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Abstract

Long training times for high-accuracy deep neural net-

works (DNNs) impede research into new DNN architectures

and slow the development of high-accuracy DNNs. In this

paper we present FireCaffe, which successfully scales deep

neural network training across a cluster of GPUs. We also

present a number of best practices to aid in comparing

advancements in methods for scaling and accelerating the

training of deep neural networks. The speed and scalabil-

ity of distributed algorithms is almost always limited by the

overhead of communicating between servers; DNN training

is not an exception to this rule. Therefore, the key consid-

eration here is to reduce communication overhead wher-

ever possible, while not degrading the accuracy of the DNN

models that we train. Our approach has three key pillars.

First, we select network hardware that achieves high band-

width between GPU servers – Infiniband or Cray intercon-

nects are ideal for this. Second, we consider a number

of communication algorithms, and we find that reduction

trees are more efficient and scalable than the traditional

parameter server approach. Third, we optionally increase

the batch size to reduce the total quantity of communica-

tion during DNN training, and we identify hyperparameters

that allow us to reproduce the small-batch accuracy while

training with large batch sizes. When training GoogLeNet

and Network-in-Network on ImageNet, we achieve a 47x

and 39x speedup, respectively, when training on a cluster

of 128 GPUs.

1. Introduction and Motivation
Since the publication of AlexNet [17], a variety of

new deep neural network (DNN) architectures such as

GoogleNet [26], Network-in-Network [20], and VGG [24]

have been developed at a rapid pace. This is natural,

because with the training and testing dataset fixed (e.g.

ImageNet-1k [9]), it is the DNN architecture that is pri-

marily responsible for improvements in accuracy. In other
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words, the race for improvements in accuracy in image clas-

sification and other contemporary problems of computer

science, has become a race in the development of new DNN

architectures. So, what is the bottleneck in the development

of new architectures?

In the development of new DNN architectures, as in any

human research endeavor, creativity is a key element. How-

ever, the impact of architectural variations in DNNs – such

as number of layers, filter dimensions, and so forth – can

be hard to predict, and experimentation is required to assess

their impact. A high-accuracy deep neural network (DNN)

model such as GoogLeNet [26] can take weeks to train on a

modern GPU. This is true even when leveraging deep neu-

ral network primitives like cuDNN [5], maxDNN [18], or

fbfft [28] – all of which operate near the theoretical peak

computation per second achievable on GPUs. Thus, train-

ing time is a key challenge at the root of the development of

new DNN architectures.

This sentiment was voiced by Jeffrey Dean of Google

in his recent keynote address [7]. The four key points that

Dean makes are: (1) DNN researchers and users want re-

sults of experiments quickly. (2) There is a “patience thresh-

old”: No one wants to wait more than a few days or a week

for a result. (3) This significantly affects scale of problems

that can be tackled. (4) We sometimes optimize for experi-

ment turnaround time, rather than absolute minimal system

resources for performing the experiment.

As a particular example of where long training times are

limiting the pace of DNN research and productization, con-

sider the following. ImageNet-1k has 1.2 million training

images, distributed across 1000 different category labels.

From first-hand conversations with engineers and execu-

tives, we know that several internet companies have internal

databases containing billions of images with hundreds of

thousands of different category labels. Due to long training

times, these companies are facing serious delays in bringing

DNN-based solutions to market. Accelerated DNN training

solutions would solve a major pain point for these compa-

nies.

So far, we have argued how accelerating DNN training
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would benefit applications where DNNs are in use today.

Now, we consider ways in which accelerating DNN train-

ing would allow DNN-based techniques to be applied in

entirely new ways. There are a number of situations where

it is crucial to incorporate new data into a DNN model in

real time. For example, reinforcement learning (RL) en-

ables robots to learn things themselves with minimal su-

pervision. A recent study by Levine et al. applied state-

of-the-art DNN-based RL techniques to enable a robot to

teach itself how to build lego structures and screw on bottle

caps [19]. This technique is effective, and the robot does

indeed learn to screw on bottle caps. However, it takes 3-

4 hours for the robot to learn to screw on bottle caps, and

the majority of this time is spent on DNN training. Faster

DNN training would enable this and other RL applications

to move toward real-time.

