
ENERGY CONSUMPTION ANALYSIS AND
ENERGY OPTIMIZATION TECHNIQUES

OF HPC APPLICATIONS
Rejitha R.S. *

re j itha.rs@gmail.com
C. Bency Bright *

bency@sxcce.edu.in
Dr. Shajulin Benedict **

shajubenedict@yahoo.co.in

* Department of Computer Science and Engineering, St. Xavier's Catholic College of Engineering
** Director, HPCCLoud Research Laboratory, St. Xavier's Catholic College and Engineering

Abstract: High Performance Computing (HPC) is used

for running advanced application programs efficiently,

reliably, and quickly. HPC makes use of both parallel as

well as distributed computing technologies. In earlier

decades, performance analysis of HPC applications was

evaluated based on speed, scalability of threads, memory

hierarchy. Now, it is essential to consider the energy or

the power consumed by the system while executing an

application. There exist performance analysis tools, such

as, Periscope, Scalasca, Vampir, TAU, and Paradyn,

which consider hardware based performance bottlenecks

and memory hierarchy issues including EnergyAnalyzer

which is a dedicated tool for energy analysis purpose.

Recently, these tools have focused on doing an automatic

tuning of HPC applications which require a wide study

of HPC applications in terms of power consumption.

This paper aims at experimenting the most commonly

used HPC applications and express the HPC application

developers or tool developers that power consumption

will be higher in certain conditions. We have done the

experiments in HPCCLoud Research Laboratory, India.

The experimental results were impressive when tested

for the energy consumption ofHPC applications.

Index Terms: high-performance computing,

performance, power consumption, grid computing.

I. INTRODUCTION

Scientific computing requires an ever-increasing
number of resources to deliver results for ever
growing problem sizes in a reasonable time frame [5].
The word computing was used similar with counting
and calculating, and the science and technology of
mathematical calculations. Computing means using
and operating, the computing hardware and also the
use of the theoretical concepts of this hardware to
complete a task. The computing hardware must be a
computer system of any form. Most individuals use
some form of computing every day whether they
realize it or not. Swiping a debit card, sending an
email, or using a cell phone can all be considered
forms of computing [4].

Software development [3,
ever-lasting research domain
different stages of uncertainties

6, 22] is a crucial
which undergoes
to get through an

978-1-4673-6150-7/13/$31.00 ©2013 IEEE

objective of developing software. In general, the
various stages of software development include
design, generating code, and resolving bugs. Out of
which, resolving bugs or post analysis of software is
both time consuming and challenging. This is
manifested by a research survey stating that US
expends about $59.5 billion dollars each year to
solving software bugs [23, 30]. To ease the purpose of
debugging and analysis, many researches have been
heralded by developing tools that analyze or tune
simple to complex software.

Performance analysis tools [10] are important
to highlight software bottlenecks and if possible to
tune for obtaining better performance results.
Commonly speaking, performance is debited to the
computer architecture. In the current scenario,
performance analysis tools of HPC applications [32]
consist of various analysis approaches [8], such as,
online vs offline, trace-based vs profile-based,
distributed vs centralized, and so forth.

Earlier performance was evaluated based on
speed, scalability of threads, memory hierarchy etc.
To do maximum number of jobs in a short period of
time, it is necessary to increase the number of cores or
processors. When large number of processors is
working, there is an increase in energy consumption.
So it is essential to see of ways to reduce the energy
consumption of applications while considering the
performance [7].

Most of the performance analysis tools that
analyze applications are not designed for analyzing
energy consumption of applications. They either do
programming language-based analysis or hardware
based analysis, such as, MPI analysis, OpenMP
analysis [9], memory leakage analysis, pipeline stall
analysis, cache misses, and so forth. However, recent
computer architecture designers are more particular
about diligently designing their products with energy
efficiency [13]. This is because of increased electrical

1388

billing and scarce of power generation, especially in
developing countries such as India. In addition, a
report submitted to the US congress on "Server and
Data Centre Energy Efficiency" in 2007 highlights
that the energy consumption by US data centres was
61 billion kilowatts-hour in 2006 totalling $4.5 billion
[15].

[t is also estimated from various energy modelling
approaches [28, 29, 31] that the electrical billing of
computer systems surpasses the machine cost within
three years of 24x7 utilization of the machine. Energy
inefficiency in compute nodes may even lead to
environmental hazards, say, carbon emissions due to
cooling the machines. Although researchers are aware
that software development should consider energy
efficiency as a prime concern these days, they are
either not suggested with available solutions to
mitigate energy inefficiency problem or the solutions
are not fmal - energy aware designs [17, 18, 19, 20,
21, 26] of machines are still under research.

