
Efficient Replica Maintenance for Distributed Storage Systems

Byung-Gon Chun,† Frank Dabek,? Andreas Haeberlen,‡ Emil Sit,? Hakim Weatherspoon,†

M. Frans Kaashoek,? John Kubiatowicz,† and Robert Morris?

? MIT Computer Science and Artificial Intelligence Laboratory,
‡ Rice University/MPI-SWS, † University of California, Berkeley

Abstract

This paper considers replication strategies for storage systems

that aggregate the disks of many nodes spread over the Internet.

Maintaining replication in such systems can be prohibitively ex-

pensive, since every transient network or host failure could po-

tentially lead to copying a server’s worth of data over the Internet

to maintain replication levels.

The following insights in designing an efficient replication al-

gorithm emerge from the paper’s analysis. First, durability can

be provided separately from availability; the former is less ex-

pensive to ensure and a more useful goal for many wide-area ap-

plications. Second, the focus of a durability algorithm must be

to create new copies of data objects faster than permanent disk

failures destroy the objects; careful choice of policies for what

nodes should hold what data can decrease repair time. Third,

increasing the number of replicas of each data object does not

help a system tolerate a higher disk failure probability, but does

help tolerate bursts of failures. Finally, ensuring that the system

makes use of replicas that recover after temporary failure is crit-

ical to efficiency.

Based on these insights, the paper proposes the Carbonite

replication algorithm for keeping data durable at a low cost. A

simulation of Carbonite storing 1 TB of data over a 365 day

trace of PlanetLab activity shows that Carbonite is able to keep

all data durable and uses 44% more network traffic than a hy-

pothetical system that only responds to permanent failures. In

comparison, Total Recall and DHash require almost a factor of

two more network traffic than this hypothetical system.

1 Introduction

Wide-area distributed storage systems typically use repli-

cation to provide two related properties: durability and

availability. Durability means that objects that an applica-

tion has put into the system are not lost due to disk failure

whereas availability means that getwill be able to return

the object promptly. Objects can be durably stored but not

This research was supported by the National Science Founda-

tion under Cooperative Agreement No. ANI-0225660, http://

project-iris.net/. Andreas Haeberlen was supported in part

by the Max Planck Society. Emil Sit was supported in part by the

Cambridge-MIT Institute. Hakim Weatherspoon was supported by an

Intel Foundation PhD Fellowship.

immediately available: if the only copy of an object is on

the disk of a node that is currently powered off, but will

someday re-join the system with disk contents intact, then

that object is durable but not currently available. The pa-

per’s goal is to develop an algorithm to store immutable

objects durably and at a low bandwidth cost in a system

that aggregates the disks of many Internet nodes.

The threat to durability is losing the last copy of an ob-

ject due to permanent failures of disks. Efficiently coun-

tering this threat to durability involves three main chal-

lenges. First, network bandwidth is a scarce resource in

a wide-area distributed storage system. To store objects

durably, there must be enough network capacity to cre-

ate copies of objects faster than they are lost due to disk

failure. Second, a system cannot always distinguish be-

tween transient failures and permanent disk failures: it

may waste network bandwidth by creating new copies

during transient failures. Third, after recovery from tran-

sient failures, some replicas may be on nodes that the

replica lookup algorithm does not query and are thus ef-

fectively lost.

Since transient failures are common in wide-area sys-

tems, replication algorithms can waste bandwidth by mak-

ing unneeded replicas. For example, the initial replica-

tion algorithm [6] that the DHash distributed hash table

(DHT) [9] turned out to be inadequate to build storage ap-

plications such as UsenetDHT [34], Antiquity [11], and

OverCite [35, 36].

A problem with DHash was that its design was driven

by the goal of achieving 100% availability; this decision

caused it to waste bandwidth by creating new replicas in

response to temporary failures. Its design and similar ones

(such as Total Recall [3]) are overkill for durability. Fur-

thermore, users of many Internet applications can tolerate

some unavailability. For example, Usenet readers will see

all articles eventually, as long as they are stored durably.

Our experience with these DHT applications has led us to

the following insights:

• Durability is a more practical and useful goal than

availability for applications that store objects (as op-

posed to caching objects).

• The main goal of a durability algorithm should be to

create new copies of an object faster than they are

destroyed by disk failures; the choice of how repli-

cas are distributed among nodes can make this task

easier.

• Increasing the replication level does not help tolerate

a higher average permanent failure rate, but it does

help cope with bursts of failures.

• Reintegrating returning replicas is key to avoiding

unnecessary copying.

Using these insights we have developed Carbonite, an

efficient wide-area replication algorithm for keeping ob-

jects durable. After inserting a set of initial replicas, Car-

bonite begins by creating new replicas mostly in response

to transient failures. However, over time it is increasingly

able to ignore transient failures and approaches the goal of

only producing replicas in response to permanent failures.

Carbonite’s design assumes that the disks in the dis-

tributed storage system fail independently of each other:

failures of geographically distributed hard drives from dif-

ferent manufacturers are likely to be uncorrelated.

In a year-long PlanetLab failure trace, however, we ob-

serve some correlated failures because of coordinated re-

installs of the PlanetLab software. Despite this, an evalua-

tion using the PlanetLab failure trace shows that Carbonite

is able to keep 1 TB of data durable, and consumes only

44% more network traffic than a hypothetical system that

only responds to permanent failures. In comparison, To-

tal Recall and DHash require almost a factor of two more

network traffic than this hypothetical system.

The rest of this paper explains our durability models

and algorithms, interleaving evaluation results into the ex-

planation. Section 2 describes the simulated evaluation

environment. Section 3 presents a model of the relation-

ship between network capacity, amount of replicated data,

number of replicas, and durability. Section 4 explains

how to decrease repair time, and thus increase durabil-

ity, by proper placement of replicas on servers. Section 5

presents an algorithm that reduces the bandwidth wasted

making copies due to transient failures. Section 6 outlines

some of the challenges that face practical implementations

of these ideas, Section 7 discusses related work, and Sec-

tion 8 concludes.

2 System environment

The behavior of a replication algorithm depends on the

environment in which it is used: high disk failure rates or

low network access link speeds make it difficult for any

system to maintain durability. We will use the character-

istics of the PlanetLab testbed as a representative environ-

ment when evaluating wide-area replication techniques.

Dates 1 March 2005 – 28 Feb 2006

Number of hosts 632

Number of transient failures 21255

Number of disk failures 219

Transient host downtime (s) 1208, 104647, 14242

Any failure interarrival (s) 305, 1467, 3306

Disk failures interarrival (s) 54411, 143476, 490047

(Median/Mean/90th percentile)

Table 1: CoMon+PLC trace characteristics.

For explanatory purposes, we will also use a synthetic

trace that makes some of the underlying trends more vis-

ible. This section describes both environments, as well as

the simulator we used to evaluate our algorithm.

2.1 PlanetLab characteristics

PlanetLab is a large (> 600 node) research testbed [28]

with nodes located around the world. We chose this

testbed as our representative environment mainly because

it is a large, distributed collection of machines that has

been monitored for long periods; we use this monitoring

data to construct a realistic trace of failures in a mostly

managed environment.

The main characteristics of PlanetLab that interest us

are the rates of disk and transient failures. We use histor-

ical data collected by the CoMon project [25] to identify

transient failures. CoMon has archival records collected

on average every 5 minutes that include the uptime as re-

ported by the system uptime counter on each node. We

use resets of this counter to detect reboots, and we esti-

mate the time when the node became unreachable based

on the last time CoMon was able to successfully contact

the node. This allows us to pinpoint failures without de-

pending on the reachability of the node from the CoMon

monitoring site.

