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Abstract—Deep Learning (DL) algorithms have become ubiq-
uitous in data analytics. As a result, major computing vendors —
including NVIDIA, Intel, AMD and IBM — have architectural
road-maps influenced by DL workloads. Furthermore, several
vendors have recently advertised new computing products as
accelerating DL workloads. Unfortunately, it is difficult for data
scientists to quantify the potential of these different products.

This paper provides a performance and power analysis of
important DL workloads on two major parallel architectures:
NVIDIA DGX-1 (eight Pascal P100 GPUs interconnected with
NVLink) and Intel Knights Landing (KNL) CPUs interconnected
with Intel Omni-Path. Our evaluation consists of a cross section of
convolutional neural net workloads: CifarNet, CaffeNet, AlexNet
and GoogleNet topologies using the Cifar10 and ImageNet
datasets. The workloads are vendor optimized for each archi-
tecture. GPUs provide the highest overall raw performance. Our
analysis indicates that although GPUs provide the highest overall
performance, the gap can close for some convolutional networks;
and KNL can be competitive when considering performance/watt.
Furthermore, NVLink is critical to GPU scaling.

Index Terms—NVIDIA DGX-1, Intel Knights Landing, Caffe,
MaTEx, Deep Learning, Convolutional Neural Networks

I. INTRODUCTION

Deep Learning (DL) algorithms have become ubiquitous in

data analytics. A DL algorithm — typically implemented using

a deep neural network — uses a cascade of layers to represent a

non-linear model for a collection of observations. These models

are effective for a variety of Machine Learning (ML) tasks,

such as Computer Vision [1], [2], High Energy Physics [3],

and Climate Modeling [4]. Several implementations of DL

algorithms such as Caffe [5], TensorFlow [6], Theano [7], [8],

and Torch [9] have become widely available.

The ubiquity of DL algorithms has generated significant

interest among hardware vendors. Major vendors such as Intel,

NVIDIA, IBM, and AMD have proposed architecture road

maps influenced by DL algorithms. Recent offerings of two

vendors – Intel and NVIDIA – are specifically geared towards

optimizing DL algorithms, including training (model learning)

and inferencing (model application). NVIDIA recently proposed

the DGX-1 architecture [10], consisting of eight Pascal P100

GPUs tightly interconnected with NVLink. Intel recently

released the Knights Landing (KNL) [11] CPU architecture with

support for the Intel Omni-Path interconnect. Both architectures

have the potential of scaling a variety of DL workloads across

multiple compute devices, either to reduce response time or to

solve larger problems.

Unfortunately, it is difficult for data scientists to quantify

the potential of these different architectures for their workloads

of interest. There is a lack of independent studies that

provide thorough comparisons of these architectures, based

on vendor-optimized DL implementations, with respect to

both performance and power. Furthermore, system designers

and computer architects would benefit from knowing what

architectural features DL workloads can best exploit.

The goal of this paper is to serve as a reference point for

data analysts and system designers who are considering these

Intel and NVIDIA architectures. We make two contributions.

First, we present an in-depth performance and power evaluation
of important CNN workloads on (a) the NVIDIA DGX-1 and

(b) a cluster with Intel KNL CPUs interconnected with Omni-

Path. We select vendor-optimized Caffe implementations of the

most applicable combinations of convolutional neural network

(CNN) topologies and datasets. As CNN topologies, we select

CifarNet, CaffeNet, AlexNet and GoogleNet; as datasets, we

use Cifar10 and ImageNet. We identify scaling bottlenecks and

analyze efficiency with respect to performance and power.

Second, we introduce an implementation of Intel-Caffe

for distributed memory systems using Machine Learning

Toolkit on Extreme Scale (MaTEx) extensions to Intel-Caffe.

The implementation provides theoretical equivalence to the

sequential algorithm (batch gradient descent).

Our performance evaluation shows that GPUs provide the

highest overall raw performance. However, our results identify

important caveats. To scale CNN computations, focusing DL

architectural innovation on FLOPs can be misguided: the DGX-

1’s NVLink-based interconnect is critical to the DGX-1’s GPU

scaling advantage over the KNL cluster. When comparing one

GPU and KNL, the latter is competitive when considering

power consumption and networks with fewer features per layer.

Finally, when cost is considered — a metric we do not explore

because of its volatility — the gap between these architectures

is may be closer than currently perceived.