In our work, we focus directly on the problem of DNN

training. Since single-GPU efficiency has reached the hard

limits of the hardware, the next frontier for accelerating

DNN training is to scale it across a compute cluster. In

this paper, we present FireCaffe, which scales DNN training

across a cluster of 128 GPUs with speedups of more than

40x compared to a single GPU. Our strategy for scaling up

DNN training is to focus on reducing communication over-

head, and we make a number of design choices toward this

goal. For example, we use fast interconnects such as Infini-

band or Cray Gemini to accelerate communication among

the GPUs. We also show that reduction trees are a faster

method for communication than using parameter servers.

We map our parallelization strategy to high-accuracy DNN

architectures.

The rest of the paper is organized as follows. In Sec-

tion 2, we describe our choice of hardware for evaluating

scalable DNN training, and Section 3 introduces key factors

that we will use for analyzing communication among GPU

workers. We describe tradeoffs between DNN parallelism

strategies in Section 4, and Section 5 explains why certain

high-accuracy DNN architectures are particularly amenable

to parallelism. In Section 6, we describe our approach to

efficiently implementing distributed DNN training. In Sec-

tion 7, we describe good practices that facilitate the com-

parison of scalable DNN training techniques and we present

our speedups for training the NiN and GoogLeNet architec-

tures on ImageNet. Finally, we conclude in Section 8.

2. Hardware for scalable DNN training
It is both useful and possible to experiment with the

scalability of DNN computations using theoretical or scale

models. However, demonstration and verification of the

correctness and real-world scalability of the proposed Fire-

Caffe system requires using concrete hardware platforms.

The speed at which data can be sent between nodes is a key

consideration in selecting a hardware platform for scalable

DNN training. This is because, the faster the interconnect

between nodes is, the more scale we can achieve without

being dominated by communication overhead. Hardware

manufacturers such as Cray and Mellanox address this by

developing high-bandwidth, low-latency interconnects that

are substantially faster than typical Ethernet connections.

For example, the Titan supercomputer at Oak Ridge

Leadership Computing Facility (OLCF) has a high band-

width, low latency Cray Gemini interconnect for communi-

cation among servers. The Titan supercomputer has a to-

tal of 18000 servers, with one NVIDIA Kepler-based K20x

GPU per server [2, 23]. With this in mind, we choose the

OLCF Titan supercomputer for tuning and evaluating Fire-

Caffe.

In this research, we use relatively small slices of the

overall capacity of Titan for each training run. The addi-

tional computational capacity (∼27 PetaFLOPS/s in total)

enables us to conduct multiple training runs concurrently,

where each training run utilizes 32 to 128 GPUs. When

considering 32-node slices of Titan, we found that the in-

terconnect speed (at least for the applications of this work)

is similar to that provided by having all nodes in the slice

connected to a single Infiniband-class switch.

3. Preliminaries and terminology
Deep neural network training is comprised of iterating

between two phases: forward and backward propagation.

In the forward phase, a batch of data items (e.g. images) is

taken from the training set, and the DNN attempts to clas-

sify them. Then comes the backward phase, which consists

of computing gradients with respect to the weights (∇W )

and gradients with respect to the data (∇D). The weight

gradients are used to update the model’s weights. Then,

an other forward phase is performed, and so on. We train

models using batched stochastic gradient descent (SGD),

which is the standard choice for popular DNN models such

as GoogLeNet [26].

We now present a few preliminaries, which we will use

later in the paper for reasoning about data volume to com-

municate in distributed DNN training. In Equation 1, we

show how to calculate the total size (in bytes) of the weights

in all convolutional and fully-connected layers, combined.

|W | =

#layers∑

L=1

chL ∗numFiltL ∗filterWL ∗filterHL ∗4

(1)
where ch is the number of channels, numFilt is the num-
ber of filters, filterH is the filter height, and filterW is
the filter width. Next, Equation 2 expresses the size of acti-
vations produced by all layers, combined.

|D| =

#layers∑

L=1

chL ∗numFiltL ∗dataWL ∗dataHL ∗batch∗4 (2)

where dataH is the activation map height, dataW is the

activation width, and batch is the batch size. Note the ∗4 in
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Equations 1 and 2 – this is because a floating-point number

is 4 bytes.