We define a disk failure to be any permanent loss of

disk contents, due to disk hardware failure or because its

contents are erased accidentally or intentionally. In or-

der to identify disk failures, the CoMon measurements

were supplemented with event logs from PlanetLab Cen-

tral [28]. This database automatically records each time

a PlanetLab node is reinstalled (e.g., for an upgrade, or

after a disk is replaced following a failure). The machine

is then considered offline until the machine is assigned a

regular boot state in the database. Table 1 summarizes the

statistics of this trace. Figure 7(a) visualizes how transient

and disk failures accumulate over time in this network.

2.2 Synthetic trace

We also generated synthetic traces of failures by drawing

failure inter-arrival times from exponential distributions.

Synthetic traces have two benefits. First, they let us sim-

ulate longer time periods, and second, they allow us to

increase the failure density, which makes the basic under-

lying trends more visible. We conjecture that exponential

inter-failure times are a good model for disks that are in-

dependently acquired and operated at geographically sep-

arated sites; exponential intervals are possibly not so well

justified for transient failures due to network problems.

Each synthetic trace contains 632 nodes, just like the

PlanetLab trace. The mean session time and downtime

match the values shown in Table 1; however, in order to

increase the failure density, we extended the length to two

years and reduced the average node lifetime to one year.

Each experiment was run with ten different traces; the fig-

ures show the averages from these experiments.

2.3 Simulation

We use the failure traces to drive an event-based simu-

lator. In the simulator, each node has unlimited disk ca-

pacity, but limited link bandwidth. However, it assumes

that all network paths are independent so that there are

no shared bottlenecks. Further it assumes that if a node is

available, it is reachable from all other nodes. This is oc-

casionally not the case on PlanetLab [14]; however, tech-

niques do exist to mask the effects of partially unreachable

nodes [1].

The simulator takes as input a trace of transient and

disk failure events, node repairs and object insertions. It

simulates the behavior of nodes under different protocols

and produces a trace of the availability of objects and the

amount of data sent and stored by each node for each hour

of simulated time. Each simulation calls put with 50,000

data objects, each of size 20 MB. Unless otherwise noted,

each node is configured with an access link capacity of

150 KBytes/s, roughly corresponding to the throughput

achievable under the bandwidth cap imposed by Planet-

Lab. The goal of the simulations is to show the percent-

age of objects lost and the amount of bandwidth needed

to sustain objects over time.

3 Understanding durability

We consider the problem of providing durability for a stor-

age system composed of a large number of nodes spread

over the Internet, each contributing disk space. The sys-

tem stores a large number of independent pieces of data.

Each piece of data is immutable. The system must have

a way to name and locate data; the former is beyond the

scope of this work, while the latter may affect the possi-

ble policies for placing replicas. While parts of the system

will suffer temporary failures, such as network partitions

or power failures, the focus of this section is on failures

that result in permanent loss of data. Section 5 shows how

to efficiently manage transient failures; this section de-

scribes some fundamental constraints and challenges in

providing durability.

3.1 Challenges to durability

It is useful to view permanent disk and node failures as

having an average rate and a degree of burstiness. To pro-

vide high durability, a system must be able to cope with

both.

In order to handle some average rate of failure, a high-

durability system must have the ability to create new repli-

cas of objects faster than replicas are destroyed. Whether

the system can do so depends on the per-node network

access link speed, the number of nodes (and hence ac-

cess links) that help perform each repair, and the amount

of data stored on each failed node. When a node n fails,

the other nodes holding replicas of the objects stored on n

must generate replacements: objects will remain durable

if there is sufficient bandwidth available on average for the

lost replicas to be recreated. For example, in a symmetric

system each node must have sufficient bandwidth to copy

the equivalent of all data it stores to other nodes during its

lifetime.

If nodes are unable to keep pace with the average fail-

ure rate, no replication policy can prevent objects from

being lost. These systems are infeasible. If the system is

infeasible, it will eventually “adapt” to the failure rate by

discarding objects until it becomes feasible to store the re-

maining amount of data. A system designer may not have

control over access link speeds and the amount of data to

be stored; fortunately, choice of object placement can im-

prove the speed that a system can create new replicas as

discussed in Section 4.

If the creation rate is only slightly above the average

failure rate, then a burst of failures may destroy all of an

object’s replicas before a new replica can be made; a sub-

sequent lull in failures below the average rate will not help

replace replicas if no replicas remain. For our purposes,

these failures are simultaneous: they occur closer together

in time than the time required to create new replicas of

the data that was stored on the failed disk. Simultaneous

failures pose a constraint tighter than just meeting the av-

erage failure rate: every object must have more replicas

than the largest expected burst of failures. We study sys-

tems that aim to maintain a target number of replicas in

order to survive bursts of failure; we call this target rL.

Higher values of rL do not allow the system to survive a

higher average failure rate. For examples, if failures were

to arrive at fixed intervals, then either rL = 2 would always

be sufficient, or no amount of replication would ensure

durability. If rL = 2 is sufficient, there will always be time

to create a new replica of the objects on the most recently

failed disk before their remaining replicas fail. If creating

new replicas takes longer than the average time between

failures, no fixed replication level will make the system

feasible; setting a replication level higher than two would

only increase the number of bytes each node must copy in

response to failures, which is already infeasible at rL = 2.

Figure 1: A continuous time Markov model for the pro-

cess of replica failure and repair for a system that main-

tains three replicas (rL = 3). Numbered states correspond

to the number of replicas of each object that are durable.

Transitions to the left occur at the rate at which repli-

cas are lost; right-moving transitions happen at the replica

creation rate.

3.2 Creation versus failure rate

It might seem that any creation rate higher than the av-

erage failure rate will lead to an unbounded number of

replicas, thus satisfying the burst constraint. However, this

intuition is false. To see why, let us model the number of

replicas of an object as a birth-death process using a con-

tinuous time Markov chain, which assumes independent

exponential inter-failure and inter-repair times. This as-

sumption is reasonable for independent disk failures.

An object is in state i when i disks hold a replica of the

object. There are thus rL + 1 possible states, as we start

with rL replicas and only create new replicas in response

to failures. From a given state i, there is a transition to

state i+ 1 with rate µi corresponding to repair, except for

state 0 which corresponds to loss of durability and state

rL which does not need repair. The actual rate µi depends

on how bandwidth is allocated to repair and may change

depending on the replication level of an object. There is a

transition to the next lower state i−1 with rate iλ f because

each of the i nodes holding an existing replica might fail.

Figure 1 shows this model for the case where rL = 3.

This model can be analyzed numerically to shed light

on the impact of rL on the probability of data loss; we will

show this in Section 3.3. However, to gain some intuition

about the relationship between creation and failure rates

and the impact this has on the number of replicas that can

be supported, we consider a simplification of Figure 1 that

uses a fixed µ but repairs constantly, even allowing for

transitions out of state 0. While these changes make the

model less realistic, they turn the model into an M/M/∞
queue [19] where the “arrival rate” is the repair rate and

the “service rate” is the per-replica failure rate. The “num-

ber of busy servers” is the number of replicas: the more

replicas an object has, the more probable it is that one of

them will fail.

This simplification allows us to estimate the equilib-

rium number of replicas: it is µ/λ f . Given µ and λ f , a

system cannot expect to support more than this number of

replicas. For example, if the system must handle coinci-

dental bursts of five failures, it must be able to support at

least six replicas and hence the replica creation rate must

be at least 6 times higher than the average replica fail-

ure rate. We will refer to µ/λ f as θ . Choices for rL are

effectively limited by θ . It is not the case that durability

increases continuously with rL; rather, when using rL > θ ,

the system provides the best durability it can, given its re-

source constraints. Higher values of θ decrease the time

it takes to repair an object, and thus the ‘window of vul-

nerability’ during which additional failures can cause the

object to be destroyed.

