
Context-Dependent Pre-Trained 
Deep Neural
Networks for Large-Vocabulary 
Speech Recognition

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND 
LANGUAGE PROCESSING, VOL. 20, NO. 1, JANUARY 2012

George E. Dahl, Dong Yu, Senior Member, IEEE, Li Deng, Fellow, IEEE, and Alex Acero, Fellow, 
IEEE



Context-Dependent Pre-Trained Deep Neural Networks for 
Large-Vocabulary Speech Recognition (CD-DNN-HMMs)
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1. Architecture
2. Training Procedure 
3. Experimental Results



Architecture
of CD-DNN-HMMs
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What makes CD-DNN-HMMs special ?
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▰ Deeper, more expressive NN  architectures:  
→ Unsupervised DBN pre-training algorithm.

▰ Use of posterior probabilities of senones as 
the output.



What is a senone ?
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In a nutshell: a tied triphone state.
Transitions between words can bear more 
information the words themselves
→ Triphones or even Quinphones
Match same range in waveform as just phones:
→ Senone



Prior Probability: Bayes Theorem
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CD-DNN-HMM Illustration
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Decoded Word Sequence
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For CD-DNN-HMMs

Training Procedure
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Algorithmic Main Steps

1. Convert  CD-GMM-HMM to CD-DNN-HMM
2. Convert triphone states
3. Pre-Training & state-level alignment
4. Fine-tuning and re-estimating transition 

probabilities
5. End or iterate
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Step 1: Convert  CD-GMM-HMM to CD-DNN-HMM

Train a best tied-state CD-GMM-HMM system where state tying is 
determined based on the data-driven decision tree. Denote the 
CD-GMM-HMM: gmm-hmm.

Parse gmm-hmm and:

1. Give each senone name an ordered senoneid starting from 0 
(training label for DNN fine-tuning).

2. Generate a mapping from each physical tri-phone state to the 
corresponding senoneid. Denote this mapping state2id.
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Step 2: Convert triphone states

Convert gmm-hmm to the corresponding 
CD-DNN-HMM dnn–hmm1 by borrowing the 
tri-phone and senone structure as well as the 
transition probabilities from gmm-hmm.
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Step 3: Pre-Training & state-level alignment

Pre-train each layer in the DNN bottom-up layer by 
layer and call the result: ptdnn.
Use gmm-hmm to generate state-level alignment: 
align-raw. the training set.
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Step 4: Fine-tuning and re-estimating transition probabilities

Convert align-raw to align where each physical 
tri-phone state is converted to senoneid, then 
fine-tune the DBN starting from ptdnn.
Denote the DBN: dnn.
Re-estimate the transition probabilities using dnn 
and dnn-hmm1 to maximize the likelihood of 
observing the features. Denote the new 
CD-DNN-HMM: dnn-hmm2.

14



Step 5: End or iterate

Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use 
dnn and dnn-hmm2 to generate a new state-level 
alignment align-raw on the training set and go to 
step 4.
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Algorithmic Main Steps: Recap

1. Convert  CD-GMM-HMM to CD-DNN-HMM
2. Convert triphone states
3. Pre-Training & state-level alignment
4. Fine-tuning and re-estimating transition 

probabilities
5. End or iterate
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On CD-GMM-HMMs/ CD-DNN-HMMs

Experimental Results
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Dataset Description

Bing Mobile voice search application (2008).
Examples of queries:
▰ “Mc-Donalds”, “Denny’s restaurant”, “oak ridge 

church.”
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Dataset Description (2)
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 CD-GMM-HMM Baseline Systems
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▰ Maximum-likelihood (ML)
▰ Maximum mutual information (MMI)
▰ Minimum phone error (MPE) criteria



CD-DNN-HMM (Context dependency)
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CD-DNN-HMM (Pre-training)
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CD-DNN-HMM (Hidden Layers)
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CD-DNN-HMM (Hidden Layers)
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5 layers:
Training → 62 hours
Fine-Tuning → 16.8 hours



CD-DNN-HMM (Decoding Time)
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Dell Precision T3500 workstation:
▰ Quad core
▰ CPU clock speed: 2.66 GHz
▰ 8 MB of L3 CPU cache
▰ 12 GB of 1066 MHz DDR3 SDRAM



CD-DNN-HMM (Decoding Time) (2)
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CD-DNN-HMM (Decoding Time) (2)
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▰ Total time to train the system from scratch is 
about four days.

▰ Using a GPU speeds up training by about a 
factor of 30 faster than just using the CPU.

▰ Without using a GPU, it would take about three 
months to train the best system.



CD-DNN-HMM (Bottleneck)
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Bottleneck: mini-batch stochastic gradient descend (SGD) 
algorithm used to train the DNNs:

▰ Inherently sequential
▰ Difficult to parallelize across machines. 

So far SGD with a GPU is the best training strategy for 
CD-DNN-HMMs.

→ GPU can exploit the parallelism in the layered DNN 
structure.



Conclusion
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Conclusion

▰ Training is considerably more expensive than for 
CD-GMM-HMM systems

▰ Decoding is still very efficient
▰ In theory, CD-DNN-HMM training is quite scalable
▰ In practice, it is quite challenging to train on tens of 

thousands of hours of data.

→ Finding new ways to parallelize training may require a 
better theoretical understanding of deep learning
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