
Context-Dependent Pre-Trained
Deep Neural
Networks for Large-Vocabulary
Speech Recognition

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND
LANGUAGE PROCESSING, VOL. 20, NO. 1, JANUARY 2012

George E. Dahl, Dong Yu, Senior Member, IEEE, Li Deng, Fellow, IEEE, and Alex Acero, Fellow,
IEEE

Context-Dependent Pre-Trained Deep Neural Networks for
Large-Vocabulary Speech Recognition (CD-DNN-HMMs)

2

1. Architecture
2. Training Procedure
3. Experimental Results

Architecture
of CD-DNN-HMMs

3

What makes CD-DNN-HMMs special ?

4

▰ Deeper, more expressive NN architectures:
→ Unsupervised DBN pre-training algorithm.

▰ Use of posterior probabilities of senones as
the output.

What is a senone ?

5

In a nutshell: a tied triphone state.
Transitions between words can bear more
information the words themselves
→ Triphones or even Quinphones
Match same range in waveform as just phones:
→ Senone

Prior Probability: Bayes Theorem

6

CD-DNN-HMM Illustration

7

Decoded Word Sequence

8

For CD-DNN-HMMs

Training Procedure

9

Algorithmic Main Steps

1. Convert CD-GMM-HMM to CD-DNN-HMM
2. Convert triphone states
3. Pre-Training & state-level alignment
4. Fine-tuning and re-estimating transition

probabilities
5. End or iterate

10

Step 1: Convert CD-GMM-HMM to CD-DNN-HMM

Train a best tied-state CD-GMM-HMM system where state tying is
determined based on the data-driven decision tree. Denote the
CD-GMM-HMM: gmm-hmm.

Parse gmm-hmm and:

1. Give each senone name an ordered senoneid starting from 0
(training label for DNN fine-tuning).

2. Generate a mapping from each physical tri-phone state to the
corresponding senoneid. Denote this mapping state2id.

11

Step 2: Convert triphone states

Convert gmm-hmm to the corresponding
CD-DNN-HMM dnn–hmm1 by borrowing the
tri-phone and senone structure as well as the
transition probabilities from gmm-hmm.

12

Step 3: Pre-Training & state-level alignment

Pre-train each layer in the DNN bottom-up layer by
layer and call the result: ptdnn.
Use gmm-hmm to generate state-level alignment:
align-raw. the training set.

13

Step 4: Fine-tuning and re-estimating transition probabilities

Convert align-raw to align where each physical
tri-phone state is converted to senoneid, then
fine-tune the DBN starting from ptdnn.
Denote the DBN: dnn.
Re-estimate the transition probabilities using dnn
and dnn-hmm1 to maximize the likelihood of
observing the features. Denote the new
CD-DNN-HMM: dnn-hmm2.

14

Step 5: End or iterate

Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use
dnn and dnn-hmm2 to generate a new state-level
alignment align-raw on the training set and go to
step 4.

15

Algorithmic Main Steps: Recap

1. Convert CD-GMM-HMM to CD-DNN-HMM
2. Convert triphone states
3. Pre-Training & state-level alignment
4. Fine-tuning and re-estimating transition

probabilities
5. End or iterate

16

On CD-GMM-HMMs/ CD-DNN-HMMs

Experimental Results

17

Dataset Description

Bing Mobile voice search application (2008).
Examples of queries:
▰ “Mc-Donalds”, “Denny’s restaurant”, “oak ridge

church.”

18

Dataset Description (2)

19

 CD-GMM-HMM Baseline Systems

20

▰ Maximum-likelihood (ML)
▰ Maximum mutual information (MMI)
▰ Minimum phone error (MPE) criteria

CD-DNN-HMM (Context dependency)

21

CD-DNN-HMM (Pre-training)

22

CD-DNN-HMM (Hidden Layers)

23

CD-DNN-HMM (Hidden Layers)

24

5 layers:
Training → 62 hours
Fine-Tuning → 16.8 hours

CD-DNN-HMM (Decoding Time)

25

Dell Precision T3500 workstation:
▰ Quad core
▰ CPU clock speed: 2.66 GHz
▰ 8 MB of L3 CPU cache
▰ 12 GB of 1066 MHz DDR3 SDRAM

CD-DNN-HMM (Decoding Time) (2)

26

CD-DNN-HMM (Decoding Time) (2)

27

▰ Total time to train the system from scratch is
about four days.

▰ Using a GPU speeds up training by about a
factor of 30 faster than just using the CPU.

▰ Without using a GPU, it would take about three
months to train the best system.

CD-DNN-HMM (Bottleneck)

28

Bottleneck: mini-batch stochastic gradient descend (SGD)
algorithm used to train the DNNs:

▰ Inherently sequential
▰ Difficult to parallelize across machines.

So far SGD with a GPU is the best training strategy for
CD-DNN-HMMs.

→ GPU can exploit the parallelism in the layered DNN
structure.

Conclusion

29

Conclusion

▰ Training is considerably more expensive than for
CD-GMM-HMM systems

▰ Decoding is still very efficient
▰ In theory, CD-DNN-HMM training is quite scalable
▰ In practice, it is quite challenging to train on tens of

thousands of hours of data.

→ Finding new ways to parallelize training may require a
better theoretical understanding of deep learning

30

