in charge for the reduction must fetch the

counters that are relative to other multiprocessors from the

GPU global memory.

To ensure that all cores are involved in the computation,

the number of thread blocks must be at least equal to the

number of GPU multiprocessors. Further, to ensure that the

cores of each multiprocessor are active, global memory ac-

cess should be overlapped with computation. On NVIDIA

devices this usually happens when there are at least 200-

300 threads per block (600-1200 for devices with comput-

ing capability 2.1). If we consider a top range NVIDIA de-

vice having computing capabilities 2.x (GTX580: 16 MP,

512 cores), this method can successfully hides the global

memory latency when there are at least 16 × 1200 × 64 =
1228800 transactions in the pruned dataset.

Due to the efficiency of the dataset pruning in DCI, quite

often the intersection phase involves a significantly smaller

number of transactions. In such a setting, we can chose

either to pay the latency for the global memory access, due

to an insufficient number of threads per block, or to leave

some multiprocessor idle, due to an insufficient number of

blocks.

The amount of GPU memory required by this strategy

is mainly determined by the size of the pruned dataset

(#items × size(bitmap)) plus the size of the intermedi-

ate result cache (max pattern length × size(bitmap)).
In case there is room for more than one cache, we can de-

vise a different parallelization strategy, discussed in the next

section, which entails a higher utilization of the cores even

when bitmaps that are not huge.

3.4. Candidate-wise parallelization

In this approach each GPU multiprocessor works on the

intersection and count operations related to a different can-

didate, whereas the cores of the same multiprocessor work

on the same intersection or count operation, exactly as in

the previous approach. At an abstract level, thread blocks

are in charge of a block of candidates that are processed one

by one; threads are in charge of the intersection or count on

an interleaved portion of a bitmap. Note that in this case the

threads that are involved in the operations on a bitmap are

all in the same multiprocessor and have access to the same,

fast, shared memory. The main issue to be tackled to im-

plement this strategy is the management of the cache used

to save intermediate intersection results. One of the advan-

tages of the caching method adopted by DCI is its really

simple policy. Candidates are examined in lexicographi-

(a) Intersection

(b) Count

Figure 3. Candidate-wise parallelization

cal order, thus we just need a stack of intermediate results.

When a new candidate is examined, the results that are no

longer needed are popped out of the stack; that is, we re-

tain the intermediate results corresponding to the common

prefix of the current and last examined candidates.

Processing more than one candidate in parallel inevitably

contrasts this simplicity. The solution is to assign collec-

tions of candidates to the same thread blocks (and thus

multiprocessor), by setting an independent cache per each

block. Further, to increase the chance of cache reuse, given

the sequence of all lexicographically ordered candidates,

we assign a contiguous sub-sequence of candidates to each

thread block (see Figure 3).

The amount of GPU memory required is larger than

the one required by the previous strategy. Indeed, in this

case the size of the intermediate result cache is multiplied

by the number of thread blocks used (thread blocks ×
max pattern length× size(bitmap)).

3.5. Implementation

In this section we describe the implementation of the two

parallelization of the DCI algorithm introduced in the previ-

ous section. We will first describe how operations are struc-
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tured in batches, then the building blocks that are common

to the two approach, and finally how they are combined to

obtain the final results.

3.5.1 Batches of operations

Operations on GPU that require memory transfer and ker-

nel launches incur in fixed costs that can be amortized over

multiple operations. A typical computation pattern is: move

the relevant data to the GPU, invoke the kernel, move the

result from the GPU to the CPU. However, for read-only

data shared among many operations, it is better to move a

large block of memory at once. For these reasons, we move

the full dataset to the GPU global memory before computa-

tion, execute support count operations in batches and fetch

blocks of results at the end of the batch. For efficiency rea-

sons, what is actually passed to the GPU by the CPU is not

a set of candidates, but instead a sequence of operation in-

volving the dataset and the intermediate result cache. Such

operations could be intersection of two bitmap or intersec-

tion and set bit count of two bitmap, either associated to

items or to intermediate results. For example, the computa-

tion of the support of itemset {213, 345, 400} followed by

the computation of the support of itemset {213, 345, 430}
will be transformed into the sequence of commands (where