To minimize confusion, we now define some terminol-

ogy. In our terminology, the each following sets of words

are synonyms: (weights = parameters = filters = W ); (nodes

= workers = GPU servers). We also sometimes use the

terms “activations” and “data” (D) interchangeably. Fully-

connected layers are a special case of convolutional layers

where filterH = dataH and filterW = dataW . We

define an “epoch” as one pass through the training data. Fi-

nally, the word “performance” can be ambiguous, so we

write in terms of specific metrics such as “accuracy” and

“training time.”

4. Parallelism strategies
There are two commonly-used methods for parallelizing

neural network training across multiple servers: model par-

allelism (e.g. [29]) and data parallelism (e.g. [34]).

For batched SGD training of DNNs, we define data par-

allelism as the case where each worker (e.g. GPU) gets a

subset of the batch, and then the workers communicate by

exchanging weight gradient updates ∇W . We define model

parallelism as the case where each worker gets a subset of

the model parameters, and the workers communicate by ex-

changing data gradients ∇D and exchanging activations D.

Note that |W | = |∇W | and |D| = |∇D|; in other words,

the weights and weight gradients are the same size; and the

data and data gradients are the same size.

Now, to maximize DNN training scalability, our goal

is to select a parallelism strategy that requires the low-

est possible quantity of communication between servers.

The choice of whether it is ideal to use data paral-

lelism, model parallelism, or both depends strongly on the

DNN’s architectural characteristics. In computer vision,

some of the most popular and accurate DNN models (e.g.

GoogLeNet [26]) consist primarily of convolution layers,

where the spatial resolution of the filters is smaller than the

resolution of the activations. For these convolutional mod-

els, data parallelism is typically preferable because it re-

quires less communication – that is, |∇W | is much smaller

than |∇D| at typical batch sizes. Notice that the computer

vision DNNs in Table 1 all have this property. In FireCaffe,

we enable data parallelism across a cluster of GPUs, and

we find that it produces ample speedups for training pop-

ular deep convolutional neural network architectures. We

illustrate our data parallel approach in Figure 1. Each GPU

contains a complete copy of the DNN model parameters.

Each worker (GPU) gets a subset of each batch. The GPUs

compute their share of the weight gradients. Once the gra-

dients are calculated locally, they are added together using

either a parameter server or a reduction tree communication

(described in Section 6.2).
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Figure 1. Data parallel DNN training in FireCaffe: Each worker

(GPU) gets a subset of each batch.

Table 1. Volumes of data and computation for four widely-used

DNN architectures. The batch size impacts all numbers in this

table except for |W |, and we use a batch size of 1024 in this table.

DNN

architecture

data size

|D|
weight size

|W |
data/weight

ratio

NiN [20] 5800MB 30MB 195

AlexNet [16] 1680MB 249MB 10.2

GoogLeNet [26] 19100MB 54MB 358

VGG-19 [24] 42700MB 575MB 71.7

5. Choosing DNN architectures to accelerate
Of the popular deep convolutional neural network archi-

tectures for computer vision, some are more amenable to

data parallel training than others. One might naı̈vely as-

sume that DNN models with more parameters would pro-

duce higher classification accuracy. To evaluate this as-

sumption, consider Figure 2, where we plot the total size of

all parameters in bytes versus top-5 ImageNet accuracy for

several popular DNN architectures. Observe that Nerwork-

in-Network (NiN) [20] and AlexNet [17] have similar ac-

curacy, while NiN has 8x fewer parameters than AlexNet.

Likewise, GoogLeNet [26] and VGG [24] have similar ac-

curacy, yet GoogLeNet has 10x fewer parameters. In data

parallel training, |∇W | is the quantity of data sent by each

GPU worker, so DNN architectures with fewer parameters

require less communication and are more amenable to train-

ing at large scale.

You may wonder, what are the architectural choices

that led to NiN and GoogLeNet having 8-10x fewer pa-

rameters than AlexNet and VGG? The answer is twofold.

First, GoogLeNet and NiN are more judicious in their

use of filters with spatial resolution: many of the filters

in GoogLeNet and NiN have a resolution of 1x1 instead

of 3x3 or larger. Second, while VGG and AlexNet each

have more than 150MB of fully-connected layer parame-

ters, GoogLeNet has smaller fully-connected layers, and

NiN does not have fully-connected layers.