II. COMPUTING SYSTEMS

A. NVIDIA DGX-1

DGX-1 has eight Tesla P100-SXM2 GPUs conforming to

Pascal architecture. The Tesla P100-SXM2 has a mezzanine

connector which is known as SXM2 interface. In comparison to

previous PCIe form factor, the SXM2 connector is an upgrade to

enable the use of NVLink bus. Each GPU has 56 multiprocesors

with 64 CUDA cores per multiprocesor. This makes each GPU
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Fig. 1: Diagram of DGX-1 topology.

equipped with a total of 3584 CUDA cores. The GPU and

memory clock rates are 1328 MHz and 715 MHz, respectively.

The GPU has 4096-bit memory bus width, 16 GB global

memory, and a 4MB L2 cache. A CUDA driver version 8.0

and CUDA capability version 6.0 was used to enable use of

GPUs. The CPU on DGX-1 is a dual socket 40 core Intel

Xeon E5-2698 v4 with a clock rate of 2.20GHz. Each socket

has 20 cores with two threads enabled per cores. The main

memory of the system is 504 GB with 50 MB L3 cache, a

256 KB L2 cache shared between two cores, and 64 KB L1

cache per core.

DGX-1 is equipped with NVLink interconnect for intra-

node GPU clustering. DGX-1 utilizes multi GPU collective

communications library called NCCL for communication

over NVLink interconnect. NCCL is a library of accelerated

collectives that is hardware-topology-aware [12]. NCCL is

implemented as monolithic CUDA kernels and provides peer-

to-peer GPUDirect access and intra-kernel synchronization

between GPUs. Collectives such as broadcast, all-gather, copy,

reduce, reduce-and-copy are available in this library.

Figure 1 shows an eight GPU cluster in DGX-1. The network

of NVLink interconnect is wired such that any GPU is no

more than two GPU hops away from other GPUs. The GPU

cluster is connected to a switch (PLX-switch) with a PCIe

x16 interconnect. This switch serves as a connecting point

between GPUs and CPUs, and the Infiniband network. The

maximum bandwidth for NVLink interconnect with Tesla P100

is reported at 160 GB/s, whereas the maximum bandwidth of

PCIe x16 interconnected is 32 GB/s.

B. Intel Knights Landing and TACC Stampede Cluster

Intel’s Knights Landing (KNL), the second generation of

Xeon Phi, is a new many core architecture that resembles a

GPU in certain ways [13]. KNL microarchitecture is fabricated

with a 14 nm process and reported to provide 3 Teraflops of

double precision and 6 Teraflops of single precision peak FP

performance at a TDP of 215 Watts [13]. In this study we

used the Intel Xeon Phi 7250 with clock speed of 1.40 GHz

and 1.50 GHz Turbo. This chip has 68 hardware processor

cores with four hyper-threads per core. KNL has configurable

16 GB high bandwidth memory (HBM) called multi-channel
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Fig. 2: Diagram of KNL CPU [13].

DRAM (MCDRAM). In addition, KNL supports the new vector

extensions instruction set, AVX-512 which enables use of 512-

bit-wide vector instructions and vector registers. The KNL

block diagram is shown in Figure 2.

Unlike NVIDIA Pascal, computing systems with non-PCIe

intra-node KNL clusters are not readily available. In contrast,

KNL clusters with Intel Omni-Path interconnects are just

becoming available at several supercomputing sites. We used

the Texas Advanced Computing Center Stampede KNL Cluster.

Each node has 96 GB DDR4 as main memory. The interconnect

was a 100 Gb/s Omni-Path configured as fat tree of 8 spine

switches and 320 leaf switches with 5/4 oversubscription.

An important feature of KNL is the ability to select a caching

mode. Each pair of hardware cores with symmetrically shared

1 MB L2 cache is organized as a processor tile (Figure 2).

The KNL architecture [13] offers the flexibility to configure

the clustering of these tiles as per the requirement of user to

achieve highest bandwidth for communication with caches [13]

[14]. There are three possible ways to cluster processor tiles:

• All-to-All: Memory addresses are uniformly distributed

across all distributed tag directories (DTD) on the chip.

• Quadrant/Hemisphere: Tiles are divided into four identical

quadrants or two identical hemispheres. Here, the memory

controller which is local to each quadrant or hemisphere

is mapped only to tag directories in the same quadrant or

hemisphere. In this mode the latency of communication

with L2 is reduced in comparison to all-to-all mode.

• Sub-NUMA Cluster (SNC) modes: In SNC-4 or SNC-2

again the chip is divided into either four quadrants or

two hemispheres. In this mode, with the use of NUMA

aware software it is possible to pin software threads to

a particular quadrant which contains tag directory. In

addition, threads in each quadrant or hemisphere can

access local memory in NUMA domain.