& is the bitwise logical And):

• store in cache[0] the result of (bitmap[213] &
bitmap[345])

• store in output[0] the number of bits set to 1 in

(cache[0] & bitmap[400])

• store in output[1] the number of bits set to 1 in

(cache[0] & bitmap[430])

Note the reuse of the cache entry cache[0] to compute

the itemset count of {213, 345, 430}.

In transaction-wise parallelization, all the threads exe-

cute the same operation at the same time, and that each op-

eration is specified by a few parameters. In our tests, we

verified that the kernel launch overhead is negligible wrt the

cost of the intersection and count over a large bitmap. Fur-

ther, one global synchronization is needed after each count

operation. Thus, we decided to execute the different opera-

tions contained in a batch using one kernel launch for each.

The parameters of the operations are specified by kernel pa-

rameters and results are fetched in block at the end of the

batch.

In candidate-wise parallelism, there is a relevant differ-

ence: the threads belonging to distinct blocks are involved

in different operations, hence there is an increased number

of parameters to be specified. To cope with this issue, we

decided to store the parameters of all the operations of a

batch in a command buffer data structure, which is moved

Transaction-wise
i = blockIdx * threadsPerBlock + threadIdx
while (i < bitmapSize)

out[i] = bmp1[i] & bmp2[i]
i = i + threadsPerBlock*numBlocks

Candidate-wise
i = threadIdx
while (i < bitmapSize)

out[i] = bmp1[i] & bmp2[i]
i = i + threadsPerBlock

Figure 4. Intersection (kernel executed by
each thread)

to the GPU “constant memory” when the processing of the

batch starts, and is then repeatedly accessed by the kernel to

determine the next operation to be performed. It is worth re-

marking that the constant memory is cached, thus accesses

to the same location by several threads – e.g., all the threads

working on the same operation – are particularly efficient.

The batch is executed in several step, and in each step all the

blocks are expected to execute one basic operation (inter-

section, or intersection and count). In an effort to maximize

constant cache hits, we stored in close command buffer po-

sitions the parameters of the operations that are expected

to be executed in the same step. Since each multiproces-

sor has its own constant cache, this approach gives benefits

only when the kernel is launched with a number of thread

blocks larger than the number of GPU multiprocessors (e.g.,

to hide latencies when the number of transactions is small).

3.5.2 Building blocks: basic operations on GPU

The pseudocode in Figure 4 describes the intersection oper-

ations, i.e. the most frequent one in DCI, carrier by the GPU

threads. We highlight that the main difference between the

implementations in the two approaches is the stride: in the

Transaction-wise parallelization case it is determined by the

block index and the thread index, whereas in the candidate-

wise parallelization case it is determined only by the thread

index, since different thread blocks are operating on differ-

ent bitmaps, and bmp1, bmp2, and out refer to different

GPU memory zones. It is worth recalling that such bitmaps

are actually stored as vectors of int (32 or 64 bit, depend-

ing on the architecture), and thus the & operations actually

perform 32 or 64 logical Ands.

The count of the cardinality of a Tidset intersection is the

second most frequent operation in DCI, and is illustrated

in Figure 5. In practice, due to the bitwise data represen-

tations, this corresponds to the count of the number of 1-

bits in a bitmap. This bitwise operation is also known as

popcount and has an hardware implementation on sev-

eral modern hardware, including NVIDIA GPUs.
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Transaction-wise
i = blockIdx * threadsPerBlock + threadIdx
count[threadIdx] = 0
while (i < bmpSize)

count[threadIdx] += popcount(bmp1[i] & bmp2[i])
i = i + threadsPerBlock*numBlocks