In summary, models with fewer parameters are more

amenable to scalability in data parallel training, while still

delivering high accuracy. Therefore, for the rest of the pa-
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Figure 2. Deep neural network architectures with more parameters

do not necessarily deliver higher accuracy.

per, we focus our efforts on accelerating the training of

models with fewer parameters (e.g. NiN and GoogLeNet)

while maintaining high accuracy.

6. Implementing efficient data parallel training
Our data-parallel distributed training strategy requires no

communication among GPU workers in the forward pass.

In the backward pass, a traditional single-GPU implemen-

tation (e.g. single-GPU Caffe [15]) sums the weight gradi-

ents over all images in the batch and then uses the weight

gradient sum to update the model.1 When we distribute the

backward pass over a compute cluster, each GPU worker

computes a sum of the weight gradients (
∑

∇W ) for its

subset of the batch. Then, we sum the weight gradients

across GPUs. This gradient aggregation scheme produces

identical numerical results as you would find on a single

GPU.

Now, our task is to find an efficient way to sum up ∇W

among GPUs in a compute cluster. We consider two strate-

gies for implementing this gradient aggregation: parameter

servers, and reduction trees.

6.1. Parameter server
One strategy for communicating gradients is to appoint

one node as a parameter server. The remaining worker

nodes are each assigned a subset of the batch on which

to perform forward and backward-propagation. After each

backward pass, all the workers send their gradient updates

to the parameter server. Then, the parameter server com-

putes the sum of the gradients. Finally, the parameter server

sends the summed gradients to the workers, and the work-

ers apply these gradient updates to their local copies of the

model. We illustrate the parameter server communication

pattern in Figure 3(a).

1However, the data gradients (∇D) are not summed up.

The logical question here is, what is the communica-
tion overhead of a parameter server, and how does that
overhead scale as we increase the number of GPU work-
ers? Recall from Section 4 that each GPU worker pro-
vides |W | = |∇W | bytes of weight gradients (Equation 1),
which need to be summed with gradients from all other
GPU workers. Now, the bottleneck is is in sending and re-
ceiving all the gradients on one parameter server. If there
are p GPU workers, the parameter server is responsible for
sending and receiving |∇W | ∗ p bytes of data. If each node
(GPU worker or parameter server) can send and receive data
at a rate of BW bytes/s, then we can calculate the minimum
communication time as follows:

param server communication time =
|∇W | ∗ p

BW
(sec) (3)

In other words, the parameter server’s communication time

scales linearly as we increase the number of GPU workers;

doubling the number of workers leads to at least 2x more

communication time per gradient update. We confirm this

experimentally in Figure 4.

For the parameter server experiments in Figure 4, we

have implemented a fully synchronous parameter server

with the following characteristics. The parameter server

is one arbitrarily-selected server in the cluster, while the

other servers are workers; the parameter server and worker

servers have identical hardware. After each batch, the work-

ers send their weight gradients to the parameter server, the

parameter server computes the sum, and then the parameter

server sends the sum back to the workers.

There are a number of ways to augment the parameter

server for greater scalability. For example, when having

a single parameter server became a bottleneck, Microsoft

Adam [6] and Google DistBelief [8] each defined a pool

of nodes that collectively behave as a parameter server.

The parameter server pool can be implemented hierarchi-

cally, where the servers aggregate gradients in a tree-like

fashion [21]. In the next section we will take this idea

to its logical conclusion, where every server is involved in

parameter-gradient aggregation as well as computing DNN

forward/backward passes.

6.2. Reduction tree
There are various common patterns of communication

in parallel programs; among such common patterns, a fre-

quently occurring one is allreduce. This pattern occurs

when each worker produces one or more data values that

must be globally reduced (generally with a commutative

binary element-wise operator) to produce a single result

value, and then this single value must be broadcast to

all workers before they can continue. In this work, each

worker produces a single vector of length |∇W | (the gradi-

ent updates for that worker), which must be reduced using

element-wise vector addition (to sum the per-worker gra-

dient updates for each parameter). Since this computation
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serialized  

communication: 2 

(b) reduction tree

Figure 3. Illustrating how parameter servers and reduction trees

communicate weight gradients. In this figure, we only show the

summing-up of weight gradients. We distribute the weight gradi-

ent sums by going back down the tree.

exactly fits the allreduce communication pattern it is con-

venient to use existing library support for such operations.

While there are many possible implementations of allre-

duce, most share the key property that the time taken to

perform the operation scales as the log of the number of

workers (at least for large numbers of workers). Intuitively,

this is because allreduce algorithms use binomial reduction

tree and/or butterfly communication patterns internally [27].