To get an idea of a real-world value of θ , we estimate µ
and λ f from the historical failure record for disks on Plan-

etLab. From Table 1, the average disk failure inter-arrival

time for the entire test bed is 39.85 hours. On average,

there were 490 nodes in the system, so we can estimate the

mean time between failures for a single disk as 490 ·39.85

hours or 2.23 years. This translates to λ f ≈ 0.439 disk fail-

ures per year.

The replica creation rate µ depends on the achiev-

able network throughput per node, as well as the amount

of data that each node has to store (including replica-

tion). PlanetLab currently limits the available network

bandwidth to 150 KB/s per node, and if we assume that

the system stores 500 GB of unique data per node with

rL = 3 replicas each, then each of the 490 nodes stores

1.5 TB. This means that one node’s data can be recreated

in 121 days, or approximately three times per year. This

yields µ ≈ 3 disk copies per year.

In a system with these characteristics, we can estimate

θ = µ/λ f ≈ 6.85, though the actual value is likely to be

lower. Note that this ratio represents the equilibrium num-

ber of disks worth of data that can be supported; if a disk

is lost, all replicas on that disk are lost. When viewed in

terms of disk failures and copies, θ depends on the value

of rL: as rL increases, the total amount of data stored per

disk (assuming available capacity) increases proportion-

ally and reduces µ . If λ f = µ , the system can in fact main-

tain rL replicas of each object.

To show the impact of θ , we ran an experiment with

the synthetic trace (i.e., with 632 nodes, a failure rate of

λ f = 1 per year and a storage load of 1 TB), varying the

available bandwidth per node. In this case, 100 B/s cor-

responds to θ = 1.81/rL. Figure 2 shows that, as θ drops

below one, the system can no longer maintain full repli-

cation and starts operating in a ‘best effort’ mode, where

higher values of rL do not give any benefit. The exception

is if some of the initial rL replicas survive through the en-

tire trace, which explains the small differences on the left

side of the graph.

 0

 2

 4

 6

 8

 10

 12

 200 400 600 800 1000 1200

A
v
g

 r
e

p
lic

a
s
 p

e
r

o
b

je
c
t
a

t
e

n
d

 o
f
tr

a
c
e

Bandwith per node (bytes/s)

rL=2
rL=4
rL=6
rL=8

Figure 2: Average number of replicas per object at the

end of a two-year synthetic trace for varying values of

θ , which varies with bandwidth per node (on the x-axis)

and total data stored (rL). Where θ < 1, the system cannot

maintain the full replication level; increasing rL further

does not have any effect.

3.3 Choosing rL

A system designer must choose an appropriate value of

rL to meet a target level of durability. That is, for a given

deployment environment, rL must be high enough so that

a burst of rL failures is sufficiently rare.

One approach is to set rL to one more than the max-

imum burst of simultaneous failures in a trace of a real

system. For example, Figure 3 shows the burstiness of

permanent failures in the PlanetLab trace by counting the

number of times that a given number of failures occurs

in disjoint 24 hour and 72 hour periods. If the size of a

failure burst exceeds the number of replicas, some objects

may be lost. From this, one might conclude that 12 repli-

cas are needed to maintain the desired durability. This

value would likely provide durability but at a high cost.

If a lower value of rL would suffice, the bandwidth spent

maintaining the extra replicas would be wasted.

There are several factors to consider in choosing rL to

provide a certain level of durability. First, even if failures

are independent, there is a non-zero (though small) proba-

bility for every burst size up to the total number of nodes.

Second, a burst may arrive while there are fewer than rL

replicas. One could conclude from these properties that

the highest possible value of rL is desirable. On the other

hand, the simultaneous failure of even a large fraction of

nodes may not destroy any objects, depending on how the

system places replicas (see Section 4). Also, the workload

may change over time, affecting µ and thus θ .

The continuous time Markov model described in Fig-

ure 1 reflects the distributions of both burst size and object

replication level. The effect of these distributions is signif-

0 1 2 3 4 5 6 7 8 9 10 11 12

Crashes in single period

0

20

40

60

N
um

be
r

of
 o

cc
ur

re
nc

es

24 Hour
72 Hour

Figure 3: Frequency of “simultaneous” failures in the

PlanetLab trace. These counts are derived from breaking

the trace into non-overlapping 24 and 72 hour periods and

noting the number of permanent failures that occur in each

period. If there are x replicas of an object, there were y

chances in the trace for the object to be lost; this would

happen if the remaining replicas were not able to respond

quickly enough to create new replicas of the object.

icant. An analysis of the governing differential equations

can be used to derive the probability that an object will be

at a given replication level after a given amount of time. In

particular, we can determine the probability that the chain

is in state 0, corresponding to a loss of durability.

We show the results of such an analysis in Figure 4; for

details, see [7]. To explore different workloads, we con-

sider different amounts of data per node. The graph shows

the probability that an object will survive after four years

as a function of rL and data stored per node (which affects

the repair rate and hence θ).

As rL increases, the system can tolerate more simulta-

neous failures and objects are more likely to survive. The

probability of object loss at rL = 1 corresponds to using no

replication. This value is the same for all curves since it

depends only on the lifetime of a disk; no new replicas can

be created once the only replica of the object is lost. To

store 50 GB durably, the system must use an rL of at least

3. As the total amount of data increases, the rL required to

attain a given survival probability also increases. Experi-

ments confirm that data is lost on the PlanetLab trace only

when maintaining fewer than three replicas.

4 Improving repair time

This section explores how the system can increase dura-

bility by replacing replicas from a failed disk in parallel.

In effect, this reduces the time needed to repair the disk

and increases θ .

Each node, n, designates a set of other nodes that can

potentially hold copies of the objects that n is responsible

for. We will call the size of that set the node’s scope, and

2 3 4 5 6 7 8

rL

0.80

0.85

0.90

0.95

1.00
P

r[
ob

je
ct

 d
ur

ab
ili

ty
]

5 GB
50 GB
500 GB

Figure 4: Analytic prediction for object durability after

four years on PlanetLab. The x-axis shows the initial num-

ber of replicas for each object: as the number of replicas

is increased, object durability also increases. Each curve

plots a different per-node storage load; as load increases,

it takes longer to copy objects after a failure and it is more

likely that objects will be lost due to simultaneous fail-

ures.

consider only system designs in which every node has the

same scope. Scope can range from a minimum of rL to a

maximum of the number of nodes in the system.

A small scope means that all the objects stored on node

n have copies on nodes chosen from the same restricted set

of other nodes. The advantage of a small scope is that it

makes it easier to keep track of the copies of each object.

For example, DHash stores the copies of all the objects

with keys in a particular range on the successor nodes of

that key range; the result is that those nodes store similar

sets of objects, and can exchange compressed summaries

of the objects they store when they want to check that each

object is replicated a sufficient number of times [6].

The disadvantage of a small scope is that the effort of

creating new copies of objects stored on a failed disk falls

on the small set of nodes in that disk’s scope. The time

required to create the new copies is proportional to the

amount of data on one disk divided by the scope. Thus

a small scope results in a long recovery time. Another

problem with a small scope, when coupled with consis-

tent hashing, is that the addition of a new node may cause

needless copying of objects: the small scope may dictate

that the new node replicate certain objects, forcing the pre-

vious replicas out of scope and thus preventing them from

contributing to durability.