The tuning techniques are used mainly to optimize the
code. The code is optimized by performing some kind
of code re-transformation, code scheduling to give a
performance tuned and a code that consumes less
energy than the original code. Various optimization
techniques consume different amount of energy. So it
is essential to find which code sequence consumes less
energy.

The rest of the paper is organized as follows:
Section 2 presents the Energy Consumption Analysis
on various optimization techiniques. Section 3
presents the results and findings of the analysis.
Section 4 presents the conclusion to the paper.

I. ENERGY CONSUMPTION ANAL YS[S

There are various optimization techniques
available. These optimization techniques help in
improving the performance of the application. On
improving the performance, these optimization
techniques, when used for tuning of the software can
also reduce the energy consumption of the
applications. The optimization techniques can be
categorized into - loop optimization, procedure
optimization, software optimization, and program
optimization.

2.1 Loop Optimization

Loop optimization [I, 2, I I, 16, 24, 27]
technique is done through a sequence of loop
transformations. This optimization can be done on the
source code or in the intermediate representation.
These transformations should be legal and safe so that

it does not alter the actual working of the code. There
are various loop optimization techniques, such as loop
interchange or loop permutation or loop re-ordering,
loop fusion, loop unrolling, scalar replacement, loop
invariant code motion, redundancy elimination.

Consider the above matrix multiplication code in
figure 1. This code performs the matrix multiplication
in the normal way without any optimization. The loop
transformations will be represented using this code.
The study also considered the cases of having tail-call
and tail-recursion. Elimination of these are also ways
of optimization.

void matrix(long double *a, long double *b, long
double *c, long double cons, int n)
{ int i, j, k;

forG=O;j<n;j++)
{ for(i=O;i<n;i++)

c[j xn+i] = cons x c[j xn+i];
}

for(k=O;k<n;k++)
{ forG=O;j<n;j++)

{ for(i=O;i<n;i++)
{

c[j xn+i]=c[j xn+i]+a[kxn+i] xb[j xn+k];} } } }

Fig. I Original code for matrix multiplication

2.1.1 Loop Interchange or Loop Re-ordering or Loop
Permutation

Loop interchange or loop permutation or loop
re-ordering [1, 12, 16] technique interchanges the
loops between the inner and the outer loops. These
interchange or re-ordering should be performed
legally and safe as it must not affect the working of
the loop. The reordered loop must compute exactly the
same as the loop without reordering.

2.1.2 Loop Fusion

Loop fusion [1, 12, 16] technique integrates
two adjacent loops may be into a single loop as long
as their data's are not referenced to each other. This
optimization technique reduces the loop overhead. The
two loops can be fused only if their iterations are
same.

2.1.3 Loop Unrolling

Loop unrolling [1, 12, 16, 24] technique is
taken from the concept of loop unroll-and-jam, where
selected outer loops are unrolled by a small number of
iterations, and the unrolled iterations are jammed
inside the innermost loop to promote register reuse.

1389

It is parameterized by the number of loop
iterations unrolled for each outer loop. This
optimization results in a long sequence of straight line
code in the innermost loop body. This decreases the
number of times the loop condition is tested and the
number of iterations performed.

2.1.4 Scalar Replacement

Scalar replacement [16] is a technique were the
array references are replaced by register references.
This helps in reducing the memory references.

2.1.5 Loop Invariant Code Motion

In an imperative programming language, it may
contain certain codes in which certain expressions can
be moved outside the body of the loop without
affecting the semantics of the program. Such types of
codes are called Loop-invariant code. The movement
of these codes is called Loop-invariant code motion
[12]. It is a compiler optimization which performs this
movement automatically.

2.1.5 Redundancy Elimination

In this technique, the redundant code[1] is
eliminated. This is brought about by executing the
redundant code only once thus avoiding repeated
execution of the same piece of code that gives the
same result. After executing the code once, only the
results will be used instead of executing redundant
code. This helps in reducing the execution time and
also helps to reduce the power consumption while
using redundancy elimination along with loop
unrolling and scalar replacement.

2.2 Procedure Optimization

These optimization techniques apply to the whole
procedure. The procedure optimization techniques
considered for study were: tail - recursion elimination,
tail-call optimization, procedure integration or in-line
expansion. Unlike loop optimization techniques, the
data flow analysis need not be done. These
optimization techniques do not consider the data
dependencies.