Out of the possible allreduce implementation strategies, we

find that the binomial reduction tree is particularly easy to

reason about on a theoretical level. So, for the rest of this

section, we focus on allreduce communication implemented

with a reduction tree.
In Figures 3(a) and 3(b), we present the intuition on how

parameter servers and reduction trees differ. We might think
of a parameter server as a reduction tree with a height of 1
and a branching factor of p. However, many cluster com-
puters and supercomputers have several dimensions of net-
work fabric among nodes (e.g. an N-D Torus), which en-
able nodes to talk to each other via many different paths.
With this in mind, we can sum gradients using a taller re-
duction tree, where nodes collaboratively sum the gradients.
For example, consider a binary communication tree with a
branching factor of 2 and a depth of log2(p). In this case,
the serialized communication is 2log2(p); the outer 2 repre-
sents the fact that each node receives data from 2 children,
and the log2(p) is the height of the tree. Therefore, unlike
the parameter server model, the reduction tree’s communi-
cation time is:

reduction tree communication time =
|∇W | ∗ 2log2(p)

BW
(sec)

(4)

In practice, the base of log(p) depends on the branch-

ing factor in the reduction tree, but the basic idea here is

straightforward: While the parameter server communica-

tion overhead scales linearly with p, reduction tree commu-

nication is much more efficient because it scales logarith-

mically as O(log(p)). We confirm that reduction trees scale

more efficiently than parameter servers in Figure 4.

Measuring communication only  
(if computation were free) 

Figure 4. Comparing communication overhead with a parameter

server vs. a reduction tree. This is for the Network-in-Network

DNN architecture, so each GPU worker contributes 30MB of gra-

dient updates.

7. Evaluation of FireCaffe-accelerated training

on ImageNet
In this section, we evaluate how FireCaffe can accel-

erate DNN training on a cluster of GPUs. We train

GoogLeNet [26] and Network-in-Network [20] on up to

128 GPU servers in the Titan supercomputer (described in

Section 2), leveraging FireCaffe’s reduction tree data paral-

lelism (Section 6.2). We begin by describing our evaluation

methodology, and then we analyze the results.

7.1. Evaluation Methodology
We now describe a few practices that aid in comparing

advancements in accelerating the training of deep neural

networks.

1. Evaluate the speed and accuracy of DNN training on

a publicly-available dataset.

In a recent study, Azizpour et al. applied DNNs to more

than 10 different visual recognition challenge datasets,

including human attribute prediction, fine-grained flower

classification, and indoor scene recognition [3]. The

accuracy obtained by Azizpour et al. ranged from 56% on

scene recognition to 91% on human attribute prediction.

As you can see, the accuracy of DNNs and other machine

learning algorithms depends highly on the specifics of the

application and dataset to which they are applied. Thus,

when researchers report improvements in training speed or

accuracy on proprietary datasets, there is no clear way to

compare the improvements with the related literature. For

example, Amazon [25] and Baidu [30]2 each reported their

training speedups on a proprietary dataset, so it’s not clear

how to compare these results with the related literature. In

contrast, we conduct our evaluation on a publicly-available

2Baidu evaluated their training times using a proprietary dataset [30].

Baidu also did some ImageNet experiments, but Baidu did not report the

training time on ImageNet.
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dataset, ImageNet-1k [9], which contains more than 1

million training images.ImageNet-1k is a widely-studied

dataset, so we can easily compare our accuracy, training

speed, and scalability results with other studies that use this

data.

2. Report hyperparameter settings such as weight ini-

tialization, momentum, batch size, and learning rate.

Glorot et al. [12], Breuel [4], and Xu et al. [32] have each

shown that seemingly-subtle hyperparameter settings such

as weight initialization can have a big impact on the speed

and accuracy produced in DNN training. When training

Network-in-Network (NiN) [20], we initialize the weights

with a gaussian distribution centered at 0, and we set the

standard deviation (std) to 0.01 for 1x1 convolution layers,

and we use std=0.05 for other layers. For NiN, we initialize

the bias terms to a constant value of 0, we set the weight de-

cay to 0.0005, and we set momentum to 0.9. These settings

are consistent with the Caffe configuration files released by

the NiN authors [20].