Larger scopes spread the work of making new copies

of objects on a failed disk over more access links, so that

the copying can be completed faster. In the extreme of

a scope of N (the number of nodes in the system), the

remaining copies of the objects on a failed disk would be

spread over all nodes, assuming that there are many more

objects than nodes. Furthermore, the new object copies

created after the failure would also be spread over all the

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 5 10 15 20 25

D
ur

ab
ili

ty
 a

t e
nd

 o
f t

ra
ce

Scope

rL=2
rL=4

Figure 5: Durability for different scopes in a synthetic

trace with low θ . Larger scopes spread the repair work

over more access links and improve the nodes’ ability to

monitor replicas and temporary failures, which results in

higher durability.

nodes. Thus the network traffic sources and destinations

are spread over all the access links, and the time to recover

from the failure is short (proportional to the amount of

data on one disk divided by N).

A larger scope also means that a temporary failure will

be noticed by a larger number of nodes. Thus, more access

links are available to create additional replicas while the

failure lasts. Unless these links are already fully utilized,

this increases the effective replica creation rate, and thus

improves durability.

Figure 5 shows how scope (and thus repair time) af-

fects object durability in a simulation on a synthetic trace.

To reduce θ , we limit the bandwidth per node to 1000 B/s

in this experiment. We vary the repair threshold and the

scope, and measure durability after two years of simulated

time. Increasing the scope from 5 to 25 nodes reduces the

fraction of lost objects by an order of magnitude, inde-

pendent of rL. By including more nodes (and thus more

network connections) in each repair effort, the work is

spread over more access links and completes faster, limit-

ing the window of time in which the system is vulnerable

to another disk failure. Ideally, by doubling the scope, the

window of vulnerability can be cut in half.

A large scope reduces repair time and increases dura-

bility; however, implementing a large scope presents two

trade-offs. First, the system must monitor each node in

the scope to determine the replication levels; when using

a large scope, the system must monitor many nodes. This

increased monitoring traffic limits scalability. Second, in

some instances, a large scope can increase the likelihood

that a simultaneous failure of multiple disks will cause

some object to be lost.

If objects are placed randomly with scope N and there

are many objects, then it is likely that all
(

N
rL

)

potential

replica sets are used. In this scenario, the simultaneous

failure of any rL disks is likely to cause data loss: there is

likely to be at least one object replicated on exactly those

disks. A small scope limits placement possibilities that are

used, concentrating objects into common replica sets. As

a result, it is less likely that a given set of rL failures will

affect a replica set, but when data loss does occur, many

more objects will be lost. These effects exactly balance:

the expected number of objects lost during a large failure

event is identical for both strategies. It is the variance that

differs between the two strategies.

5 Reducing transient costs

The possibility of transient failures complicates providing

durability efficiently: we do not want to make new copies

in response to transient failures, but it is impossible to dis-

tinguish between disk failures and transient failures using

only remote network measurements. This section focuses

minimizing the amount of network traffic sent in response

to transient failures.

The key technique needed to achieve this is to en-

sure that the system reintegrates object replicas stored on

nodes after transient failures; this means the system must

be able to track more than rL replicas of each object. The

number of replicas that the system must remember turns

out to be dependent on a, the average fraction of time that

a node is available. However, we show that the correct

number of extra replicas can be determined without esti-

mating a by tracking the location of all replicas, including

those that are offline. We introduce the Carbonite algo-

rithm that uses this technique and demonstrate its effec-

tiveness using simulations.

We additionally consider two other techniques for lim-

iting response to transient failures: creating extra repli-

cas in batches and using timeouts as a heuristic for distin-

guishing transient from disk failures. Both are of limited

value: batching is best able to save bandwidth when using

erasure codes and, in the presence of reintegration, time-

outs work well only if node downtimes are notably shorter

than node (and disk) lifetimes.

5.1 Carbonite details

The Carbonite maintenance algorithm focuses on reinte-

gration to avoid responding to transient failures. Durabil-

ity is provided by selecting a suitable value of rL; an im-

plementation of Carbonite should place objects to maxi-

mize θ and preferentially repair the least replicated ob-

ject. Within these settings, Carbonite works to efficiently

maintain rL copies, thus providing durability.

Because it is not possible to distinguish between tran-

sient and disk failures remotely, Carbonite simply re-

sponds to any detected failure by creating a new replica.

This approach is shown in Figure 6. If fewer than rL repli-

cas are detected as available, the algorithm creates enough

// Iterate through the object database

// and schedule an object for repair if needed

MAINTAIN_REPLICAS ()

keys = <DB.object_keys sorted by number of available replicas>
foreach k in keys:

n = replicas[k].len ()

if (n < rL)

newreplica = enqueue_repair (k)

replicas[k].append (newreplica)

Figure 6: Each node maintains a list of objects for which

it is responsible and monitors the replication level of each

object using some synchronization mechanism. In this

code, this state is stored in the replicas hash table though

an implementation may choose to store it on disk. This

code is called periodically to enqueue repairs on those ob-

jects that have too few replicas available; the application

can issue these requests at its convenience.

new replicas to return the replication level to rL.

However, Carbonite remembers which replicas were

stored on nodes that have failed so that they can be reused

if they return. This allows Carbonite to greatly reduce the

cost of responding to transient failures. For example, if the

system has created two replicas beyond rL and both fail,

no work needs to be done unless a third replica fails be-

fore one of the two currently unavailable replicas returns.

Once enough extra replicas have been created, it is un-

likely that fewer than rL of them will be available at any

given time. Over time, it is increasingly unlikely that the

system will need to make any more replicas.

5.2 Reintegration reduces maintenance

Figure 7 shows the importance of reintegrating replicas

back into the system by comparing the behavior of Car-

bonite to two prior DHT systems and a hypothetical sys-

tem that can differentiate disk from transient failures using

an oracle and thus only reacts to disk failures. In the simu-

lation, each system operates with rL = 3. The systems are

simulated against the PlanetLab trace (a) and a synthetic

trace (b). The y-axes plot the cumulative number of bytes

of network traffic used to create replicas; the x-axes show

time.

Unlike all other synthetic traces used in this paper,

whose parameters are different from the PlanetLab trace

in order to bring out the basic underlying trends, the syn-

thetic trace used in Figure 7 was configured to be similar

to the PlanetLab trace. In particular, the average node life-

time and the median downtime are the same. The result

is still an approximation (for example, PlanetLab grew

during the trace) but the observed performance is simi-

lar. Some of the observed differences are due to batching

(used by Total Recall) and timeouts (used by all systems);

the impact of these are discussed in more detail in Sec-

tions 5.4 and 5.5.

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

C
u

m
u

la
ti
v
e

 b
y
te

s
 s

e
n

t
(T

B
)

Time (weeks)

Cates
TotalRecall (rH=5)
TotalRecall (rH=9)

Carbonite
Oracle

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

C
u

m
u

la
ti
v
e

 b
y
te

s
 s

e
n

t
(T

B
)

Time (weeks)

Cates
TotalRecall (rH=5)
TotalRecall (rH=9)

Carbonite
Oracle

 0

 100

 200

 0 10 20 30 40 50
 0

 10000

 20000

D
is

k
 f
a
ilu

re
s

T
ra

n
s
ie

n
t
fa

ilu
re

s

Time (weeks)

Disk
Transient

 0

 100

 200

 0 10 20 30 40 50
 0

 10000

 20000

D
is

k
 f
a
ilu

re
s

T
ra

n
s
ie

n
t
fa

ilu
re

s

Time (weeks)

Disk
Transient

(a) (b)

Figure 7: A comparison of the total amount of work done by different maintenance algorithms with rL = 3 using a

PlanetLab trace (left) and a synthetic trace (right). In all cases, no objects are lost. However, rL = 2 is insufficient: for

the PlanetLab trace, even a system that could distinguish permanent from transient failures would lose several objects.