// reduce the count in shared memory
// and store the temporary result to global memory
blockCount[blockIdx] = localReduce(count)
// the last finished block loads temporary results
// to shared memory, reduce the count and stores
// the result
out = globalReduce(blockCount)

Candidate-wise
i = threadIdx
count[threadIdx] = 0
while (i < bmpSize)

count[threadIdx] += popcount(bmp1[i] & bmp2[i])
i = i + threadsPerBlock

// reduce the count in shared memory
// and store the result
out = localReduce(localCount)

Figure 5. Cardinality count (kernel executed
by each thread)

Here we omit the implementation of the re-

ductions operations (see globalReduce() and

localReduce() in Figure 5). Refer to nvidia whitepa-

pers (http://www.nvidia.com/object/cuda_
sample_data-parallel.html) for the implementa-

tion and optimization details.

4. Performance evaluation

To assess the performance of the proposed methods and

the convenience in exploiting GPU for frequent itemset

mining with respect to traditional CPU only algorithms we

run several tests. In the following subsections we will de-

scribe the test environment, the data used in our tests, and

finally we will describe the experiments and the results ob-

tained.

4.1. Test environment and datasets

The experiments where executed on a server equipped

with an Intel Core2 Quad CPU @ 2.66GHz, 8 GB of RAM,

and a NVIDIA GTX275 GPU featuring: 30 multiprocessors

(240 cores) @ 1.4 GHz, 896MB device memory, and Cuda

device capability 1.3.

In our experiments we used both real world datasets and

generated ones, largely used in the FIM research commu-

nity (http://fimi.ua.ac.be/data/).

Accidents A real world dataset provided by Karolien

Geurts [6]. The data are related to 340.184 traffic ac-

cidents, each associated to a set of attributes selected

among a set of 572 possible attributes (45 attributes per

accident on average).

Kosarak Another real world dataset provided by Ferenc

Bodon obtained from the click-stream of an on-line

news portal. There are a total of 990k transactions,

each containing an average of 8 items.

Pumsb and pumsb-star The Pumsb dataset contains cen-

sus data. There are 49,046 records with 2,113 different

items. Pumsb-star is the same dataset as Pumsb except

all items of 80% support or more have been removed,

making it less dense.

T40I10D100K A syntethical dataset used for the FIMI

03/04 competition, generated using the generator from

the IBM Almaden Quest research group. There are

100k transactions with an average of 40 items per

transaction selected among 10000 items.

T10I1D500k-12M A family of generated datasets ob-

tained using the same IBM generator. We used this

non-standard datasets with carefully tuned parameters

to have datasets with a large number of transactions

that survive the pruning of the DCI algorithm. The

transactions contain, on average, 10 items per transac-

tion selected among 1000 items. The number of trans-

action per dataset is in the range [500k, 12M].

4.2. Experimental results

The goal of the following tests is to assess the per-

formance of the two parallelization strategies devised for

gpuDCI, with respect to the execution of the sequen-

tial DCI algorithm running on the CPU. In the following

these parallelization strategies are indicated as gpuDCITW
(transaction-wise parallelization, single global cache), and

gpuDCICW (candidate-wise parallelization, multiple block-

based caches).

Different dataset. Our first test compares the running time

of gpuDCI on the different datasets. The results of this

experiment are reported in Figure 6: each group of bars

show the execution times for each dataset.Close to the

name of the datasets, we indicate the minimum support

parameter used in each test (e.g.: ms=50k means that

minimum support was set to 50,000 transactions).

We observe that there is a clear advantage for

gpuDCICW in most cases. On the other hand, the

gpuDCITW strategy is the worst choice in all the

cases considered in this test. We will see later,

however, that there are some particular conditions in

which gpuDCITW achieves better performances. A

closer look at the case of dataset kosarak, in which
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gpuDCICW and CPU perform similarly highlights that

the comparison is biased in favor of the CPU algo-

rithm. This is due to the fact that DCI checks for prun-

ing opportunities also during the Intersection phase,

whereas the current gpuDCI implementation use prun-

ing just during the Direct Count phase. In the test case,

after the 3 iteration (i.e., for patterns with more than 4

items) the dataset used by CPU is one tenth in size of

the one used by GPU thanks to the more aggressive

pruning strategy. If we limit our observation to the 3rd

iteration, in which the datasets are of the same size,

gpuDCICW is more 6 times faster. The same bias in

favour of CPU is present in other tests, however its ef-

fects are less evident.