Frustratingly, in Google’s technical reports on

GoogLeNet [26, 14], training details such as batch

size, momentum, and learning rate are not disclosed.

Fortunately, Wu et al. [31] and Guadarrama [13] each

reproduced GoogLeNet and released all the details of

their training protocols. As in [13], we train GoogLeNet

with momentum=0.9 and weight decay=0.0002, we use

xavier [12] weight initialization, and we initialize the bias

terms to a constant value of 0.2. We will address learning

rate and batch size settings in the following sections.

Given a DNN architecture, there are a number of

strategies that can further increase accuracy, albeit at a

substantial computational cost. One such strategy is to

train multiple independent copies of a DNN architecture

(e.g. GoogLeNet), each with a different random number

generator seed for initializing the parameters. At test time,

these DNNs can be used as an ensemble – that is, all DNNs

are run on the test data, and for each test data item, the

DNN’s classification activations are averaged. For example,

using an ensemble of 7 GoogLeNet DNNs, Szegedy et al.

achieved a 2 percentage-point accuracy improvement on

ImageNet, compared to a single GoogLeNet baseline [26].

An other such technique is to augment the data by adding

deformations or color variations during training and/or

testing [30]. Our focus in this paper is to show speedup

on training single models and compare with reported

baselines. Hence we avoid using exotic data augmentation

or ensembles of multiple DNNs. In our experiments,

we resize images to 256x256; at training time we use a

224x224 crop with a randomized offset, and at test time we

classify the 224x224 crop in the center of the image; these

settings are also commonly used in the AlexNet [17] and

Network-in-Network [20] DNN architectures.

3. Measure speedups with respect to a single-server

baseline.

In order to meaningfully measure how much we have accel-

erated DNN training by adding more GPUs, we must have

a representative baseline, e.g. with a single GPU. When

reporting results, we begin by considering time required to

train a DNN on single GPU, and we report our multi-GPU

speedups with respect to this single-GPU baseline. A recent

study by Microsoft [6] reported training a custom DNN

architecture (e.g. not GoogLeNet or NiN) on a cluster of

CPU servers. This may sound impressive, but Microsoft

did not report the time that the model would take to train

on a single server. It could be that Microsoft achieved

a 10x speedup by going from 1 server to 10 servers,

or the speedup could be 2x – this isn’t clear from the

information provided in Microsoft’s paper. This illustrates

the importance of measuring the speed of scalable DNN

training systems with respect to a single-server baseline.

4. Measure accuracy with respect to a single-server base-

line.

In our experience, if hyperparameters such as learning

rate and batch size are selected too aggressively, a DNN

model may converge quickly, but fall short of the state-

of-art accuracy. Therefore, in our experiments, we train

multi-GPU models until they reach to the single-GPU ac-

curacy baseline; this validates that we can accelerate DNN

training without degrading accuracy. However, in cluster-

scale multi-GPU training experiments by Baidu [30] and

Flickr [22], the training is stopped prematurely before the

DNNs converge. This leaves us wondering whether the

Baidu and Flickr multi-GPU training experiments would

have reproduced the accuracy produced on a single GPU.

To avoid this type of confusion, we evaluate both the speed

and accuracy of FireCaffe DNN training with respect to a

single-server/single-GPU baseline.

7.2. Results: Midsized deep models
Using the settings described by Krizhevsky [17], we

find that AlexNet achieves 58.9% top-1 ImageNet-1k ac-

curacy after 100 epochs of training. After just 47 epochs

of training, we find that NiN also converges to 58.9% top-

1 accuracy. Each training iteration of NiN is more time-

consuming than AlexNet, and AlexNet and NiN both take

approximately 6 days to converge to this level of accuracy.

At Google, Krizhevsky developed a scheme for accel-

erating AlexNet training using multiple GPUs within a

single server [16]. Krizhevsky’s strategy uses data par-

allelism in convolutional layers and model parallelism in

fully-connected layers. As we show in Table 2, Krizhevsky

achieves near-linear acceleration up to 8 GPUs, but it has

not been shown to scale beyond a single server. For rea-

sons that we don’t entirely understand, Krizhevsky’s accu-
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racy drops by 1.8 percentage points when doing multi-GPU

training [16].