The following sub-sections explain in detail about
the procedure optimization techniques.

2.2.1 Tail-call optimization and tail-recursion
elimination

Tail-call optimization [29] and tail-recursion
elimination [29] are the procedure optimizations
applied on calls. By using these optimization

techniques, it possible either to reduce or eliminate
significant amount of procedure-call overhead.

Suppose there are two procedures fO and gO.
Then a call from fO to gO is a tail-call if the only thing
that fO does, after gO returns to fO, is itself return.

The call is tail-recursive if fO and gO are the
same procedure; i.e. the function call itself, at the tail
of the procedure.

2.2.2 Procedure Integration or In-line Expansion

In this optimization technique, the function
calls are replaced with the copies of the procedure
bodies. This optimization technique is otherwise
known as automatic outlining [27]. It is a useful
optimization technique, as it increases the possibilities
to optimize the inline procedures, like the procedures
having the procedure calls within the loops or a loop
that calls a procedure, a procedure whose body itself is
a loop or a nested loop, using the loop
transformations.

The following are the several issues [27] faced by
this optimization techniques:

• the size of the procedure body
• number of calls to the procedure
• whether the procedure is called inside the loop
• whether a particular call includes one or more

constant valued parameters
The loop transformations especially, the unroll

and-jam, scalar replacement etc., can be applied to the
code.

III. EXPERIMENTAL RESULTS

The analysis was performed in Ivy Bridge
processor with 8cores. The analysis was performed for
matrix multiplication as it is highly computation
intensive and costly operation. Matrix multiplication
was done on various sizes of matrices ranging from
100xlOO to 275x275.

The power consumption was recorded using a
Power Meter. The initial reading was recorded and
then the reading ones the code was executed was
recorded. The readings were taken in Watts(W).

The initial reading was recorded to be 26.23W
without running any of the applications. It was seen
that as the application was running for long period of
time, the system temperature was increased which
increased the power consumption of the system to
around 66.74W without any application running.

1390

3.1 Results

The graph below in figure 2 show the power
consumed by the application when the size of the
matrix is I OOxl 00. It shows that the power
consumption while using loop unrolling IS

significantly reduced.

Power Consumption of lOOxlOO Matrix

:: 31.5
� 31
c .: 30.5
.Q
a 30
E
;;: 29.5
8 29
j 28.5

Optimization Techniques

Fig 2. Power consumption of 100x100 matrix

The graph below in figure 3 shows the power
consumption by a 150x 150 matrix. Most of the
optimization techniques have significantly reduced the
power consumption when compared to the matrix
multiplication without any optimizations.

40
:; 38.5
� 37
': 35.5
� 34
E 32.5
: 31
829.5
• 28
} 25.5

25

Power Consumption of 150x150 Matrix

- -
• •
• •

• •

- -
• •
• •
• •

-
•
•

•

- -
• 1.1
• 1.1
• III

Optimization Techniques

=l
III

Fig 3. Power consumption of 150x150 matrix

The figure 4 below shows the graph of the power
consumption of the matrix of size 175x 175. It is seen
that using a combination of loop unrolling along with
the redundancy elimination of expressions has reduced
the power consumed substantially.

Power Consumption of 175x175 Matrix

Optimization Techniques

Fig 4. Power consumption of 175x 175 matrix

The graph showed in figure 5 is the 200x200
matrix's power consumption. It is seen that using a
combination of loop unrolling along with the invariant
code motion has reduced the power consumed
substantially when compared to the other optimization
techniques. There is only slight reduction in the power
consumption of the other optimization techniques.

Power Consumption of 200x200 Matrix

Optimization Technique�

Fig 5. Power consumption of 200x200 matrix

Power Consumption of 225x225 Matrix

Optimization Techniques

Fig 6. Power Consumption of 225x225 matrix

The graph is figure 6 shows the power
consumption of the 225x225 matrix. There is a large
reduction in power consumption when using scalar

1391

replacement. Larger matrices make use of this
optimization technique as this technique also reduces
the execution time.

The consumption of power by a 250x250 matrix is
shown in the graph in figure 7. Loop unrolling and
scalar replacement along with the combinations with
redundancy elimination and invariant code motion
shows a substantial reduction in power consumption.

Power Consumption of 250x250 Matrix

Optimization Tedmiques

Fig 7. Power Consumption of 250x250 matrix

The power consumption graph of the matrix of
size 275x275 is shown below in figure8. This again
shows that loop unrolling and scalar replacement
along with redundancy elimination and invariant code
motion has a major effect in the power consumption.
Tail-call and Tail-recursive code have higher power
consumption.