In addition to configuring processor tiles, KNL architecture

provides the flexibility to configure the multi channel DRAM

(MCDRAM) memory in three modes:

• Cache: MCDRAM serves as the last level cache.

• Flat: MCDRAM serves as regular memory.
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• Hybrid: MCDRAM used partly as cache and partly as

regular memory.

III. THE CAFFE FRAMEWORK FOR

CONVOLUTIONAL NEURAL NETWORKS

The Convolutional Architecture for Fast Feature Embedding

(Caffe) is a widely used framework for Convolutional Neural

Networks (CNN) models. We selected four well known

models: CifarNet [15], CaffeNet [16], AlexNet [17], and

GoogLeNet [18] with model parameters typically adopted in

Caffe framework were used in this evaluation work. CifarNet

is a simple model typically used for small images whereas

GoogLeNet being a more complex model which can be used

for large image sizes.

We selected these three CNN architectures to cover ML

model differences arising out of (1) model complexity; (2)

number of parameters used; (3) computational complexity. In

order to use specific implementations of one of these models, it

is important to follow generally acceptable and already verified

implementations. We used the Convolutional Architecture

for Fast Feature Embedding (Caffe) [19] maintained by the

Berkeley Vision and Learning Center (BVLC) [20]. Caffe

is a collection of state-of-the-art deep learning algorithms

and reference models in a clean and modifiable framework

accessible through a open source repository [16].

The three models and their input datasets are described

briefly below.

A. CifarNet

CifarNet [15] made use of the Cifar10 dataset. The Cifar10

dataset which has images of size 32 × 32 × 3 channels

has 10 object classes. During its introduction, CifarNet was

the state-of-the-art object classification model. CifarNet has

three convolution layers, three pooling layers, and one fully-

connected layer. This CNN architecture has 10 K parameters.

B. AlexNet and CaffeNet

AlexNet [17] made use of the ImageNet (ILSVRC2012) [21]

dataset. A total of about 1.43 million images from this dataset

with size 256 × 256 were used in AlexNet [17]. Alexnet

performed significantly better over other non-deep learning

methods for ILSVRC2012. AlexNet has five convolution layers,

three pooling layers, and two fully-connected layers. This CNN

architecture has about 60 M parameters. We also used CaffeNet

model, which is essentially a replication of the AlexNet model

with minor differences.

C. GoogLeNet

GoogLeNet [18] is more complex model than any of its

predecessor CNN models. GoogLeNet has two convolution

layers, two pooling layers, and nine inception layers. Each

inception layer consists of six convolution layers and one

pooling layer. The concept of inception layer is to cover

bigger area of images while maintaining fine resolution for

small information on these images. The inception module

of GoogLeNet concatenates filters of different sizes into a

single new filter. This avoids parameter explosion with the use

of inception layers. GoogLeNet performs significantly better

than AlexNet for the ImageNet and the recent ILSVRC [21]

challenge datasets. This CNN architecture has about 5.5 M

parameters. GoogLeNet in relation to AlexNet has (i) more

layers; (ii) fewer features per layer, and; (iii) more activations.

A higher computational intensity of GoogLeNet relative to

AlexNet is attributed to above three reasons.

D. Input Datasets

We used two different datasets as input to CNN models.

Figure 3 gives information on two datasets used here and a

brief description of these datasets is given below.

1) The Cifar10 [15] is a labeled image dataset which is

a subset of the 80 million tiny images [22]. Cifar10

contains containing 60,000 32×32 color images with 3

channels in 10 classes. All these images are split into

50,000 training images and 10,000 test images.

2) The ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [21] dataset is a benchmark of object clas-

sification and detection. The dataset consists of large

number of object categories for large images. In this

study we used the ILSVRC2012 which has 1000 object

classes and 1,431,167 annotated images.

Dataset Image Size Description

Cifar10 [15] 32 × 32
60,000 images,
10 classes with

1000 images/class

ImageNet [21]
256 × 256

1.43 M images,
(ILSVRC2012) 1000 classes

Fig. 3: Input datasets and parameters.

IV. OPTIMIZED CAFFE VARIANTS

We made use of optimized versions of Caffe models provided

by the vendors of the computing hardware described in

Section II. During the implementation of these ML models,

we ensured that all executions satisfied following criteria:

• Produce semantically meaningful results. In particular,

parallel versions should provide sequentially equivalent

execution.

• Retain accuracy and convergence properties as per the

implementations in the Caffe framework; e.g., it is possible

to achieve better overall execution rates at the expense of

both accuracy and convergence, or training time. Overall

training time cannot be ignored.

