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Abstract

We proposeGROPHECY, a GPU performance projection frame-
work that can estimate the performance benefit of GPU acceler-
ation without actual GPU programming or hardware. Users need
only to skeletonize pieces of CPU code that are targets for GPU
acceleration. Code skeletons are automatically transformed in
various ways to mimic tuned GPU codes with characteristics re-
sembling real implementations. The synthesized characteristics
are used by an existing analytical model to project GPU perfor-
mance. The cost and benefit of GPU development can then be
estimated according to the transformed code skeleton that yields
the best projected performance. With GROPHECY, users can
leap toward GPU acceleration only when the cost-benefit makes
sense. The framework is validated using kernel benchmarks and
data-parallel codes in legacy scientific applications. The mea-
sured performance of manually tuned codes deviates from the
projected performance by 17% in geometric mean.

1. Introduction
Graphics processing units (GPUs) increasingly are being used

to accelerate scientific computing applications. While GPUs
have yielded 10× or even 100× speedups for some applications,
studies have shown that such acceleration is not always the
case [26]. Application developers are increasingly having to
ponder the viability of using GPUs to benefit their science and
whether it is indeed worth investing the time and effort to port
their code to run on GPUs. Developers have often used GPU
manufacturers’ quoted peak flop rate to project performance;
however, this is often too optimistic. To understand the viabil-
ity of using GPUs to accelerate performance, one needs to take
into account several factors, including an application’s intrinsic
nature, such as data parallelism, memory access patterns, con-
trol flow divergence, and computational intensity.

To the best of our knowledge, currently the only way to eval-
uate the potential of GPU acceleration is to invest in real hard-
ware and develop actual GPU code. While APIs such as “C for
CUDA” [29], Brook+ [2], and OpenCL [18] have been released
to ease general purpose GPU programming, learning and writing
GPU code remain nontrivial tasks. To tune GPU kernels, de-
velopers often have to investigate various code transformations.
Additionally, the implementation space can be too large to be
explored manually. The whole process can be tedious and error-
prone. Although some tools do simplify GPU programming and
semi-automate code tuning, these tools require physical hard-
ware for performance evaluation and fail to project performance
for unavailable GPUs. Regardless of how GPU code is gener-
ated, if the achieved performance is similar to or even worse than
CPU performance, significant time and effort would have been
wasted already. Needed is a mechanism that can help project
the performance of an application on current and future GPUs
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with minimal effort, thus enabling developers to better evaluate
whether they should indeed be investing in porting their appli-
cation to GPUs.
To this end, we propose a GPU performance projection frame-

work, named GROPHECY, that allows developers to project
achievable GPU performance from skeletonized CPU code. No
actual GPU programming or hardware is needed to cast projec-
tions. GROPHECY automatically explores the GPU implemen-
tation space by transforming code skeletons in various ways, The
transformed code skeletons, named code layouts, depict struc-
tures of their corresponding GPU code, which can look very
different from the original CPU code. Statistics are gathered
from code layouts to synthesize characteristics of real GPU code.
These statistics are then used by an analytical model [13] to
project performance over a target GPU architecture. The code
layout that yields the best projected performance indicates what
transformations are needed and how much performance can be
gained. Such cost-benefit analysis helps users determine whether
GPU acceleration is beneficial before actual development is un-
dertaken. We note that the proposed framework does not change
data structures or modify algorithms; such implementation alter-
natives can be explored by using different CPU code skeletons.
We validate GROPHECY using both microbenchmarks and

data-parallel codes in legacy high-performance computing appli-
cations. The contributions of our paper include the following:

1. Definition of CPU code skeleton that can be used to project
performance on GPUs.

2. Automated mechanism to restructure CPU code skeleton
and mimic transformations needed to tune GPU code. In-
vestigated transformations include mapping parallel tasks
to GPU thread contexts, staging of computations, ordering
of computations to improve cache performance, and loop
unrolling.

3. Systemic model to characterize the benefits and side effects
of GPU code transformations.

4. Ability to project a CPU kernel’s performance on GPUs
without producing the GPU code and without accessible
GPUs. Only hardware specifications and application statis-
tics are needed.

5. Ability to explore future GPU generations and evaluate
their performance. Users can vary the GPU hardware spec-
ifications and study how code can adapt to the hardware
as well as the achieved performance.

