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Abstract—The success of Deep Neural Networks (DNNs) for
various applications like language processing (NLP), image pro-
cessing, character recognition inspired to use machine learn-
ing (ML) and Evolutionary Computation (EC) techniques for
improving learning process. Using evolutionary algorithms to
improve the efficiency of deep learning attained some success.
However, these techniques are unable to reduce the learning time
which is the key concern for deep learning. The main problem
with DNN is that, it uses a random topology to start with (similar
to artificial neural networks). If the topology is not suitable,
training procedure will restart with a new topology and this
process continues till expected results are obtained.

In this paper, we propose, for the first time, a new prospect for
evolving optimized deep neural networks which can provide a
warm start to the training process compared to heuristic random
initial architecture. We discuss the theoretical approach towards
possibility of optimizing the learning process inspired from
the existing un-conventional approaches. The training process
of DNN with EC approach is faster than regular approach
by a considerable difference of over 6 hours for MNIST
data set. Further, we observed a considerable improvement in
the classification accuracies. Our approaches resulted in an
improved classification accuracy of 2% and 4.4%for MNIST
data set and 1.2% and 1.4% for IRIS data set compared to
heuristic random weights approach. Our initial experimental
results prove that evolutionary approaches provides a warm
start to the deep learning, thus, reducing the training time.
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I. INTRODUCTION

Deep Learning has attained focus since 2006 when for the
first time, an efficient procedure to train deep architectures
has been proposed by G.E. Hinton [1]. Deep learning showed
considerable success in Nature language processing, image
recognition and other patter recognition implementations [2]
[3]. Deep learning is a form of hierarchical learning whose
theoretical concepts were first proposed by Lecun in 1998 [4].
Though Lecun’s Convolutional Neural Networks (ConvNets
or CNNs) have produced good results, the training procedure
was very time consuming. In 2006, Lecun, Hinton and Bengio
proposed a layers wise training procedure for three different
implementations of deep architectures and attained state of art
results for various problems. Recent implementation of neural
networks for gene expression data also attained good results
[5].

The entire deep learning implementation can be divided into
two parts, initial design of architecture and training procedure.

Initially, a random topology is constructed and is trained
using unsupervised training. In the second stage a layer-wise
training procedure is adopted and finally the entire network is
trained using supervised training mechanism. Deep learning
is considered as a slow process as it is time consuming to
optimize a randomly selected topology. DNN uses gradient
descent in layer-wise training increases the chances of falling
in local optima which results in in-efficient and undesirable
learning procedure.

Artificial Neural Networks (ANNs) faced similar issue that
was resolved by applying Evolutionary Computation (EC)
techniques. By EC algorithms, optimized neural networks
are evolved from simple ANNs and the process is termed
as Neuroevolution (NE) [6]. NE algorithms like NEAT has
shown considerable success in various real world applications.
Further NE eliminates the problem of vanishing error gradient
which affects the learning of ANNs [7]. In-line with the
success of NE, we try to analyse the possibility of evolving
deep neural networks and optimizing them using EC principles
to improve the deep learning process.

We propose a new prospect for evolving optimized DNNs
which can give a warm start to the procedure of deep learning
and reduce the amount of time for training. Our initial exper-
imental produced promising results. This paper is presented
as follows. Earlier work on Neuroevolution and deep learning
along with related work on optimising deep learning process is
presented in section II. The proposed approach is presented in
Section III. Experimental results and conclusion is presented
in section IV and V.

II. RELATED WORK

A. Neuroevolution

Evolutionary Computation (EC) refers to general compu-
tational methods inspired by Darwin’s principles of natural
evolution for problem solving [8]. In practice, a computer
algorithm that implements the principles of biological evo-
lution and the natural selection process is commonly known
as an Evolutionary Algorithm (EA). EA has been widely
used in areas that involve combinatorial optimization and is
effective in identifying efficient solutions for many real world
optimization problems. ANNs are used to represent and solve
complex problems due to their ability to learn, flexibility
with network topology for required output. With ANNs, the
required output can be achieved either by adjusting weights
or and network topology. ANNs have high success rate as
functional approximators for policy search algorithms like EA
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and Temporal-Difference methods to represent solutions for
Learning problems [9]. NE is the process of implementing
EAs for designing and training ANNs [6] and the ANNs thus
evolved are called Evolutionary Artificial Neural Networks
(EANNs). The NE algorithms can distinguished depending
on what exactly is evolved, network topology or connection
weights or both (Topology and Weight Evolving Artificial
Neural Networks - TWEANN). Further NE can be used
to generate problem based optimized network topologies to
measure the performance where there is no standard format
of fixed input and output.