We also considered different batch sizes and their effect on

performance. The ML models that we used are further described

in following sub-sections.

A. NVIDIA Caffe

This is an implementation of Caffe, a fork from BVLC-

Caffe [16] optimized for the DGX-1 architecture [23]. This

implementation of Caffe uses multiple GPU devices connected

through high bandwidth NVLink interconnect and makes use
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CNN Dataset Caffe Model Batch Sizes
CifarNet Cifar10 CIFAR10_full 96, 196

CaffeNet ImageNet bvlc_CaffeNet 256

AlexNet ImageNet bvlc_AlexNet 256, 512

GoogleNet ImageNet bvlc_GoogleNet 256, 512

Fig. 4: CNN architecture models and input datasets.

of optimized primitives for collective multi-GPU communica-

tion [12].

B. Intel Caffe

We used Intel distribution for Caffe [24] which is available

as a open software through a Github repository [25]. This

version of BVLC-Caffe is a fork dedicated to improving

Caffe performance when running on CPU, in particular Intel

Xeon processors. In order to make this version of Caffe run

efficiently on the second generation of Xeon Phi processors, we

made use of the Intel-2017 software suite including the latest

Intel Math Kernel Library (MKL). The multi-node distributed

implementation of this vendor provided Caffe using a client-

server-based MPI was not equivalent to sequential or single

node run [26]. We made appropriate modifications to the vendor

provided code [25] which ensured identical implementation

with sequential runs and also improved its performance when

using multiple nodes. These modifications are explained in the

following sub-section.

C. MaTEx-Intel-Caffe

Machine Learning Toolkit for Extreme Scale (MaTEx)

provides high performance distributed memory implementations

of Machine Learning and Data Mining algorithms. In this

paper, we considered MPI extensions to Intel Caffe available

with MaTEx. Specifically, MaTEx-Intel-Caffe provides im-

plementation of batch gradient descent, such that the batch

(set of samples such as images, tabular data) is divided

among processes (usually one process per compute node)

to maintain equivalence to the default sequential algorithm.

By splitting the data and replicating the model, MaTEx-Intel-

Caffe achieves data parallelism. To maintain equivalence to the
default sequential algorithm, an all-to-all reduction (achieved

by MPI_Allreduce) is executed after each batch. Besides
MPI based extensions, MaTEx-Intel-Caffe supports parallel

reading of datasets using Parallel NetCDF format – which is

used in this paper as well.

V. EVALUATION

We used the Caffe framework described in Section IV to

implement three different CNN architectures as shown in

Figure 4. We considered four architecture models falling within

broad three categories of CNN architectures. We made use of

identical input files provided with Caffe for these three models,

files with extension .prototxt for implementation on the two

different computing architectures described in Section II.

A. Methodology

We used the latest implementations of the vendor provided

CNN models described in Section IV. We also assured that

the testing error for these models after running a large

number of iterations was nearly equal for the two com-

puting architectures. The performance was measured using

two parameters: performance-time-efficiency and performance-

correctness-efficiency. The number of training iterations per

second during model run was used as a measure of time

efficiency. The correctness/error rate obtained after a prescribed

number of iterations in Caffe was used as a measure of

correctness efficiency.

Performance of various implementations was profiled using

available software tools. We used Nvprof [27] to profile

implementations on DGX-1, whereas Intel Advisor 2017 [28]

was used to profile implementations on KNL.

The power usage for the computing architectures was

measured using combination of vendor supplied hardware and

software tools. CUDA nvidia-smi API was used to collect power
and memory usage. The KNL chip supports the “Running

Average Power Limit (RAPL)” interface [29]. The results of

this model are updated on the order of milliseconds and are

accessible to user via a model specific register (MSR). Power

for KNL was estimated using RAPL measurements.

B. Algorithm Implementation and Error Rate

Identical implementations of any ML model using identical

dataset and model parameters are expected to generate identical

error rates. Error rate generated after a given number of

iterations of training and testing procedures of algorithm

implementations is an important indicator of correctness-

efficiency of implementation. The ML architecture model

variants described in Section IV were implemented on the

architectures described in Section II. We measured the error

rate during training and testing for different implementations

for a specified number of iterations during training and testing.

We compared error rates from implementations on DGX-1 and

KNL for CifarNet, CaffeNet and AlexNet, and GoogLeNet

after 60,000, 2000, 2000, and 1600 iterations, respectively.

These error rates were identical for implementations on two

systems and matched the error rates produced by sequential

BVLC-Caffe [20] implementation.