Finally, we observe that in the case of the T10I1D8M

dataset the two parallelization strategies perform al-

most similarly, and significantly better than the CPU

version of the algorithm. Indeed, that dataset was built

with the specific goal of involving all the cores in the

computation.

Pattern length. In our second experiment we examined the

running time of the single iterations of the algorithms,

where each iteration produce all the frequent patterns

of a given length. We focus on two dataset: Accidents

and T40. The first is quite dense and a large number

of frequent patterns and candidates is found, even for

relatively high minimum supports (15% in this test).

Figure 7 presents the results of this test. The chart plots

the running time as a function of the iteration number

(pattern length), starting from the third iteration, since

the first two iteration are identical for all algorithms.

In the same chart, also the number of candidates of the

different lengths is reported (the corresponding scale is

on the right ordinate axis).

We observe that gpuDCICW has an advantage of nearly

one order of magnitude wrt the CPU algorithm for all

pattern lengths, and that the running time is roughly

proportional to the number of examined candidates.

Dataset size. In this experiment we compared the running

time of the three algorithms on a homogeneous family
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of datasets of increasing size obtained by sampling the

largest dataset. This one was built with the goal of hav-

ing a large set of transactions surviving the pruning. In

Figure 8(a) we can observe that the three algorithms

running times are linear with respect to the dataset

sizes. Further, comparing gpuDCITW and gpuDCICW,

we observe that the candidate-wise approach is not

able to deal with the largest dataset. Indeed, in this case

(107 transactions) gpuDCICW needed to exploit many

caches of larger size. Since the size of each cache is

determined by the number of transactions and the size

of the patterns under consideration, the device mem-

ory is not sufficient to host the dataset, long patterns

and multiple cache instances.

Finally, we point out that gpuDCITW and gpuDCICW
exhibit similar performances when the multiprocessors

are completely scheduled. In some of our tests on dif-

ferent devices, we also reported marginally faster run-

ning times for gpuDCITW. Note, however, that these

advantages are not relevant, and the driving factor for

choosing the approach to use should be just the amount

of available memory.

Number of multiprocessors. In the last test we evaluated

the speed-up of the two parallelization methods as the

number of used multiprocessors increases. Note that

it is not possible to directly limit the number of mul-

tiprocessors used to run gpuDCI. However, since the

threads in the same CUDA block are executed by the

same multiprocessor, we can indirectly limit the num-

ber of multiprocessors used by reducing the number of

thread blocks.

Figure 8(b) shows the running time of gpuDCICW
and gpuDCITW. We observe that the candidate-wise

running time continues to decrease as the number of

candidates processed in parallel (thread blocks) is in-

creased, until the number of thread blocks becomes

equal to the number of multiprocessors. This indi-
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cates that multiprocessors are not under scheduled due

to memory access latency, otherwise using a number

of blocks larger than the number of multiprocessors

would further reduce the running time.

The transaction wise approach, instead, benefits from

the additional multiprocessors only up to 8 thread

blocks, then the number of transactions is not sufficient

to maintain busy all the multiprocessors.

5. Related works

GP-GPU for FIM was for the first time addressed in [5],

where the authors presented a GPU-based implementation

of the well-known Apriori algorithm. In their proposal, the

dataset is represented as a binary matrix D, where Dt,i is 1
iff the item i occurs in transaction t. Calculating the transac-

tions that support a given item set just requires to intersect

rows of the matrix D. The great advantage given by the

adoption of a vertical bitmap representation, is that the ex-

pensive support counting is achieved with fast bitwise inter-

section and population count of bit-vectors. Nonetheless,

this work presents several limits, in part inherited by the

Apriori algorithm and in part by implementation choices.