NE uses Genetic Algorithm (GA) to search ANN policies
for obtaining a most fit individual among a population of
solutions [6]. Since ANNs are universal approximators, this
mapping leads to a powerful binding. The recurrent neural
networks that have feedback connections can maintain their
internal state obtained from previous observed inputs. With
this ANNs can solve partially observable tasks. This scenario
follows evolving efficient ANNs instead of training ANNs to
be efficient. With this, NE eliminates the problem of vanishing
error gradient which affects the learning of ANNs [7]

There are two major approaches to evolving ANN ar-
chitectures. One is the evolution of pure architectures (i.e.
architectures without weights) and connection weights will be
trained after a near optimal architecture has been found. The
other approach is simultaneous evolution of both topologies
and weights [10] [6],. When both architecture and weight
information is encoded into individuals, the impact of random
initial weights and training algorithm will be considerably
reduced [11] [12]. But, the possibilities of evolving simi-
lar networks with hidden units defined in different orders
(very dissimilar combinations), this may prevent successful
recombination which is referred as permutation or competing
conventions problem [11]. However, this problem can be
resolved by the evolutionary programming based approaches
[13] [14].

There are many NE implementations based on the type of
the problem, type of encoding and EC methods used. Some
of the most popular implementations are GeNeralized Acqui-
sition of Re- current Link (GNARL) [15], Cellular Encoding
[16], EPNet [14],Neuro Evolution Augmenting Topologies
(NEAT) [17]There are many extensions proposed for NEAT
like Real time NEAT (rtNEAT), Hypercube based NEAT
(HyperNEAT), cgNEAT (Content-Generating NEAT), Evolu-
tionary Acquisition of Neural Technologies (EANT) [18]. Out
of these extensions, HyperNEAT is quite successful since its
not task based extension. HyperNEAT is the first extension
of NEAT by Stanley and other in 2009 [19]. HyperNEAT is
a hypercube based NEAT that can evolves high-dimensional
ANNs where the weights of the ANNs are evolved as function
of geometry. HyperNEAT is be applied to Robocup [20],
multi agent learning [21]. HyperNEAT uses indirect encoding
called Compositional Pattern Producing Networks (connective
CPPNs).

B. Unconventional Deep Learning Approaches

Traditional ANNs with shallow architectures (ANNs with
one hidden layer) with 2 stage computation and learning ele-
ments resulting in incompetence to handle training data [22].
Deep architecture is a multi-layer ANN with self-trained layers
to learn from the output of its preceding layer. The training
procedure of deep neural networks is called ‘deep learning’
where each layer learns from its preceding layer making the
learning process concertized. By this, the learning procedure
follows a hierarchy by transforming a low level representation
at the first layer to a high level feature at the last layer with
multiple intermediate stages. The knowledge from these stages
can also be utilized as a partial or intermediate solution. Deep
architectures empower deep learning strategy using greedy-
layer-wise training which enables to extract only features
that are useful for learning. Apart from layer-wise training,
unsupervised training makes deep learning successful. Deep
architectures with minimum computational units allowing non-
local generalization resulting in increased comprehensibility
and efficiency [23]. According to complexity theory of circuits
deep architectures can be exponentially efficient than narrow
architectures in terms functional representation [22].

Fukushima proposed Neocognition using CNNs [24] which
inspired for later works on deep architectures. The Fukushima
CNNs used unsupervised learning rules to set the initial
weights [25] whereas later works improved the concepts by
using supervised Back Propagation (BP) for the same [26].
However, Lecun CNN was unable to solve the vanishing or
exploding gradients problem that was inherited from ANNs
with BP. This problem which is also called as long time
lag problem is considered as the fundamental problem of
deep learning [27] [28]. In 1998, Lecun used gradient descent
training for implementing CNNs which has produced good
results in pattern recognition [4] with very time consuming
training procedure which is a big concern. Another problem
with BP is its mandatory requirement for labelled data at the
beginning which is not feasible in case of real world problems.