Since the oracle system responds only to disk failures,

it uses the lowest amount of bandwidth. The line labeled

Cates shows a system that keeps track of exactly rL repli-

cas per object; this system approximates the behavior of

DHTs like DHash, PAST and OpenDHT. Each failure

causes the number of replicas to drop below rL and causes

this system to create a new copy of an object, even if the

failure was transient. If the replica comes back online, it is

discarded. This behavior results in the highest traffic rate

shown. The difference in performance between the Plan-

etLab and Poisson trace is due to differences in the distri-

bution of downtimes: Poisson is not a particularly good fit

for the PlanetLab downtime distribution.

Total Recall [3] tracks up to a fixed number of replicas,

controlled by a parameter rH ; we show rH = 5 which is

optimal for these traces, and rH = 9. As can be seen at

the right of the graphs, this tracking of additional repli-

cas allows Total Recall to create fewer replicas than the

Cates system. When more than rL replicas are available, a

transient failure will not cause Total Recall to make a new

copy. However, Total Recall’s performance is very sensi-

tive to rH . If rH is set too low, a series of transient failures

will cause the replication level to drop below rL and force

it to create an unnecessary copy. This will cause Total Re-

call to approach Cates (when rH = rL). Worse, when the

system creates new copies it forgets about any copies that

are currently on failed nodes and cannot benefit from the

return of those copies. Without a sufficiently long mem-

ory, Total Recall must make additional replicas. Setting

rH too high imposes a very high insertion cost and results

in work that may not be needed for a long time.

Carbonite reintegrates all returning replicas into the

replica sets and therefore creates fewer copies than Total

Recall. However, Carbonite’s inability to distinguish be-

tween transient and disk failures means that it produces

and maintains more copies than the oracle based algo-

rithm. This is mainly visible in the first weeks of the trace

as Carbonite builds up a buffer of extra copies. By the end

of the simulations, the rate at which Carbonite produces

new replicas approaches that of the oracle system.

5.3 How many replicas?

To formalize our intuition about the effect of extra replicas

on maintenance cost and to understand how many extra

replicas are necessary to avoid triggering repair follow-

ing a transient failure, consider a simple Bernoulli process

measuring R, the number of replicas available at a given

moment, when there are r > rL total replicas. The avail-

ability of each node is a. Since repair is triggered when the

number of available replicas is less than rL, the probabil-

ity that a new replica needs to be created is the probability

4 6 8 10 12

Number of replicas

0.0

0.2

0.4

0.6

0.8

1.0
P

r[
re

pa
ir

ac
tio

n]

a = 0.5
a = 0.7
a = 0.9

Figure 8: Additional redundancy must be created when

the amount of live redundancy drops below the desired

amount (3 replicas in this example). The probability of

this happening depends solely on the average node avail-

ability a and the amount of durable redundancy. This

graph shows the probability of a repair action as a func-

tion of the amount of durable redundancy, with a = 0.5,

a = 0.7 and a = 0.9 for a replication system.

that less than rL replicas are available:

Pr[R < rL |r extant copies] =
rL−1

∑
i=0

(

r

i

)

ai(1−a)r−i.

This probability falls rapidly as r increases but it will

never reach zero; there is always a chance that a replica

must be created due to a large number of concurrent fail-

ures, regardless of how many replicas exist already. How-

ever, when a large number of replicas exists, it is ex-

tremely unlikely that enough replicas fail such that fewer

than rL are available.

By computing the Chernoff bound, it is possible to

show that after the system has created 2rL/a replicas,

the probability of a new object creation is exponentially

small. 2rL/a is a rough (and somewhat arbitrary) estimate

of when the probability of a new object creation is small

enough to ignore. Figure 8 shows (on the y-axis) the prob-

ability that a new object must be created when an increas-

ing number of replicas already exist. As r increases, the

probability that a new replica needs to be created falls,

and the algorithm creates replicas less frequently. As r

approaches 2rL/a, the algorithm essentially stops creating

replicas, despite not knowing the value of a.

This benefit is obtained only if returning replicas are

reintegrated into the appropriate replica set, allowing

more than rL to be available with high probability. As a

result, the cost of responding to transient failures will be

nearly zero. Still, this system is more expensive than an

oracle system that can distinguish between disk and tran-

sient failures. While the latter could maintain exactly rL

replicas, the former has to maintain approximately 2rL/a.

The factor of 2/a difference in the cost is the penalty for

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12

T
ot

al
 b

yt
es

 s
en

t (
T

B
)

Extra replicas

With reintegration
Without reintegration

Figure 9: Total repair cost with extra replicas, and with

and without reintegration after repair. Without reintegra-

tion, extra replicas reduce the rate at which repair is trig-

gered and thus reduce maintenance cost; there is an op-

timal setting (here e = 8). With reintegration, the cost is

lowest if no extra replicas are used.

not distinguishing disk and transient failures.

5.4 Create replicas as needed

Given that the system tends towards creating 2rL/a repli-

cas in order to keep rL of them available, it is tempting to

create the entire set—not just rL of them—when the ob-

ject is first inserted into the system (Total Recall [3] uses

a similar technique). However, this approach requires an

accurate estimate for a to deliver good performance. If a

is overestimated, the system quickly finds itself with less

than rL replicas after a string of transient failures and is

forced to create additional copies. If a is underestimated,

the system creates unneeded copies and wastes valuable

resources. Carbonite is simplified by the fact that it does

not need to measure or estimate a to create the “correct”

number of replicas.

Another idea is to create not only enough copies to

bring the number of available replicas back up to rL, but

also e additional copies beyond rL (this is similar to To-

tal Recall’s lazy repair technique). Creating a batch of

copies makes repair actions less frequent, but at the same

time, causes more maintenance traffic than Carbonite. The

work required to create additional replicas will be wasted

if those replicas are lost due to disk failures before they are

actually required. Carbonite, on the other hand, only cre-

ates replicas that are necessary to keep rL replicas avail-

able. In other words, either Carbonite would eventually

create the same number of replicas as a scheme that cre-

ates replicas in batches, or some replicas created in the

batch were unnecessary: batch schemes do, at best, the

same amount of work as Carbonite.

Figure 9 shows the bytes sent in a simulation exper-

iment using a five-year synthetic trace with a = 0.88,

rL = 3, and an average node lifetime of one year. The

graph shows results for different values of e (in Total

Recall, e = rH − rL) and for two different scenarios. In

the scenario with reintegration, the system reintegrates all

replicas as they return from transient failures. This sce-

nario represents the behavior of Carbonite when e = 0 and

causes the least traffic.

In the scenario without reintegration, replicas that are

unavailable when repair is triggered are not reintegrated

into the replica set even if they do return. Total Recall be-

haves this way. Extra replicas give the system a short-term

memory. Additional replicas increase the time until repair

must be made (at which time failed replicas will be forgot-

ten); during this time failed replicas can be reintegrated.

Larger values of e give the system a longer memory but

also put more data at risk of failure: on this synthetic trace,

a value of e = 8 is optimal. Taking advantage of returning

replicas is simpler and more efficient than creating addi-

tional replicas: a system that reintegrates returning repli-

cas will always make fewer copies than a system that does

not and must replace forgotten replicas.