6. Pverall workflow for cross-platform performance projection
without cross-platform implementations in either software
or hardware.

2. Related Work
Existing tools such as PGI compiler [39], C-to-CUDA for affine

programs [5], OpenMPC [25], and Mint [10] can produce GPU
code from an annotated legacy code. There also exist metapro-
gramming tools such as PyCUDA [20] that autotune implemen-
tation parameters (e.g., thread block size) once a programmer
devises a GPU code template. Model-driven autotuning frame-
works have also been proposed for GPU applications in various
domains [8, 28]. However, these tools do not tune a general data-
parallel code with transformations such as staging and caching
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strategies, as described in Section 6. CUDA-lite explores these
transformations. However, it relies on annotated GPU code to
specify parameters such as thread block sizes and arrays to cache;
therefore, a single annotated code does not explore all possible
configurations [37]. In all these tools, a physical GPU is still re-
quired to run different implementations and evaluate their per-
formance. No statistics are generated to provide insights into
performance bottlenecks.

Recently, several GPU performance models have been pro-
posed [3, 13, 21, 41]. These techniques predict the performance
of actual GPU codes over accessible GPUs by behavioral ob-
servation or hardware abstraction. However, GPU performance
models alone are not able to transform CPU code structures for
optimization over GPUs, let alone projecting GPU performance
from CPU code.

Performance models increasingly have been used for applica-
tion tuning over complex or large scale systems [11, 23, 30].
These models target performance over a cluster or a heteroge-
neous platform, with a focus on the modeling and optimization
of communication and scheduling among nodes. Lee et al. [24]
used machine learning techniques to model the relationship be-
tween tunable parameters and application performance. Snavely
et al. [36] proposed a framework for performance modeling and
prediction, in which traces are used to characterize application
signatures. All these techniques have to measure or profile appli-
cation statistics over each type of nodes, assuming code already
exists for that type of architecture.

Cross-platform performance predictions have been studied by
Yang et al. [40]; they profiled partial execution of an application
on different platforms to infer relative full-application perfor-
mance. Lee et al. [22] estimated application performance over
different microarchitectural configurations using regression mod-
eling, which is trained according to an initial set of performance
data. Different from these approaches, the problem addressed
by this paper requires cross-platform projection for a fundamen-
tally different architecture, without implementing code, let alone
executing any piece of the application, on that architecture. Re-
cently, Carrington et al. [7] proposed a tool that finds common
computation and data access patterns, referred to as idioms, and
uses modeling to project their performance if ported to FPGA.
However, codes to be accelerated on GPUs are usually more
complex than idioms; several code transformations have to be
explored to project performance.

3. Background
In this section, we introduce the basics of GPU architecture

and GPU programming. Terminologies used for GPU hardware
units and programming models are based on NVIDIA’s GPU
architectures and the “C for CUDA” API.

3.1 The GPU Architecture
The architecture of a typical GPU has a set of streaming mul-

tiprocessors (SMs), each containing several streaming processors
(SPs) that operate in a SIMD fashion. A group of hardware
thread contexts that operate in lockstep is referred to as a warp.

The GPU has its own DRAM, referred to as global memory,
which can be accessed from any SM. The GPU also has implicit,
noncoherent caches for particular data accesses such as texture
and constant memory. Each SM has its own L1 storage, referred
to as shared memory. Data in the shared memory can be ac-
cessed by multiple hardware thread contexts on the same SM.
While the latency to access shared memory is low (almost the
same as accessing registers), accessing global memory can take
hundreds of cycles. GPUs hide such latency by having multiple
warps active on each SM; upon global memory accesses, an SM
can switch to another warp and continue execution.

The latency to access global memory can vary according to
data access patterns. Depending on the sequence of addresses
accessed by threads in a warp, requests from a SIMD memory
instruction can be combined into fewer memory transactions.
This process is referred to as coalesced memory access. Other-
wise, several memory transactions are generated, and they are

serialized. This process is referred to as uncoalesced memory
access. A warp cannot continue to execute until all of its mem-
ory transactions finish. The coalescing mechanisms vary across
different GPU generations.