Successfully training deep architectures was achieved in
2006. Lecun used implemented CNNs with greedy layer-wise
training and removed the earlier problem of slow learning
[29]. Hinton proposed Deep Belief Networks (DBNs) using
stacked Restricted Boltzmann machines (RBMs) [30]. A RBM
is a stochastic ANN which is capable of learning probability
distribution. Yoshus Bengio proposed stacked auto-encoders
[31]. A stacked auto-encoder is a multiple layers of auto-
encoders stacked in such a way that the output of one layer
acts as an input to the other layer. These 3 implementations are
considered as the traditional successful approaches for deep
learning which formed the base for future implementations.

Generative NeuroEvolution (GNE) is developed with Hy-
perNEAT as a feature learner using Compositional Pattern
Producing Network (CPPN) for ANNs [32]. CPNN is an
encoding process for HyperNEAT by encoding ANN weight
patterns to evolve both topology and weights. In traditional
HyperNEAT, CPPN defines ANN as a solution and its fitness
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is determined by evaluating ANNs performance for given
problem. Diverging from this traditional approach, GNE trains
ANN as feature learner by transforming input into features
and evaluated by another ML approach by applying to the
problems (fitness of CPNN). This process enhances the per-
formance of the learned solution. HyperNEAT without any
modifications, generates weight patterns for fully connected
feed forward ANNs with only sigmoid activation functions.
From this point, the only visible part for HyperNEAT is
a geometric coordinate structure of the neurons similar to
a graph. ConvNets can be represented in a graph structure
associating coordinates of the nodes similar to HyperNEAT
structure which enables to apply HyperNEAT on ConvNets
based architectures. A GA based learning mechanism for
DNNs was proposed in 2012, for image classification [33].
In this approach, the layer wise training is performed using
GA. Another method, proposed in 2014 is a GA-assisted
method for improving the performance of auto-encoder based
producing a sparser neural network which produced superior
performance than stacked auto-encoders.

In 2013 Yichuan Tang proposed deep learning using Linear
Support Vector Machines (LSVMs) [34] which replaces the
softmax activation function with LSVM. In ConvNets, softmax
is used as an activation function for prediction. A simple
ConvNet used with Support Vector Machine (SVM) as the
top layer. The training procedure adopted is gradient descent.
To improve the generalization capabilities, several models are
trained and the results are averaged out. This approach resulted
in only a slight improvement. However with LSVMs approach
that simply replaces softmax layers with LSVMs has been
very efficient and has won ICNL 2013 representation learning
challenge for face recognition.

Deep Reinforcement Learning (DRL) uses RL as an initial
training mechanism for ConvNets proposed at NIPS2013 [35].
DRL approach is an implementation of deep architecture con-
cept using Reinforcement Learning(RL). The advantages with
RL algorithm is its ability to learn from noise and unlabelled
data whereas most of the deep architecture implementations
requires labelled data [35]. As Most deep learning methods
assumes the input data to be independent. RL keeps chang-
ing its structures of data distribution with the new learning
mechanisms which is not different to deep learning algorithms.
This approach proposes a method to overcome the learning
challenges of ConvNets for raw video data using RL algo-
rithms. By directly connecting RL algorithms with ConvNets,
this approach uses gradient decent updates as training data
following learning by experience paradigms. The proposed
variant algorithm is tested on Atari 2600 computer games and
gave efficient results compared with other approaches.

T-DSN is a deep architecture with stacked multiple blocks
on one another with each block is mapped with a bilinear
mapping from hidden layers [36]. This mapping is used
to incorporate higher order values of the input features. A
new training algorithm is proposed with scalable parallel
implementation which has outperformed the traditional DNN
architecture on TIMIT database [36]. For continues phonetic

recognition DNNs need a sequential fine tuning whereas T-
DSN produced similar performance without fine tuning.

A combination of CNNs and DBNs called Convolutional
Deep Belief Networks (CDBN) achieved significant results on
benchmark CIFAR data set. With the objective of optimizing
deep learning process especially with deep neural networks,
some neural networks techniques like dropout, dropconnect are
also used. Other recent developments include Deep Stacking
Networks, Spike-and-Slab RBMs, Deep Coding Networks, and
Deep Kernel Machines etc.