C. Single-node Configurations of KNL

Various clustering modes for processor tiles and memory

modes were described in Section II-B. Single node runs

on KNL for different ML models were tested with three

configurations, each with a different combination of processor

tile and MCDRAM configuration. A comparative result of

performance for these three modes is shown in Figure 5. We

see that the quadrant clustering with MCDRAM as cache

mode gives the highest performance. As expected the all-to-all

clustering mode with flat mode of MCDRAM gives the lowest

performance. KNL processor using AVX-512 instruction set

may benefit from use of MCDRAM in a flat mode. However,

code optimizations and memory allocations specific to this
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CNN / Dataset Time per iteration, ms
Mode a Mode b Mode c

CifarNet / Cifar10
Batch size 96 18 18 26
Batch size 192 27 27 29

CaffeNet / ImageNet
Batch size 256 354 415 422

AlexNet / ImageNet
Batch size 256 371 434 628
Batch size 512 732 810 821

GoogLeNet / ImageNet
Batch size 256 1740 1846 2523

Batch size 512 3427 * *

Mode a: Quadrant clustering with MCDRAM as cache

Mode b: Quadrant clustering with MCDRAM as flat

Mode c: All-to-all clustering with MCDRAM as flat
*
Manually terminated execution due to virtual memory thrashing

Fig. 5: Single node performance of selected Intel KNL modes.

MCDRAM mode need to be adopted to obtain optimum

performance. We used the quadrant clustering with MCDRAM

as cache as the mode to conduct scaling experiments with

KNL.

D. Scaling Comparison

Next we compared performance of CNN model runs with

scaling over multiple GPUs and CPU-nodes for DGX-1 and

KNL, respectively. We scaled on 1, 2, 4, and 8 DGX-1 GPUs

or KNL compute nodes, respectively. In the case of DGX-1, we

considered scaling with runs on 1, 2, 4, and 8 GPUs. Whereas

in the case of KNL, we considered scaling with runs on 1, 2,

4, and 8 nodes.

1) CifarNet/Cifar10: Figure 6 shows performance/scaling of

CifarNet model for batch sizes 96 and 192. The performance

of KNL improves with increasing number of nodes from one

through eight. However, this performance gain is sub-linear

due to synchronization and communication overhead which is

involved with increasing number of nodes. The performance of

DGX-1 improves significantly with the use of more than one

GPU for both batch sizes. Interestingly, the performance gain

with use of two GPUs is super-linear over the use of only one

GPU for batch size of 192. However, the performance gain

diminishes with the use of four and eight GPUs.

Figure 7 shows time distribution of different CUDA opera-

tions for batch size 192. Here we see that the time for cudaFree
API is significantly higher for the run on single GPU. The

time cost of cudaFree significantly increases with the size of

memory buffer. Whereas in the case of runs on two GPUs or

more the DGX-1 architecture is able to efficiently make use

of memory across multiple GPUs and hence the time cost of

cudaStreamSynchronize API was higher. The reason for more

than ideal speed up with the use of two GPUs for the batch

size of 192 was attributed to making best use of the memory

required as buffer during computation. Efficient use of memory

across multiple GPUs is further helped by high bandwidth

NVLink memory inter-connect. The computation workload

of CifarNet model using images from Cifar10 dataset is not

Fig. 6: Performance scaling of CifarNet/ImageNet.

CUDA Operation 1 gpu 2 gpu 4 gpu 8 gpu
cudaStreamSynchronize 23.2% 80.9% 71.2% 59.8%

cudaFree 52.4% 0.9% 1.3% 1.7%
cudaMalloc 8.5% 0.2% 0.5% 1.1%
cudaEventDestroy 8.0% 0.1% 0.2% 0.5%
cudaLaunch 3.4% 8.6% 10.9% 14.4%
cudaMemcpy 1.0% 1.5% 2.0% 2.7%
Other CUDA ops 3.5% 7.8% 13.9% 19.8%

Fig. 7: Time distribution of CUDA operations for CifarNet

(batch size 192) on DGX-1.

large enough to utilize all GPUs of DGX-1 and therefore the

performance does not scale well with 4-GPUs and degrades

further with the use of 8-GPUs. Average GPU utilization with

batch size 192 was 87% for 2-GPUs drops to 84% and 63%

for 4-GPUs and 8-GPUs, respectively.