For example, the generation of the full set of candidates

of a given length before computing their supports on GPU

strongly limits its applicability due to memory usage issues.

Similar effects are caused by not pruning the dataset be-

fore switching to a bitmap representation. This cause a lot

of unneeded computations due to useless data stored in the

bitmap. As an example consider the size of the bitmap for

the Retail dataset that, according to the authors, is 180 MB,

whereas in more optimized bitmap based algorithms such

as DCI [15], it depends on the minimum support thresh-

old. For example, for the Retail dataset, 11MB at 1% min-

imum support and 74MB at 0.1% minimum support, after

the pruning phase of DCI. Further, the use of a large size

lookup table (64KB stored in constant memory, when the

size of the constant cache is just 8KB) for the support count

causes high memory read latency in 7 accesses over 8. Not

surprisingly, the authors report that the proposed approach

performs significantly worst than a state of the art serial al-

gorithm running on CPU.

Another Apriori based FIM algorithm for GPU is pre-

sented in [19]. Contrary to [12], it uses inverted lists (stored

as arrays) instead of bitmaps to represent the Tidsets associ-

ated with items. Similarly to [12], the work suffers from the

choice of Apriori, a low performance algorithm, as baseline.

A different approach is used in [17], based on the TreeP-

rojection algorithm described in [2]. This work represent a

significant improvement with respect to the parallelizations

of the Apriori algorithm. Nonetheless, TreeProjection is not

a state of the art algorithm for FIM, as it is outperformed by

FPGrowth [10] that, in turn, is slower than or comparable to

DCI in most cases [7].

Finally, [11] presents a GPU implementation of the well

known MAFIA [4] Maximal FIM algorithm that features

significant performance gain with respect to its CPU ver-

sion. We observe, however, that this work address a quite

different problem, aiming to extract only the maximal fre-

quent itemsets that are not set-included in any other frequent

itemsets. Maximal frequent itemsets are less informative

than frequent itemsets and the exact support of a large part

of frequent itemsets can not be inferred from the maximal

frequent itemsets.

6. Conclusions and future works

In this paper we introduced a parallel algorithm,

gpuDCI, which exploits GPUs to compute frequent item-

sets, that is to find the subsets of items that are contained

in at least a given fraction of a collection of transactions

(i.e., sets of items). We presented the rationale behind

our design choices, focusing in particular on what to par-

allelize, and devised two parallelization strategies. Our ex-

periments showed that, in general, using the GPU for com-

puting the support of candidate patterns, gives clear advan-

tages. Further, the candidate-wise approach unquestion-

ably wins over the transaction-wise approach, with a tie in

the cases in which there is a sufficiently large number of
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transactions to allow full multiprocessor occupancy in both

cases. The adoption of transaction-wise approach is advis-

able only when the other approach is not suitable due to an

unusual large memory occupancy for storing caches to store

and reuse intermediate results.

In the future we plan to improve the gpuDCI algorithm

in several directions. The most recent version of DCI does

not take advantage of the presence of additional CPU or

multi-core CPU. We plan to extend DCI in order to exploit

these additional resources, using a parallelization approach

similar to the one we adopted for GPU. The same computer

system can host more than one GPU. The algorithm we pro-

posed in this paper makes use of a single GPU. However,

the candidate-wise approach could be easily extended to a

larger number of GPUs.

In some case it is possible to avoid the computation of the

support of a pattern by making inferences on some property

of its subsets [13]. This approach is particularly effective

for dense datasets and can be applied to gpuDCI. Finally,

frequent closed itemsets are a condensed representation of

frequent itemsets that can be directly computed from the

data. We plan to improve the efficiency of the DCI-based

algorithm for extracting these closed patterns [14] by mov-

ing part of the computation to the GPU.
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