Power Consumption of 275x275 Matrix

1111,1 I 1,1 II1II I
Optimization Tedmiques

Fig 8. Power Consumption of 275x275 matrix

3.2 Findings

[t can be inferred from the above results that
applying optimization techniques especially loop
unrolling, scalar replacement, redundancy elimination
and invariant code motion, helps reduce power
consumption of compute intensive applications like
matrix multiplication.

IV. CONCLUSION

In the modern era, the need for high performance
of application is considered to be one of the most
important requirements. While considering the
performance, it is also necessary to consider the
energy consumption for running the particular
application. If the application is modified based on the
optimization techniques considered for study a
substantial amount of energy can be saved as well as
the performance can be improved. The work can be
extended by proposing a system that implements these
optimization techniques.

REFERENCES

[1] Ananta Tiwari, Hollingsworth,J.K., Chen,C.,
Hall,M., Liao,C., Quinlan,DJ., Applications: A
Case Study', [ntl. Journal of High Performance
Computing Applications, vol. 25, no. 3, pp.
286-294.

[2] Ananta Tiwari, Chun Chen, Jacqueline Chame,
Mary Hall, and Jeffrey K. Hollingsworth
(2009) 'A scalable auto-tuning framework for
compiler optimization', [EEE Symposium on
Parallel and Distributed Processing (IPDPS),
pp. [-12, Rome.

[3] Anuradha Purohit, Arpit Bhardwaj, Aruna
Tiwari, Narendra S. Chaudhari (2011)
'Handling the Problem of Code Bloating to
Enhance the Performance of Classifier
Designed Using Genetic Programming', Proc.
of IICA[20 [[, pp. 333-342.

[4] Anthony M.Middleton (2010) 'Data-[ntensive
Technologies for Cloud Computing',
Handbook of Cloud Computing, Springer, pp.
83-186.

[5] Alexandru Iosup, Simon Ostermann, M. Nezih
Yigitbasi, Radu Prodan, Thomas Fahringer,
and Dick HJ. Epema (2011) 'Perfonnance
Analysis of Cloud Computing Services for
Many-Tasks Scientific Computing', IEEE
Transactions On Parallel And Distributed
Systems, vol. 22,no. 6,pp. 931-945.

[6] Avadhesh Kumar, Rajesh Kumar, P. S. Grover
(2011) 'Unified Cohesion Measures for
Aspect-Oriented Systems', [nternational
Journal of Software Engineering and
Knowledge Engineering, vol. 2 [, no. [, pp.
[43-163.

[7] Shajulin Benedict (20 [2), 'Energy-Aware
Performance Analysis Methodologies for HPC
Architectures - An Exploratory Study' Vol. 35,
No. 6, Journal of Network and Computer
Applications, Elsevier, pages 1709 - 1719,
November 20[2.

1392

[8] Benedict,S., Rejitha R.S., Bency Bright,C.
(2012) 'Energy Consumption based
Performance Tuning of Software and
Applications using Particle Swarm
Optimization', IEEE Proc. of CSI Sixth IntI.
Conf. on Software Engineering, pp. 1-6,
Indore.

[9] Benedict,S., and Michael Gerndt.(2012)
'Automatic Performance Analysis of OpenMP
Codes on a Scalable Shared Memory System
using Periscope', Applied Parallel and
Scientific Computing, LNCS, Springer
Publishers, vol. 7134, pp 452- 462.

[10] Benedict,S., Brehm,M., Michael Gerndt,
Guillen,C., Hesse,W., Petkov,V. (2010)
'Automatic Performance Analysis of Large
Scale Simulations', Euro-Par Workshops 2009,
Springer, LCNS, vol. 6043, pp.199-207,
Dresden.

[11] Cai,C., Wang,L., Khan,S.U., Tao,J. (2011)
'Energy-aware High Performance Computing
A Taxonomy Study', Proc. of I EEE 17th IntI.
Conference on Parallel and Distributed
Systems.

[12] Chowdhuri,A., Babu, M.R. (2011) 'Analysis of
Loop Optimization Techniques in Multi-Core
Environment using MPI-C', International
Journal of Computer Information Systems, vol.
2, no. 4, pp.59-65.

[13] Clark T., Yoder A. (2008) 'Best practices for
energy efficient storage operations',
http://www.snia.org/forums/green. pp. 1-22.