2) CaffeNet/ImageNet: Figure 8 shows the performance

scaling of CaffeNet model. In Figure 8, we see that single node

and single GPU performance of KNL and DGX-1, respectively

are nearly identical. The DGX-1 performance scales well with

increasing number of GPUs. The synchronization cost makes

this scaling suboptimal. The average GPU utilization was

96.0%, 93.4%, 89.5%, and 83.4% with the use of 1, 2, 4,

8 GPUs, respectively.

The KNL performance does not scale well. The only

marginal performance gain with the use of two KNL nodes

and further degradation with four and eight nodes is attributed

to communication related bottlenecks as discussed later in this

section.

Figure 9 shows the distribution of costs when scaling

CaffeNet on DGX-1. Costs are represented as CUDA operations.

We see that progressively with increasing the number of GPUs

from one through eight, the sum of time for cudaStreamSynchro-
nize and cudaEventSynchronize decreases. The sum of times for

these two APIs is an indirect indicator of computation time of

kernels launched on GPUs. We see that this time progressively

reduces from 94% to 71% for 1-GPU and 8-GPUs, respectively.

This reduction occurs because other costs associated with
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Fig. 8: Performance scaling of CaffeNet/ImageNet.

thread management across multiple GPU devices is increasing.

This helps to explain the deviation of scaling below ideal for

CaffeNet on DGX-1.

CUDA Operation 1 gpu 2 gpu 4 gpu 8 gpu
cudaStreamSynchronize 68.0% 63.4% 57.4% 48.9%
cudaEventSynchronize 25.5% 26.2% 25.4% 22.2%

cudaMemcpy 2.8% 3.8% 5.3% 7.1%
cudaLaunch 1.1% 2.1% 3.5% 6.0%
Other CUDA ops 2.6% 4.5% 8.4% 15.8%

Fig. 9: Time distribution of CUDA operations for CaffeNet

(batch size 256) on DGX-1.

3) AlexNet/ImageNet: Figure 10 shows the performance

scaling for AlexNet model. The computations of AlexNet model

are comparable to the computations of CaffeNet. We therefore

see that the single node and single GPU performance of KNL

and DGX-1, respectively are nearly identical for both batch

sizes. Again the scaling of DGX-1 performance for AlexNet is

identical to that of CaffeNet given the similarity of the two ML

models. The KNL implementation again shows no scaling with

the increasing number computer nodes. AlexNet architecture

has 60 M parameters. Considering that each parameter is 4-

bytes (a float), sending parameters requires a message size

of 240 MB. Thus, performing a parameter all-reduction has

notable network and synchronization cost. This cost impedes

scaling of AlexNet on KNL cluster.

The degradation in scaling of performance of KNL due to

communication overhead while using a complex model like

CaffeNet and AlexNet leads intuitively to try CNN model with

even more computational load with relatively less number of

model parameters. The GoogLeNet model is an ideal case of

such CNN model.
4) GoogLeNet/ImageNet: Figure 11 shows the performance

scaling of GoogLeNet. In Figure 11, data from use of one and

two GPUs were not available. This was due to the specific

implementation of GoogLeNet model which required large

GPU memory which was available only with the use of four

and eight GPUs. DGX-1 performance was much higher than

Fig. 10: Performance scaling of AlexNet/ImageNet.

Fig. 11: Performance scaling of GoogLeNet/ImageNet.

that of KNL even with the use of 16 nodes. The performance

on KNL showed scaling with increasing the number of nodes

from 1 through 16. However, this scaling was sub-linear.

Figure 12 shows the time distribution of different CUDA

operations with the use of 4 and 8 GPUs. With the use of

maximum 8 GPUs the sum of costs of cudaStreamSynchronize
and cudaEventSynchronize decreases. The relative time cost

of cudaMalloc and cudaFree however become significant.

Associated costs of memory allocation and freeing up the

memory proportionately become relatively high. This in effect

causes some deterioration in scaling of performance from 4-

GPUs to using 8-GPUs.

Figures 6 through 11 show the performance and scaling

with increasing number of nodes or GPUs. In the case of runs

with KNL, we see poor scaling for CaffeNet and AlexNet in

Figures 8 and 10, respectively. We investigated the runs on

KNL further by measuring the relative cost of computation

and communication with the use of more than one nodes.

Figure 13 shows the communication overhead as percentage

of total time spent per iteration. We see that CaffeNet and
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CUDA Operation 4 gpu 8 gpu
cudaStreamSynchronize 66.7% 28.0%
cudaEventSynchronize 7.3% 10.4%

cudaLaunch 6.4% 7.6%
cudaMalloc 5.7% 19.0%
cudaFree 4.6% 14.4%
cudaMemGetInfo 1.6% 4.3%
Other CUDA ops 7.7% 16.3%

Fig. 12: Time distribution of CUDA operations for GoogLeNet

(batch size 256) on DGX-1.