C. Latest Developments based on feature transfer

A new transductive transference approach was proposed
to solve this issue [37]. Transductive learning approaches
examines and learns from a specific training to a specific
task drawn from the same distribution. So, in case of source
and target having different distribution, it follows transduc-
tive transference approach, where classification results are
improved by transferring exploited labelled training instances
from trained network to new network for solving similar prob-
lem. Experimental results on using Arabic digits to identity
Latin digits (Character recognition) provided improved results
both in performance and accuracy. However, the questions
about where exactly the generalisation is occurring is still
unanswered. Deep Adaptation Network (DAN) architecture,
presented in ICML 2015 is the most recent attempt towards
understanding the learning process [38] towards generalization
of deep CNNs. DAN generalizes the CNN towards domain
adaptation scenario where task-specific features are identified
and transferred. Further, with DAN it is confirmed that general
features can more-over transferable and task specific features
are to be tailored to solve a different task.

III. EVOLUTIONARY DEEP NEURAL NETWORKS (EDN)

Evolving DNNs is inspired from the NE approach of evolv-
ing optimized ANNs. In tradition NE approaches, a population
of ANNs are evolved and most fit ANN is selected depending
on exit criteria. In some NE approaches multi population
based evolutionary strategy is also used. To evolve DNN, we
propose to use a novel strategy where two populations with
two different co-evolutionary processes. Further, a knowledge
extraction process is proposed to extract knowledge from these
evolved DNNs. In the case of multi-objective problem solving,
it is necessary to produce most optimal ANNs or a family
of them to address multiple sub problems which constitute a
big problem. In this process maintaining genetic diversity is
of paramount importance. One of the major problems of EC
is maintaining the diversity of the population. Co-evolution
algorithms are not different and are unable to maintain genetic
diversity. Numerous methods were proposed to address this
problem and some of them include a multi-population ap-
proach where new population is generated while evolutionary
process.

There are two types of co-evolution strategies competitive
and cooperative. In competitive co-evolution, individuals of a
population compete with each other giving rise to an arms
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Fig. 1. Evolution Process

race to achieve the top position. With this, it is possible to
find a simplest solution among the population of solutions
that can win. Cooperative co-evolution evolves solution by
recombining individual fragments of sub solutions. Both these
approaches have been successful in their respective areas and
applications and are equally affected by premature conver-
gence with which genetic diversity will be not maintained
after some evolutions. To avoid premature convergence there
have been several methods for replacing the individual pop-
ulation, increasing population size, uniform cross over etc.
The proposed EDNs with two populations P1 which uses
competitive strategy to identify most fit individual and P2
using cooperative strategy to construct optimal solution as
shown in Fig.1 . After few generations (or based on some
criteria) the migration process involving most fit individual
from P1 to P2 or P2 to P1 will be started. This migration
process will result in evolving diversified individuals. Using
two different types of co-evolutionary processes produces
more diversified solutions compared with using same type
of co-evolutionary process. Since the individuals of cooper-
ative style of evolution are partial solutions, the mechanism
to migrate from cooperative to competitive population with
individual as a complete solution, involves an intermediate
process called recombine with which partial solutions are
recombined to a solution capable of migrating. The prob-
lem of individuals re-migrating to their original population
is addressed by introducing a unique encoded number with
which the origins (population from which it evolved) can be
traced back. Further, we propose to implement an automatic
self-destruction process at regular intervals to remove non
active individuals based on their fitness. We introduce an
attribute to encourage combinations with the individuals of
other population creating more diversity. A MFI table (Most
Fit Individuals) with the list of most fit individuals (from both
populations) is maintained similar to hall of fame strategy of
NE. The evolution process may be aborted with internal or
external exit criteria.

The process of evolving DNNs using NE is practicable and
similar to evolving optimized ANNs which has been successful
in the past. The evolution of optimized DNNs will address
the problem of slow training procedure by providing a warm

start to the entire learning procedure. There are still problems
concerning a theoretical foundation to DNNs. The aim of this
research is not only to develop more efficient evolution of
DNNs but also to formulate a theory of DNN as applied to
temporal and sequential data classification for future research
purposes. In particular, the limits of DNN are not known.
One of the tasks will be to evolve DNNs to handle complex,
multi-objective optimization involving non-linear relationships
between attributes and objective functions.

