
グリッドコンピューティング

2012/11/26
徐 駿剣(12M54060 脇田研究室)



紹介論文

Efficient Parallel Graph Exploration on Multi-
Core CPU and GPU

[PACT 11]

Sungpack Hong, Tayo Oguntebi, Kunle Olukotun

Pervasive Parallelism Laboratory
Standford University



Outline

● Motivation

● Natural Parallel BFS Algorithm

● New Method for Multi-Core CPU

● Hybrid Methods

● Experiments



Outline

● Motivation

● Natural Parallel BFS Algorithm

● New Method for Multi-Core CPU

● Hybrid Methods

● Experiments



Breadth First Search (BFS)



Motivation

● Proliferation of parallelism and heterogeneity 
(simultaneous use of CPU and GPU)

● BFS serves as a building block for many 
graph algorithms
○ centrality calculation
○ connected component identification
○ community structure detection
○ max-flow computation



Related Research

● state-of-the-art BFS implemention
○ multi-core systems
○ reduce cache coherence traffic

● BFS implmentation for GPUs
○ solved the workload imbalance issue
○ good performance compared to multi-core CPU 

implementions



Outline

● Motivation

● Natural Parallel BFS Algorithm

● New Method for Multi-Core CPU

● Hybrid Methods

● Experiments



Level Synchronous BFS Algorithm



Shortcomings

1. Synchronization overhead needs to be paid 
at every level

2. Amount of available parallelism is limited by 
the number of nodes in a given level



Small World Phenomenon

● Diameters of real-world graphs are small 
even for large graph instances



Outline

● Motivation

● Natural Parallel BFS Algorithm

● New Method for Multi-Core CPU

● Hybrid Methods

● Experiments



Queue-based Method

1. Use bitmap to represent the visited set

2. Use 'test and test-and-set' operation when 
updating bitmap

3. Use local next-level queues

4. Maintain next-level implemented with ticket-
locks and fast-forwarding algorithm



Pseudo Code



Improvement

● The final optimization technique dont works 
when the size of input becomes very large

● This paper take a different approach
○ efficient use of memory bandwidth



Read-based Method

● Instead of a shared queue, read-based 
method manages a single O(N) array that 
tells if a node belongs to the current-level 
set, next-level set, or visited set



Pseudo Code



Advantages

1. Complete free from queue overhead
a. remove atomic instructions used for the queue 

operations
b. save on cache and memory bandwidth

2. Memory access pattern is more sequential



Data Access Pattern



Discussion

● The primary disadvantage that it reads out 
the entire array every level iteration seldom 
affects the overall performance
○ graph diameter is small
○ sequential reading works well at critial level

● Undesirable graph
○ small (sub-)graph
○ long diameter graphs such as meshes



Outline

● Motivation

● Natural Parallel BFS Algorithm

● New Method for Multi-Core CPU

● Hybrid Methods

● Experiments



Hybrid Methods

● Dynamically determines which method to 
apply each level to prevent worst-case 
execution

● Represented as a state machine



Hybrid Read and Queue Method (CPU)



Hybrid CPU and GPU Method



Outline

● Motivation

● Natural Parallel BFS Algorithm

● New Method for Multi-Core CPU

● Hybrid Methods

● Experiments



Methodology

● Measure performance by various machines 
and different graph instances
○ execute 10 times from 10 different root nodes and 

take average

● Graph generators
○ uniformly random model
○ RMAT model: small world property



Specification of Machines



Perfomance on Nehalem CPU



Performance on Fermi GPU



Effect of Graph Size Scaling



Breakdown Execution Time



Accumulated Execution Time



Execution Performance on Various Machines



Effect of GPU Cache



Conclusion

● Read-based method
○ simple to apply yet efficient in utilizing memory 

bandwidth so that it works well on large-scale graph

● Hybrid method
○ choose the best implementation each level; such a 

method benefits both large and small graphs

● Experiment result
○ the governing factor for performance is primarily 

random memory access bandwidth