In FireCaffe, we scale NiN training to 32 GPUs, which

is the scale at which we find communication time and com-

putation are approximately equal3. We begin by using the

learning rate and batch size settings that were reported in the

Caffe configuration file released by the NiN authors [20]:

For a batch size of 256, we use an initial learning rate of

0.01, and we reduce this by a factor of 10x twice during our

training. Using this configuration, we reproduce the single-

GPU NiN accuracy in 11 hours (13x speedup) when training

on 32 GPUs.

For a fixed number of epochs, increasing the batch size

reduces the number of times we need to communicate

weight gradients, thus reducing the overall training time.

With this in mind, we now train NiN with a batch size of

1024.4 As in [16] when we increase the batch size, we

increase the learning rate by an equal proportion. For ex-

ample, when we use a batch size of 1024, we initialize the

learning rate to 0.04. In this configuration, we train NiN in

just 6 hours (23x speedup) on 32 GPUs. By increasing the

batch size to 1024, we achieved a substantial speedup, but

this came at the price of reducing the final accuracy by 3
10

of a percentage point. We expect that this 3
10

% of accuracy

could be regained at a batch size of 1024 – while retaining

a substantial speed advantage – by training for a few more

epochs. Finally, on 128 GPUs, we achieve a 39x speedup

over single-GPU training.

So far, we have compared FireCaffe to the cuda-

convnet2 framework from Google [16], which runs on a

single-server/multi-GPU platform but not in a multi-server

distributed platform. Google has also developed the Tensor-

Flow framework [1] which reportedly supports distributed

DNN training, but Google has not released speed bench-

marks on TensorFlow. Twitter [11] has also experimented

with scaling DNN training to 8 GPUs, but speed and

accuracy results have not been released. Tencent [34],

Theano [10], and Facebook [33] have published AlexNet

single-server/multi-GPU training times that are slower than

Google [16]. Other than FireCaffe, we have not seen lit-

erature on training AlexNet/NiN-scale models in a multi-

server/multi-GPU setting. On 32 GPUs, FireCaffe is at least

3x faster to train AlexNet/NiN-scale models than all of the

aforementioned results.

7.3. Results: Ultra­deep models
Ultra-deep models such as GoogLeNet can produce

higher accuracy, but they present an even bigger challenge

in terms of training time. Internally, Google has trained

GoogLeNet on a cluster of CPU servers, but they have not

3at a batch size of 1024
4While keeping a fixed number of epochs. In other words, with a batch

size of 1024, we perform 4x fewer training iterations than with a batch size

of 256.

reported the time required to complete this training [26,

14]. Fortunately, Guadarrama reproduced GoogLeNet in

Caffe, and he released his GoogLeNet Caffe configura-

tion files [13]. Guadarrama trained for 64 epochs using

a batch size of 32 and an initial learning rate of 0.01,

and we use these settings in our single-GPU GoogLeNet

training experiments. Instead of occasionally reducing the

learning rate by 10x, Guadarrama used a polynomial learn-

ing rate – that is, the learning rate is gradually reduced

after every iteration of training. More specifically, at a

given iteration of training, the learning rate is calculated

as initialLearningRate(1 − iter
max iter

)power, and we set

power to 0.5 in all of our GoogLeNet training runs. Run-

ning this in Caffe on a single-GPU, GoogLeNet takes 21

days to train on ImageNet-1k, producing 68.3% top-1 ac-

curacy and 88.7% top-5 accuracy. This is slightly lower

than the 89.9% top-5 single-model accuracy reported by

Google [26], and it will be interesting to see whether the

open-source Caffe community will eventually be able re-

produce or surpass Google’s GoogLeNet accuracy. Here,

we use the single-GPU Caffe GoogLeNet accuracy (88.7%

top-5 accuracy) as a baseline, and we aim to reproduce this

rapidly on a cluster of GPUs.

Now, we consider how to accelerate GoogLeNet training

using FireCaffe. We initially tried to run GoogLeNet with

a batch size of 32 on a GPU cluster, but there just wasn’t

enough work per batch to keep a GPU cluster saturated. As

we learned earlier in the paper, larger batch sizes lead to less

frequent communication and therefore enable more scala-

bility in a distributed setting. When modifying the batch

size, Breuel [4] and Krizhevsky [16] found that the choice

of learning rate is crucial in order to preserve high accuracy.