For systems that use erasure codes, there is an addi-

tional read cost since a complete copy of the object is

needed in order to generate a new fragment [32]. The

cost of reading a sufficient number of fragments prior

to recreating a lost fragment can overwhelm the savings

that erasure codes provide. A common approach is to

amortize this cost by batching fragment creation but sim-

ply caching the object at the node responsible for repair

is much more effective. A simulation contrasting both

caching and batching (but both with reintegration) shows

results similar to Figure 9: caching the object with a 7/14

erasure code uses 85% of the bandwidth that the optimal

batching strategy would use.

5.5 Timeouts

A common approach to reduce transient costs is to use

long timeouts, as suggested by Blake [4]. Timeouts are

a heuristic to avoid misclassifying temporary failures as

permanent: failures are considered to be permanent only

when the corresponding node has not responded for some

number of seconds. Longer timeouts reduce the number

of misclassified transient failures and thus the number of

repairs. On the other hand, a longer timeout also increases

the latency between failure and repair in the event of a true

disk failure; if additional permanent failures occur during

this larger “window of vulnerability,” data may be lost.

The goal of both reintegrating replicas and use of time-

outs is to reduce the number of repairs without decreas-

ing durability. Figure 7 demonstrates that reintegration is

effective for Carbonite. However, it also illustrates that

timeouts are important in systems without reintegration:

on the PlanetLab trace, the timeout used is able to mask

87.7% of transient failures whereas it only masks 58.3%

of transient failures on the Poisson trace. If replicas are

reintegrated, what extra benefit does a timeout provide?

Timeouts are most effective when a significant percent-

age of the transient failures can be ignored, which is de-

pendent on the downtime distribution. However, for dura-

bility to remain high, the expected node lifetime needs to

be significantly greater than the timeout.

To evaluate this scenario where timeouts should have

impact, we performed an experiment using a synthetic

trace where we varied the repair threshold and the node

timeout. Since the system would recognize nodes return-

ing after a permanent failure and immediately expire all

pending timeouts for these nodes, we assigned new iden-

tities to such nodes to allow long timeouts to expire nor-

mally.

Figure 10 shows the results of this simulation: (a)

shows the total bytes sent as a function of timeout while

(b) shows the durability at the end of the trace. As the

length of the timeout increases past the average down-

time, we observe a reduction in the number of bytes sent

without a decrease in durability. However, as the timeout

grows longer, durability begins to fall: the long timeout

delays the point at which the system can begin repair, re-

ducing the effective repair rate. Thus setting a timeout can

reduce response to transient failures but its success de-

pends greatly on its relationship to the downtime distribu-

tion and can in some instances reduce durability as well.

6 Implementing Carbonite

While the discussion of durability and efficient mainte-

nance may be broadly applicable, in this section, we fo-

cus on our experience in implementing Carbonite in the

context of distributed hash tables (DHTs).

In a DHT, each node is algorithmically assigned a por-

tion of the total identifier space that it is responsible for

maintaining. Carbonite requires that each node know the

number of available replicas of each object for which it is

responsible. The goal of monitoring is to allow the nodes

to track the number of available replicas and to learn of

objects that the node should be tracking but is not aware

of. When a node n fails the new node n′ that assumes re-

sponsibility of n’s blocks begins tracking replica availabil-

ity; monitored information is soft state and thus can be

failed over to a "successor" relatively transparently.

Monitoring can be expensive: a node might have to con-

tact every node in the scope of each object it holds. While

developing two prototype implementations of Carbonite

in the PlanetLab environment, we found it necessary to

develop different techniques for monitoring: the monitor-

ing problem is slightly different in systems that use dis-

tributed directories and those that use consistent hashing.

Figure 11 illustrates the structures of these systems.

The Chord/DHash system [8, 9] served as the basis for

our consistent hashing implementation. It uses a small

 0

 5

 10

 15

 20

 25

 0.1 1 10 100 1000 10000

T
o

ta
l
b

y
te

s
 s

e
n

t
(T

B
)

Timeout (hours)

rL=2
rL=3
rL=4
rL=5

(a)

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0.1 1 10 100 1000 10000

D
u

ra
b

ili
ty

 (
a

t
e

n
d

 o
f

tr
a

c
e

)

Timeout (hours)

rL=2
rL=3
rL=4
rL=5

(b)

Figure 10: The impact of timeouts on bandwidth and durability on a synthetic trace. Figure 10(a) shows the number

of copies created for various timeout values; (b) shows the corresponding object durability. In this trace, the expected

downtime is about 29 hours. Longer timeouts allow the system to mask more transient failures and thus reduce main-

tenance cost; however, they also reduce durability.

� �� �� �� � � �� �
� �� �� � �� � �� �� �

ID Space

Replicas

successor list

(a) DHT

� �� �� �� �

� � �� � �� � �
	 	 		 	 		 	 	

� � �� � �

� �� �

� �� �� �� � � � �� � �� �� �

ID Space

(location−
pointer
replicas)

Replica

Replica

Replica

successor list

(b) Directory

Figure 11: DHT- and Directory- Based Storage System

Architectures.

scope and thus monitors a small number of nodes. DHash

does not need to record the location of failed replicas: a

node will return to the same place in the ring and thus

the same replica sets, as long as it returns with the same

logical identifier.

We used Oceanstore [20,30] and the BambooDHT [31]

to develop a distributed directory system using large scope

and random placement. Oceanstore must maintain point-

ers to all nodes that have ever held data for a given object

and has a scope of N. Responsibility for keys is still as-

signed using consistent hashing: the pointer database for

each key is replicated on the successors of the key. In this

case, the location of objects is hard state. Unfortunately,

it could be easy for this system to have very high moni-

toring costs: if each node communicate with every other

node periodically, the resulting N2 probe traffic may limit

the system’s scalability.

6.1 Monitoring consistent hashing systems

In systems that use a small scope, it is possible to make

an end-to-end check that data is stored on the disk of each

node. The naive way to do this is to arrange for nodes

to repeatedly exchange key lists, but such an exchange

would be extremely costly.

DHash uses a synchronization protocol based on

Merkle trees [6] that takes advantage of the fact that most

objects are typically correctly placed. In this common

case, adjacent nodes store largely similar keys and two

nodes can exchange a single message (containing a digest

of the stored keys) to verify that they are synchronized.

Carbonite allows replicas to be placed anywhere in the

placement scope. This flexibility lets the system avoid

moving and replicating objects during most joins (until

the system grows dramatically). However, it also causes

the Merkle synchronization protocol to operate outside of

its common case: adjacent nodes are no longer likely to

store nearly identical sets of objects. In this environment

the synchronizer “discovers” that nodes in the scope are

missing objects each time it is run. Repeatedly exchang-

ing this information can be costly: if the synchronization

protocol runs once a minute, the cost of repeatedly trans-

ferring the 20-byte key of an 8 KB data object will exceed

the cost of transferring the object itself to a newly joined

node in about 8 hours.

To avoid this problem, each node maintains, for each

object, a list of nodes in the scope without a copy of the

object. The node uses this information to adjust its Merkle

tree to avoid re-learning the information again during the

next run of the synchronizer. For instance, when a node

n synchronizes with a replica node n′ that is known to be

missing an object with key k, n leaves k out of the Merkle

tree used for synchronization: this prevents n′ from report-

ing what n already knew. The amount of extra state needed

to perform this optimization per object is small relative to

the size of storing the object itself, and can be maintained

lazily, unlike the object itself which is hard state.

6.2 Monitoring host availability

In a directory-style system, the same synchronization

techniques just described can be used to monitor the di-

rectory itself (which is replicated on successor nodes);

however, it is likely infeasible to explicitly monitor the

liveness of objects themselves using the algorithm de-

scribed above since two nodes are not likely to store the

same keys. Instead, node availability can be monitored as

a proxy for object availability. Node availability can be

monitored using a multicast mechanism that propagates

the liveness state of each node to each other node.