CNN / Dataset Communication time per iteration
2 node 4 node 8 node

CifarNet / Cifar10
Batch size 96 1.9% 5.3% 3.1%
Batch size 192 2.6% 6.9% 8.6%

CaffeNet / ImageNet
Batch size 256 32.5% 60.1% 77.7%

AlexNet / ImageNet
Batch size 256 46.2% 61.4% 76.7%
Batch size 512 19.1% 47.3% 66.8%

GoogLeNet / ImageNet
Batch size 256 5.6% 14.3% 18.0%
Batch size 512 3.9% 14.2% 38.7%

Fig. 13: Communication overhead as percentage of total time

per iteration for KNL.

AlexNet runs on 2 through 8 nodes show progressive increase

in communication cost. CaffeNet and AlexNet ML make use

of a large number of model parameters, 60 M for AlexNet.

A large number of parameters require more time to perform

all-reduce at every iteration. The communication overhead for

AlexNet using 8-nodes reduces from 76.71% to 66.81% with

the increase in batch size from 256 to 512, respectively. This is

because the computation time increases for batch size 512 while

the communication time increases only marginally. As long

as the communication overhead is less than the computational

cost as measured at each iteration, we see improvement in

performance with the use of increasing number of nodes. The

CifarNet model offers such potential to scale with increasing

number of compute nodes. For GoogleNet with batch size 256,

the communication cost is relatively low at 18.0% while using

8-nodes.

E. Floating Point Rates

The measure of performance reported in Figures 6 through 11

is the number of iterations per second. With the use of identical

workload in terms of batch size, relevant ML-model parameters,

and algorithm implementation we were able ensure an identical

workload over the two computing systems evaluated here. The

number of floating point operations (FLOPS) performed in

single precision is another metric to report performance. The

measurement of FLOPS may differ significantly for CPU

and GPU architecture, and the software tools used for this

measurement.

We made use of Intel Advisor 2017 [28] and Intel VTune to

get the FLOPS count for different ML architecture models. The

FLOPS count was obtained using these software tools on KNL

for a specified number of iterations. The number of FLOPS

per iteration was obtained by running the simulations twice

for up to two different number of iterations. The difference of

FLOPS thus obtained were divided by the time per iterations

to get the number of FLOPS per second (FLOPS/s).

In Figure 14 the performance of KNL with 1-Node is

reported in GFLOPS/s in the second column. Subsequent

columns report the performance scaling factor when compared

with 1-Node KNL performance. The scaling factors reported in

Figure 14 when multiplied with the GLOPS/s cannot provide

an accurate measure of FLOPS rate for 8-Node KNL, and 1-

GPU or 8-GPU DGX-1. These scaling factors however provide

an approximate comparison of FLOPS rate.

F. Power Efficiency

Power efficiency is a critical evaluation metric. In general,

the power efficiency is at odds with the performance effi-

ciency. Therefore there exists a trade-off between the power

and performance efficiencies of a computing hardware for

an application under consideration. Considering the results

presented in Section V-D that represent a case of strong scaling

problem, the power efficiency exhibit an inverse relationship

with the performance. Figures 15a through 18b show plots of

power with respect to performance for different ML architecture

models and using different batch sizes. The power numbers for

KNL were directly read from the in-build hardware register

during the course of running an application. We did not find

any performance overhead cost associated with collection of

power numbers. The power for KNL includes the CPU package

power and the DRAM package power. Here, we ignored the

network power for inter-node communication for KNL. The

power for DGX-1 was measured using the nvidia-smi API.
There is an overhead cost associated with using the nvidia-smi
API. Therefore we kept the sampling interval coarse enough

to keep the performance overhead low. A sampling rate of

900 ms or above ensured keeping the performance overhead

below 4%. Separate runs were conducted to obtain the power

numbers in addition to the runs for performance for both KNL

and DGX-1. The CPU and DRAM memory power for DGX-1

were small and nearly constant and therefore not included in

Figures 15a through 18b.