3.2 The GPU Programming Model
The CUDA programming model [29] eases general-purpose,

data-parallel programming for the GPU architecture. To con-
struct a GPU kernel, a developer decomposes a parallel for loop
into a grid of coordinated thread blocks, each consisting of a set
of coordinated scalar threads; threads with adjacent coordinates
are implicitly grouped into a warp. During GPU execution, a
thread block is mapped to one SM, and one SM can execute mul-
tiple thread blocks. Although threads can take different control
paths, branches are generally discouraged. Threads in the same
thread block can be synchronized with low overhead. They can
also share data through the shared memory. All threads can ac-
cess global memory. Note that caching global memory data into
the shared memory is explicitly controlled by the GPU kernel.

4. The GPU Performance Projection Framework
Given a piece of CPU code and a target GPU architecture,

the framework takes three major steps to estimate the optimized
implementation and its performance, as illustrated in Figure 1.

Figure 1: An overview of GROPHECY.

The first step is the only step where users are involved. The
user abstracts the CPU code’s parallelism, computational in-
tensity, and data accesses in a code skeleton. Note that such
information is intrinsic within the computation and is not GPU-
specific. In other words, developers can extract such general in-
formation from legacy code without GPU knowledge. The form
of the code skeleton is described in Section 5.
In the second step, GROPHECY automatically explores GPU

implementations by transforming the code skeleton. The goal is
to explore different ways to lay out code on the GPU, both spa-
tially and temporally. Each code layout is a structural abstrac-
tion of a particular GPU implementation. Section 6 describes
this step in more detail.
In the last step, the proposed code layouts are used to charac-

terize their corresponding GPU implementations, without these
implementations being actually coded. In order to project per-
formance, the synthesized characteristics serve as inputs to an
existing GPU performance model proposed by Hong and Kim [13].
The code layout that achieves the best performance is recorded.
This step is described in Section 7. The performance model takes
into account hardware specifications, which are collected before-
hand for each GPU architecture. At this point, users can decide
whether it is worthwhile to accelerate a kernel on the GPU.

5. Code Skeletonization
A code skeleton serves as one way to abstract the CPU code

structure and a starting point for code transformation. As a
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pedagogical example, the code skeleton for dense matrix mul-
tiplication (denoted with MatMul) is shown in Listing 2. The
corresponding CPU code is shown in Listing 1 in C. The syntax
of a code skeleton is not the focus of this paper. It is briefly
introduced in the comments of the example code skeletons and
is not discussed in further detail.

Listing 1: MatMul’s CPU code

1 float A[N][K], B[K][M];
float C[N][M];

3 int i, j, k;
for(i=0; i<N; ++i){

5 for(j=0; j<M; ++j){
float sum = 0;

7 for(k=0; k<K; ++k){
sum +=A[i][k]*B[k][j];

9 }
C[i][j] = sum ;

11 }

Listing 2: MatMul’s code skele-
ton

1 float A[N][K]
float B[K][M]

3 float C[N][M]
/* the loop space */

5 parallel_for (N, M)
: i,j

7 {
/* computation w/t

9 * instruction count
*/

11 comp 1
/* streaming loop */

13 stream k = 0:K {
/* load */

15 ld A[i][k]
ld B[k][j]

17 comp 3
}

19 comp 5
/* store */

21 st C[i][j]
}

Listing 3: MatMul’s optimized GPU
code

float A[N][K], B[K][M], C[N][M];
2 dim3 block(BlkSize , BlkSize);

dim3 grid(N/BlkSize , M/BlkSize);
4 MatrixMul <<<grid , block >(A, B, C);

6 __global__ MatrixMul(A, B, C)
{

8 __shared__ a[BlkSize ][BlkSize ];
__shared__ b[BlkSize ][BlkSize ];

10 int ty = threadIdx.y;
int tx = threadIdx.x;

12 int y = blockIdx.y*blockDim.y+ty;
int x = blockIdx.x*blockDim.x+tx;

14 float sum = 0.f;
for(int n=0; n<K; n+= BlkSize){

16 a[ty][tx]=A[y][n+tx];
b[ty][tx] = B[n+ty][x];

18 __syncthreads ();
for(int k=0; k<BlkSize; ++k){

20 sum += a[ty][k]*b[k][tx];
}

22 __syncthreads ();
}

24 C[y][x] = sum ;
}

The following information forms a code skeleton that expresses
a computational kernel.

Data parallelism is expressed as a set of parallel, homoge-
neous tasks repeated over different data elements. Users should
express data parallelism in its finest granularity (i.e., down to
the innermost parallel for loops).