The DHT’s routing tables are used to establish a unique

spanning tree rooted at each node a O(logN) out-degree

per node. Each node periodically broadcasts a heartbeat

message to its children in the tree; this message includes a

generation identifier that is randomly generated when the

node is installed or reinstalled following a disk failure.

The children rebroadcast the heartbeat to their children

until it is received by all nodes.

Over time, each node expects to receive regular notifi-

cation of node liveness. If a heartbeat is missed, the mon-

itoring node triggers repair for every object stored on the

newly down node. When a node returns and its generation

identifier has not changed, the monitoring node can con-

clude that objects stored on that node are again accessible.

7 Related work

7.1 Replication analysis

The use of a birth-death data-loss model is a departure

from previous analyses of reliability. Most DHT evalua-

tions consider whether data would survive a single event

involving the failure of many nodes [8,40]. This approach

does not separate durability from availability, and does not

consider the continuous bandwidth consumed by replac-

ing replicas lost to disk failure.

The model and discussion in this paper is similar to

contemporary work that looks at churn [37] and analyzes

the expected object lifetime [29]. The birth-death model is

a generalization of the calculations that predict the MTBF

for RAID storage systems [26]. Owing to its scale, a dis-

tributed system has more flexibility to choose parameters

such as the replication level and number of replica sets

when compared to RAID systems.

Blake and Rodrigues argue that wide-area storage sys-

tems built on unreliable nodes cannot store a large amount

of data [4]. Their analysis is based on the amount of data

that a host can copy during its lifetime and mirrors our dis-

cussion of feasibility. We come to a different conclusion

because we consider a relatively stable system member-

ship where data loss is driven by disk failure, while they

assumed a system with continual membership turnover.

The selection of a target replication level for surviving

bursts differs from many traditional fault tolerant storage

systems. Such systems, designed for single-site clusters,

typically aim to continue operating despite some fixed

number of failures and choose number of replicas so that

a voting algorithm can ensure correct updates in the pres-

ence of partitions or Byzantine failures [5, 17, 23, 24, 33].

FAB [33] and Chain Replication [38] both consider

how the number of possible replicas sets affects data dura-

bility. The two come to opposite conclusions: FAB recom-

mends a small number of replica sets since more replica

sets provide more ways for data to fail; chain replication

recommends many replica sets to increase repair paral-

lelism and thus reduce repair time. These observations

are both correct: choosing a replica placement strategy re-

quires balancing the probability of losing some data item

during a simultaneous failure (by limiting the number of

replica sets) and improving the ability of the system to

tolerate a higher average failure rate (by increasing the

number of replica sets and reconstruction parallelism).

Weatherspoon et al [39] studied the increased costs due

to transient failures. Their results quantify the benefits

of maintaining extra replicas in reducing these transient

costs. However, their analysis focuses on systems that for-

get about extant replicas that exist when repair is initiated

and do not discuss the benefits of reintegrating them.

7.2 Replicated systems

Replication has been widely used to reduce the risk of

data loss and increase data availability in storage systems

(e.g., RAID [26], System R duplex disks [16], Harp [23],

xFS [2], Petal [21], DDS [17], GFS [15]). The algorithms

traditionally used to create and maintain data redundancy

are tailored for the environment in which these systems

operate: well-connected hosts that rarely lose data or be-

come unavailable. As a result they can maintain a small,

fixed number of replicas and create a new replica immedi-

ately following a failure. This paper focuses on wide-area

systems that are bandwidth-limited, where transient net-

work failures are common, and where it is difficult to tell

the difference between transient failures and disk failures.

Distributed databases [10], online disaster recovery

systems such as Myriad [22], and storage systems [12,

13, 27] use replication and mirroring to distribute load

and increase durability. These systems store mutable data

and focus on the cost of propagating updates, a consid-

eration not applicable to the immutable data we assume.

In some cases, data is replicated between a primary and

backup sites and further replicated locally at each site us-

ing RAID. Wide area recovery is initiated only after site

failure; individual disk failure can be repaired locally.

Total Recall is the system most similar to our work [3].

We borrow from Total Recall the idea that creating and

tracking additional replicas can reduce the cost of tran-

sient failures. Total Recall’s lazy replication keeps a fixed

number of replicas and fails to reincorporate replicas that

return after a transient failure if a repair had been per-

formed. Total Recall also requires introspection or guess-

ing to determine an appropriate high water mark that Car-

bonite can arrive at naturally.

Glacier [18] is a distributed storage system that uses

massive replication to provide data durability across large-

scale correlated failure events. The resulting tradeoffs are

quite different from those of Carbonite, which is designed

to handle a continuous stream of at small-scale failure

events. For example, due to its high replication level,

Glacier can afford very long timeouts and thus mask al-

most all transient failures.

8 Conclusions and future work

Inexpensive hardware and the increasing capacity of

wide-area network links have spurred the development of

applications that store a large amount of data on wide-area

nodes. However, the feasibility of applications based on

distributed storage systems is currently limited by the ex-

pense of maintaining data. This paper has described a set

of techniques that allow wide-area systems to efficiently

store and maintain large amounts of data.

These techniques have allowed us to develop and de-

ploy prototypes of UsenetDHT [34], OverCite [35], and

Antiquity [11]. These systems must store large amounts

of data durably and were infeasible without the techniques

we have presented. In the future, we hope to report on our

long-term experience with these systems.

Acknowledgments The authors would like to thank

Vivek Pai and Aaron Klingaman for their assistance in

compiling the data used for the PlanetLab traces. This pa-

per has benefited considerably from the comments of the

anonymous reviewers and our shepherd, Larry Peterson.

References

[1] ANDERSEN, D. Improving End-to-End Availability Using Over-

lay Networks. PhD thesis, Massachusetts Institute of Technology,

2004.

[2] ANDERSON, T. E., DAHLIN, M. D., NEEFE, J. M., PATTERSON,

D. A., ROSELLI, D. S., AND WANG, R. Y. Serverless network

file systems. In Proc. of the 15th ACM Symposium on Operating

System Principles (Dec. 1995).

[3] BHAGWAN, R., TATI, K., CHENG, Y.-C., SAVAGE, S., AND

VOELKER, G. M. Total Recall: System support for automated

availability management. In Proc. of the 1st Symposium on Net-

worked Systems Design and Implementation (Mar. 2004).

[4] BLAKE, C., AND RODRIGUES, R. High availability, scalable stor-

age, dynamic peer networks: Pick two. In Proc. of the 9th Work-

shop on Hot Topics in Operating Systems (May 2003), pp. 1–6.

[5] CASTRO, M., AND LISKOV, B. Practical byzantine fault tolerance

and proactive recovery. ACM Transactions on Computer Systems

20, 4 (2002), 398–461.

[6] CATES, J. Robust and efficient data management for a distributed

hash table. Master’s thesis, Massachusetts Institute of Technology,

May 2003.

[7] DABEK, F. A Distributed Hash Table. PhD thesis, Massachusetts

Institute of Technology, 2005.

[8] DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND

STOICA, I. Wide-area cooperative storage with CFS. In Proc. of

the 18th ACM Symposium on Operating System Principles (Oct.

2001).

[9] DABEK, F., LI, J., SIT, E., ROBERTSON, J., KAASHOEK, M. F.,

AND MORRIS, R. Designing a DHT for low latency and high

throughput. In Proc. of the 1st Symposium on Networked Systems

Design and Implementation (Mar. 2004).