The CifarNet plots in Figures 15a and 15b shows that

DGX-1 mostly outperforms KNL in power efficiency along

with performance for two different batch sizes. Figures 16

through 17b show plots of power and performance for CaffeNet

and AlexNet. We see that the performance of KNL using one

node is comparable to DGX-1 with one GPU. Poor scaling

of KNL with increasing number of nodes keep the DGX-1

power-performance data plotted in Figures 16 through 17b on

the power-performance Pareto front. With the absence of data

points for DGX-1 using one or two GPUs for GoogLeNet, we

see in Figures 18a and 18b that single node KNL is most power

efficient while DGX-1 with 8 GPUs gives highest performance.
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Iteration/s ratio:
CNN / Dataset GFLOPS/s: KNL/8-node DGX-1/1-gpu DGX-1/8-gpu

KNL/1-node vs. KNL/1-node
CifarNet / Cifar10

Batch size 96 55 1.9 1.5 2.9
Batch size 192 74 2.3 1.1 3.8

CaffeNet / ImageNet
Batch size 256 357 1.0 1.0 4.7

AlexNet / ImageNet
Batch size 256 258 1.0 1.1 4.9
Batch size 512 295 1.7 1.1 6.2

GoogLeNet / ImageNet

Batch size 256 90 5.4 * 18.9

Batch size 512 78 6.8 * 22.5
*
DGX-1 run required use of more than 1-GPU

Fig. 14: FLOP performance for 1 KNL; and relative iteration/s ratio for selected configurations (vs. 1 KNL).

(a)

(b)

Fig. 15: Power and performance of CifarNet/Cifar10 with batch

sizes (a) 96 and (b) 192.

VI. RELATED WORK

One of the widely used convolutional network benchmarks

focuses primarily on GPU performance [30]. In one recent

study by Shi et al., [31], performance comparison of a few

deep learning software tools on multi-core CPU and many-core

GPUs was presented. Multicore scalability of tensor convolution

optimized for deep networks was presented in [32]. In one other

comparative study of deep learning software framework [33],

the performance of specific kernels used in different ML models

on GPU was measured that used cuDNN library [34]. A study

by Song et al., [35] presented characterization of CNN based

Fig. 16: Power and performance of CaffeNet/ImageNet with

batch size 256

data processing on GPUs and CNN models implementations

on distributed framework. The only study comparing multi-

core CPU and many-core GPUs [31] considered relatively

small batch sizes for different DNN/CNN architecture models.

Also this study did not considered scaling over multiple-CPU

distributed framework or scaling with the use of more than one

GPU. To date performance evaluation on multi-node CPU and

comparison with implementation on many GPU architecture is

not available in the literature. Power consumption is another

important aspect in addition to the information of performance

and scaling of CNN models. The work presented in this

manuscript highlights performance with respect to time and

correctness and the power consumption of state of the art CPU

and GPU architectures. Such evaluation may provide extremely

useful information on decision making to the users of ML-CNN

architecture models.

VII. CONCLUSIONS

We have provided a detailed performance and power scaling

analysis of important CNN workloads on two architectures:

(a) NVIDIA DGX-1 (eight Pascal P100 GPUs interconnected

with NVLink) and (b) a cluster with Intel Knights Landing

(KNL) CPUs interconnected with Intel Omni-Path. We used the
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(a)

(b)

Fig. 17: Power and performance of AlexNet/ImageNet with

batch sizes (a) 256 and (b) 512.

(a)

(b)

Fig. 18: Power and performance of GoogLeNet/ImageNet with

batch sizes (a) 256 and (b) 512.

vendor recommended implementations of ML models. In case

of multi-node implementation on KNL, we made appropriate

modifications to the code which ensured results identical to

sequential run. This modification also improved multi-node

performance of ML models on KNL. We ensured identical

algorithm implementations on KNL and DGX-1systems that

produced results identical to a sequential run.

Our conclusions are as follows.

First, we find that GPUs provide the highest overall raw

performance. Most DL architectural innovation focuses on

FLOPs (e.g. half-precision), whereas interconnect performance
is the scaling bottleneck. Specifically, the DGX-1’s high speed

NVLink-based interconnect is very important for scaling the

performance of these workloads. Networks such as AlexNet

require 10× more parameters than the dense GoogLeNet. This

leads to per-rank all-reductions with very large payloads. The

NVLink-based interconnect is fast enough that compute times

dominate network times while scaling out to 8 GPUs. In

contrast, the Omni-Path-based interconnect results in synchro-

nization costs that rival compute costs.

Second, despite the above, we also find that a single KNL

can be competitive with a single Pascal in certain cases. The

performance of CifarNet and AlexNet on single node of KNL

or single Pascal GPU are comparable. When considering

performance and power tradeoffs, we also find that a single

KNL can be competitive.

Finally, we observe that potential purchases will want to

also consider cost when making any procurement decisions.

Adding this additional consideration may make one platform

more or less attractive.
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