We trained five separate versions of GoogLeNet, each with

a different initial learning rate (LR): {0.02, 0.04, 0.08, 0.16,

and 0.32}, and all with a batch size of 1024. With LR=0.16

and LR=0.32, GoogLeNet failed to learn beyond random-

chance accuracy on the test set. Using LR=0.02 produced

66.1% top-1 ImageNet-1k accuracy, and LR=0.04 produced

67.2%. Finally, we declare victory with LR=0.08, where we

achieved 68.3% accuracy (again, with a batch size of 1024),

which matches the accuracy of the baseline that used a batch

size of 32. With a batch size of 1024 and a fixed num-

ber of epochs, we find that FireCaffe on 32 GPUs can train

GoogLeNet 23x faster than a single GPU. When we move

from a batch size of 32 with LR=0.01 to a batch size of 1024

with LR=0.08, we find that GoogLeNet takes a few more

epochs to converge (72 epochs instead of 64 epochs), so the

absolute training speedup is 20x; we show these results in

Table 3. In other words, FireCaffe can train GoogLeNet

in 23.4 hours on 32 GPUs, compared to 21 days on a sin-

gle GPU. Finally, on 128 GPUs, we achieve a 47x speedup

over single-GPU GoogLeNet training, while matching the

single-GPU accuracy.
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Table 2. Accelerating the training of midsized deep models on ImageNet-1k.
Hardware Net Epochs Batch

size

Initial Learning

Rate

Train

time

Speedup Top-1

Accuracy

Caffe [15] 1 NVIDIA K20 AlexNet

[17]

100 256 0.01 6.0 days 1x 58.9%

Caffe 1 NVIDIA K20 NiN [20] 47 256 0.01 5.8 days 1x 58.9%

Google cuda-convnet2

[16]

8 NVIDIA K20s (1 node) AlexNet 100 varies 0.02 16 hours 7.7x 57.1%

FireCaffe (ours) 32 NVIDIA K20s (Titan

supercomputer)

NiN 47 256 0.01 11 hours 13x 58.9%

FireCaffe-batch1024

(ours)

32 NVIDIA K20s (Titan

supercomputer)

NiN 47 1024 0.04 6 hours 23x 58.6%

FireCaffe-batch1024

(ours)

128 NVIDIA K20s (Titan

supercomputer)

NiN 47 1024 0.04 3.6

hours

39x 58.6%

Table 3. Accelerating the training of ultra-deep, computationally intensive models on ImageNet-1k.
Hardware Net Epochs Batch

size

Initial Learning

Rate

Train

time

Speedup Top-1

Accuracy

Top-5

Accuracy

Caffe 1 NVIDIA K20 GoogLeNet

[26]

64 32 0.01 21 days 1x 68.3% 88.7%

FireCaffe

(ours)

32 NVIDIA K20s (Titan

supercomputer)

GoogLeNet 72 1024 0.08 23.4

hours

20x 68.3% 88.7%

FireCaffe

(ours)

128 NVIDIA K20s (Titan

supercomputer)

GoogLeNet 72 1024 0.08 10.5

hours

47x 68.3% 88.7%

8. Conclusions

Long training times impose a severe limitation on

progress in deep neural network research and productiza-

tion. Accelerating DNN training has several benefits. First,

faster DNN training enables models to be trained on ever-

increasing dataset sizes in a tractable amount of time. Ac-

celerating DNN training also enables product teams to bring

DNN-based products to market more rapidly. Finally, there

are a number of compelling use-cases for real-time DNN

training, such as robot self-learning. These and other com-

pelling applications led us to focus on the problem of accel-

erating DNN training, and our work has culminated in the

FireCaffe distributed DNN training system.

Our approach to accelerating DNN training at scale has

three key pillars. First, we select network hardware that

achieves high bandwidth between GPU servers – Infiniband

or Cray interconnects are ideal for this. Second, when se-

lecting a communication algorithm, we find that reduction

trees are more efficient and scalable than the traditional pa-

rameter server approach. Third, we optionally increase the

batch size to reduce the total quantity of communication

during DNN training, and we identify hyperparameters that

allow us to reproduce the small-batch accuracy while train-

ing with large batch sizes. These three pillars helped us

to achieve a near-linear speedup for a number of leading

deep neural network architectures. In particular, we have

achieved 39x speedup on NiN training, and a 47x speedup

on GoogLeNet training on a 128 GPU cluster.
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