[10] DEMERS, A., GREENE, D., HAUSER, C., IRISH, W., LARSON,

J., SHENKER, S., STURGIS, H., SWINEHART, D., AND TERRY,

D. Epidemic algorithms for replicated database maintenance. In

Proc. of the 6th ACM Symposium on Principles of Distributed

Computing (1987), pp. 1–12.

[11] EATON, P., WEATHERSPOON, H., AND KUBIATOWICZ, J. Effi-

ciently binding data to owners in distributed content-addressable

storage systems. In Proc. of the 3rd International Security in Stor-

age Workshop (Dec. 2005).

[12] EMC. Centera—content addressed storage system. http://

www.emc.com/products/systems/centera.jsp. Last

accessed March 2006.

[13] EMC. Symmetrix remote data facility. http://www.emc.

com/products/networking/srdf.jsp. Last accessed

March 2006.

[14] FREEDMAN, M. J., LAKSHMINARAYANAN, K., RHEA, S., AND

STOICA, I. Non-transitive connectivity and DHTs. In Proc. of the

2nd Workshop on Real Large Distributed Systems (Dec. 2005).

[15] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google

file system. In Proc. of the 2003 19th ACM Symposium on Oper-

ating System Principles (Oct. 2003).

[16] GRAY, J., MCJONES, P., BLASGEN, M., LINDSAY, B., LORIE,

R., PRICE, T., PUTZOLU, F., AND TRAIGER, I. The recovery

manager of the System R database manager. ACM Computing Sur-

veys 13, 2 (1981), 223–242.

[17] GRIBBLE, S., BREWER, E., HELLERSTEIN, J., AND CULLER,

D. Scalable, distributed data structures for internet service con-

struction. In Proc. of the 4th Symposium on Operating Systems

Design and Implementation (Oct. 2004).

[18] HAEBERLEN, A., MISLOVE, A., AND DRUSCHEL, P. Glacier:

Highly durable, decentralized storage despite massive correlated

failures. In Proc. of the 2nd Symposium on Networked Systems

Design and Implementation (May 2005).

[19] KLEINROCK, L. Queueing Systems, Volume I: Theory. John Wiley

& Sons, Jan. 1975.

[20] KUBIATOWICZ, J., BINDEL, D., CHEN, Y., CZERWINSKI, S.,

EATON, P., GEELS, D., GUMMADI, R., RHEA, S., WEATH-

ERSPOON, H., WEIMER, W., WELLS, C., AND ZHAO, B.

OceanStore: An architecture for global-scale persistent storage.

In Proc. of the 9th Intl. Conference on Architectural Support for

Programming Languages and Operating Systems (Nov. 2000),

pp. 190–201.

[21] LEE, E. K., AND THEKKATH, C. A. Petal: Distributed virtual

disks. In Proc. of the 7th Intl. Conference on Architectural Sup-

port for Programming Languages and Operating Systems (1996),

pp. 84–92.

[22] LEUNG, S.-T. A., MACCORMICK, J., PERL, S. E., AND ZHANG,

L. Myriad: Cost-effective disaster tolerance. In Proc. of the 1st

USENIX Conference on File and Storage Technologies (Jan. 2002).

[23] LISKOV, B., GHEMAWAT, S., GRUBER, R., JOHNSON, P.,

SHRIRA, L., AND WILLIAMS, M. Replication in the Harp file

system. In Proc. of the 13th ACM Symposium on Operating Sys-

tem Principles (Oct. 1991), pp. 226–38.

[24] LITWIN, W., AND SCHWARZ, T. LH* RS : A high-availability

scalable distributed data structure using reed solomon codes. In

Proc. of the 2000 ACM SIGMOD Intl. Conference on Management

of Data (May 2000), pp. 237–248.

[25] PARK, K. S., AND PAI, V. CoMon: a mostly-scalable monitoring

system for PlanetLab. ACM SIGOPS Operating Systems Review

40, 1 (Jan. 2006), 65–74. http://comon.cs.princeton.

edu/.

[26] PATTERSON, D., GIBSON, G., AND KATZ, R. A case for redun-

dant arrays of inexpensive disks (RAID). In Proc. of the ACM

SIGMOD International Conference on Management of Data (June

1988).

[27] PATTERSON, H., MANLEY, S., FEDERWISCH, M., HITZ, D.,

KLEIMAN, S., AND OWARA, S. Snapmirror: File system based

asynchronous mirroring for disaster recovery. In Proc. of the 1st

USENIX Conference on File and Storage Technologies (Jan. 2002).

[28] PETERSON, L., ANDERSON, T., CULLER, D., AND ROSCOE, T.

A blueprint for introducing disruptive technology into the Internet.

In Proc. of the First ACM Workshop on Hot Topics in Networks

(Oct. 2002). http://www.planet-lab.org.

[29] RAMABHADRAN, S., AND PASQUALE, J. Analysis of long-

running replicated systems. In Proc. of the 25th IEEE Annual Con-

ference on Computer Communications (INFOCOM) (Apr. 2006).

[30] RHEA, S., EATON, P., GEELS, D., WEATHERSPOON, H., ZHAO,

B., AND KUBIATOWICZ, J. Pond: the OceanStore prototype. In

Proc. of the 2nd USENIX Conference on File and Storage Tech-

nologies (Apr. 2003).

[31] RHEA, S., GEELS, D., ROSCOE, T., AND KUBIATOWICZ, J.

Handling churn in a DHT. In Proc. of the 2004 Usenix Annual

Technical Conference (June 2004).

[32] RODRIGUES, R., AND LISKOV, B. High availability in DHTs:

Erasure coding vs. replication. In Proc. of the 4th International

Workshop on Peer-to-Peer Systems (Feb. 2005).

[33] SAITO, Y., FRŒLUND, S., VEITCH, A., MERCHANT, A., AND

SPENCE, S. FAB: building distributed enterprise disk arrays from

commodity components. In Proc. of the 11th Intl. Conference on

Architectural Support for Programming Languages and Operating

Systems (New York, NY, 2004), ACM Press, pp. 48–58.

[34] SIT, E., DABEK, F., AND ROBERTSON, J. UsenetDHT: A low

overhead Usenet server. In Proc. of the 3rd International Workshop

on Peer-to-Peer Systems (Feb. 2004).

[35] STRIBLING, J., COUNCILL, I. G., LI, J., KAASHOEK, M. F.,

KARGER, D. R., MORRIS, R., AND SHENKER, S. OverCite: A

cooperative digital research library. In Proc. of the 4th Interna-

tional Workshop on Peer-to-Peer Systems (Feb. 2005).

[36] STRIBLING, J., LI, J., COUNCILL, I. G., KAASHOEK, M. F.,

AND MORRIS, R. Exploring the design of multi-site web services

using the OverCite digital library. In Proc. of the 3rd Symposium

on Networked Systems Design and Implementation (May 2006).

[37] TATI, K., AND VOELKER, G. M. On object maintenance in peer-

to-peer systems. In Proc. of the 5th International Workshop on

Peer-to-Peer Systems (Feb. 2006).

[38] VAN RENESSE, R., AND SCHNEIDER, F. B. Chain replication

for supporting high throughput and availability. In Proc. of the

6th Symposium on Operating Systems Design and Implementation

(Dec. 2004).

[39] WEATHERSPOON, H., CHUN, B.-G., SO, C. W., AND KUBIA-

TOWICZ, J. Long-term data maintenance in wide-area storage sys-

tems: A quantitative approach. Tech. Rep. UCB//CSD-05-1404, U.

C. Berkeley, July 2005.

[40] WEATHERSPOON, H., AND KUBIATOWICZ, J. D. Erasure cod-

ing vs. replication: A quantitative comparison. In Proc. of the 1st

International Workshop on Peer-to-Peer Systems (Mar. 2002).