[14] Cristian Tapus, 1-Hsin Chung, and
Hollingsworth,J .K. (2002) 'Active Harmony:
Towards Automated Performance Tuning',
Proc of ACM/IEEE Conf. on Supercomputing,
pp. 44-55, Baltimore.

[15] EnergyStar Data Center Report to Congress
(2007) 'FINAL 7-25-07 - Energy Star
Technical Report', http://www.energystar.gov/
ia/partners/proddevelopment Idownloadsl
EPA Datacenter ReportCongressFinall.pdf.

[16] Faizur,S., Guo,J., Yi,Q. (2011) 'Automated
empirical tuning of scientific codes for
performance and power consumption', ACM
Proc. of IntI. Conf. on High Performance and
Embedded Architecture and Compiler, pp.1 07-
116, NY.

[17] Gaujal,B., N. Navet (2011) 'Dynamic Voltage
Scaling under EDF Revisited, Real-Time
Systems', Springer Verlag, vol. 37, no.l, pp.
77-97.

[18] Intel Inc., 'Data Center Energy Efficiency
Using Intel Intelligent Power Node Manager
and Intel Data Center Manager', White Paper

in http://software. intel.com/sites/datacentre
manager/whitepaper.php .

[19] Jing S., Ali S., She K., and Zong Y. (2011)
'State of the art research study for green cloud
computing', Journal of SuperComputing,
doi:10.1007/s11227-011-0722-1, pp. 1-24.

[20] Lin Y.C., Yi-Ping You, Chung-Wen Huang,
Jenq Kuen Lee,Wei Kuan Shih, andTingTing
Hwang (2007) 'Energy-aware scheduling and
simulation methodologies for parallel security
processors with multiple voltage domains', The
Journal of Supercomputing, vol. 42, no. 2, pp.
201-223.

[21] Mehta H. (1996) 'Energy characterization

[22]

[23]

[24]

[25]

based on clustering', Proc. of Design
Automation Conf., pp. 702-707, New York.

Neil Walkinshaw, Bernard Lambeau,
Christophe Damas, Kirill Bogdanov and Pierre
Dupont (2012) 'STAMINA: a competition to
encourage the development and assessment of
software model inference techniques',
Empirical Software Engineering, 001:

10.1007 Is 10664-0 12-9210-3.

NIST Technical Annual Report, (2002)
http://www .nist.gov 1 director/planningl
up I oad/report02-3. pdf

Patterson, D., Hennessy,J.L. (2007) 'Computer
Architecture A Quantitative Approach', 4th ed.,
Elsevier, Morgan Kufmann Publishers.

Pietron,M., Russek,P., Wiatr,K. (2010) 'Loop
Profiling Tool For HPC Code Inspection As
An Efficient Method Of FPGA Based
Acceleration', Int. J. Applied Mathematics and
Computer Science, vol. 20, no. 3, pp. 581-589.

[26] Rizvandi, Nikzad Babaii; Taheri, Javid;
Zomaya, Albert Y., Lee, Young Choon (2010)
'Linear Combinations of DVFS-Enabled
Processor Frequencies to Modify the Energy
A ware Scheduling Algorithms', Proc. of
Cluster, Cloud and Grid Computing (CCGrid),
pp. 388 -397, Melbourne.

[27] Robert W. Sebesta, (2006) 'Concepts of
th

Programming Languages', 7 ed., Pearson
Education.

[28] Shohrab H.M. and Antiquzzaman M. (2011)
'Cost analysis of mobility protocols',
Telecommunication System Journal, Springer
Online, pp. 1-14.

[29] Simon Hopkins
Programmer' ,
Ilink/36712.

(2012) 'Shoot the
http://www.sdtimes.com

[30] SNIA (2012) 'SNIA: Technical Work Groups',
www.snia.org/techactivities Iwork/twgs.

[31] Song S., Su c., Ge R., Vishnu A., and
Cameron K. W. (20 I 0) 'Isoenergy efficiency:

1393

An approach to power constrained parallel
computation', http://eprints.cs. vt.edu
larchivelOOOO 1124/0 lICSTechReport21 O.pdf,
2010.

[32] Wang,Z., Shuang,K., Yang,L.,Yang,K. (2012)
'Energy-aware and revenue-enhancing

Combinatorial Scheduling in Virtualized of
Cloud Datacenter', Journal of Convergence
Information Technology, vol. 7, no. 1, pp. 62-
70.

1394