IV. INITIAL EXPERIMENTS

We performed some initial experiments to support our
proposed prospect multi-population approach. A 5-layered
Deep Neural Network (Nodes: 784,784,784,784,784) is used
for the experiment with gradient descent layer wise training
followed by a back-propagation for the entire network. The
reason for symmetric number of nodes is due to its success
in earlier works [39]. Firstly, we carried out the experiments
with a 5-layered DNN with random weights (DNN-R). The
second strategy is using an evolved DNN with Competitive
co-evolution algorithm (DNN-CCEA). For the third strategy
we used cooperative co-evolution algorithm to evolve weights
(DNN-COCA). We used benchmark MNIST and IRIS data
sets for the experiments. Each experiment is carried out for
25 times and the results are presented as Table I and Table II.

Strategy Accuracy (%) Error Rate (%)
MNIST IRIS MNIST IRIS

DNN-R 94.3 96.9 0.54 0.31
DNN-
CCEA 96.3 98.1 0.201 0.19

DNN-
COCA 98.7 98.3 0.12 0.131

TABLE I
EXPERIMENTAL RESULTS WITH THREE STRATEGIES

The experimental results classification accuracies and aver-
age error of three strategies (DNN-R,DNN-CCEA and DNN-
COCA) is presented in Table I. Heuristic random weights
approach DNN-R achieved classification accuracy of 94.3%
for MNIST and 96.9% for IRIS data sets. Using DNN-
CCEA, where weights are evolved using competitive evolution
strategy, the classification accuracies are 96.3% and 98.1%
whereas for DNN-COCA (co-operative co-evolution) it is
98.7% and 98.3% for MNIST and IRIS data sets respectively.
From the results, it is evident that DNN-CCEA and DNN-
COCA achieved better classification accuracy which is more
than 2% and 4.4% for MNIST and 1.2% and 1.4% for IRIS
compared to heuristic random weights approach DNN-R.

Strategy Avg. Time (hours) Avg. Performance
DNN-R 14.5 2.5

DNN-CCEA 8.3 1.19
DNN-COCA 10.2 1.73

TABLE II
TRAINING TIME AND PERFORMANCE FOR MNIST
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The training time for the experiment is presented in Table
II. The training process with DNN-CCEA is faster than DNN-
R with a considerable difference of over 6 hours whereas it is
about 4 hours for DNN-COCA. It is evident that using evolu-
tionary approaches in tandem with deep learning has speed-up
the training. Foremost reason for success of this approach is
its ability of EC approaches in optimising the weights which
provides a initial start to deep learning. This approach of using
EC techniques to improve the performance of DNNs can be
equated to similar strategy used in Neuroevolution approaches.
However, the cost of evolving entire DNN compared with the
training time of a DNN wit randomly selected topology is
to evaluated. But, success of Neuroevolution over randomly
selected ANN topology cannot be ignored.

V. CONCLUSION

This paper proposes the prospects of evolving deep ar-
chitectures which can provide a warm start to the deep
learning process. The feasibility of proposed approach is
justified by reviewing the some of the implementations of
deep architectures using NE and GAs, SVM based learning,
Reinforcement Learning. However this work is a direction for
reducing learning time for DNNs by using optimized deep
neural networks as a starting point which can provide a warm
start for deep learning procedure.

Our approaches resulted in an improved classification ac-
curacy of 2% and 4.4%for MNIST data set and 1.2% and
1.4% for IRIS data set compared to heuristic random weights
approach. The training process of DNN with EC approach
is faster than regular approach with a considerable difference
of over 6 hours for MNIST data set. Further, we observed a
considerable improvement in the classification accuracies. Our
initial experimental results prove that evolutionary approaches
provides a warm start to the deep learning, thus, reducing the
training time.

Future work includes experimental implementation of EDNs
as well as addressing some of the challenges that are identified.
One such challenge is deciding the initial topology, weights
and biases to start with. As the NE process if more of evolving
a network continuously for a particular number of generations,
for EDN this may not be feasible since number of generation
may not be decided as EDN is problem based approach
for evolving optimized ANN. This extends to identifying
exit criteria for stopping the process of evolution without
which the entire EDN process will be time consuming. The
initial experimental implementations and practical implications
shows promising results. However, further study is needed to
justify the proposed concept of EDNs.
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