A task corresponds to one iteration of the innermost parallel
for loop. It is expressed as a sequence of data accesses and
computation.

Data accesses are expressed as a set of load and store oper-
ations. The accessed array elements are expressed given loop in-
dices, array sizes, and other constants. Indirect data accesses can
be expressed as well; GROPHECY will assume indirect accesses
are random unless users provide further hints (see Section 9.4
and Listing 6).

Computation instructions are counted by using methods
described in Section 7.3. Together with the number of memory
instructions, they indicate the computational intensity of the
kernel.

Branch instructions are counted to judge the applicability
of loop unrolling.

For loops wrap around blocks of computation and data ac-
cesses to mark repetition within a task. They can be nested and
the nesting does not have to be perfect.

Streaming loops are a special type of for loop; they are
marked where a sequence of data elements are fetched and pro-
cessed and can be discarded immediately. It is a common pattern
for reduction. Streaming loops can be temporally decomposed
into stages for the purpose of caching. Line 7 in Listing 1 is an
example of a streaming loop.

Macros that define array sizes and the number of loop itera-
tions. By adjusting the macros, the same code skeleton can be
used for workloads at different scales.

Once constructed, the code skeleton can then be transformed
to mimic GPU optimizations. Note that the mimicked GPU im-
plementation can differ significantly from the original CPU code.
As an example, Listing 3 shows the GPU kernel of MatMul, where
for loops are not only spatially decomposed among threads
but also temporally decomposed into stages for the purpose of
caching. Both transformations are common and critical in man-
ual GPU optimization.

6. Code Transformations
Given the code skeleton, GROPHECY transforms and lays

out code for a target GPU (recall Figure 1, Step 2). This sec-
tion describes how code layouts are represented (Section 6.1),
how the space of possible layouts is searched (Section 6.2), and
additional representations and metrics needed to carry out this
search (Sections 6.3–6.7).

6.1 Code Layout Parameterization
Code transformation involves the following factors, whose val-

ues jointly define a particular code layout.
Thread block sizes, represented as B = {b1, ..., bn}, where

n is the dimensionality of the loop space and bi is the length
of the thread block in the ith dimension; size(B) denotes the
number of threads in a thread block. We vary the thread block
size given the loop space and the hardware constraint on the
number of threads per block.1

Staging, or temporarily decomposing streaming loops into se-
quential stages of iterations. Within one stage, a thread block
only needs to cache the portion of data elements used in this
stage. Staging can be expressed as two integer vectors. For a
code skeleton with n streaming loops, S = {s1, ..., sn} contains
si which defines the staging size, or the number of iterations in
one stage for the ith streaming loop. Moreover, some consecu-
tive streaming loops actually form a multidimensional streaming
loop, whose traversal orders are interchangeable with regard to
outer loops and inner loops. Different traversal orders may result
in different performances as a result of data locality and caching.
Therefore, O = {o1, ..., on} defines the traversal order where oj
is the identifier of the jth streaming loop to be traversed.
Folding, or assigning multiple tasks to one thread. It is rep-

resented as F = {f1, ..., fn}, where n is the dimensionality of the
loop space and fi is the number of indices assigned to a thread
along the ith loop. When folding is not applied, GROPHECY
assumes each thread computes one task and fi = 1 for all i’s.
The folding degree, F , is defined as the total number of tasks as-
signed to a thread, or

∏n

i=1 fi. For the purpose of data reuse and
coalescing, folding always assigns neighboring tasks to threads
with adjacent thread indices [27]. Once applied, additional loop
statements will be added so that a thread can iterate through
assigned tasks. These additional loop statements are considered
as streaming loops, and staging can be applied.
Caching Strategy. The caching strategy categorizes data

accesses into uncached accesses to global memory and cached
accesses to shared memory. For shared memory, the caching
strategy also describes which array segments are cached. We
use bounded regular sections (BRS) [12], a derived form of regu-
lar section descriptors (RSD) [6, 4], to represent data accesses.
A data access statement in the code skeleton can be represented
as A(D,Θ, I). D is the array to be accessed. Θ = {θ1, ..., θm},
where θj is the index to D’s jth dimension. Each θ can be a
function involving I = {I1, ..., In}, which are indices of the loops
that contain this data access statement. For all data accesses
in a code skeleton, a code layout uses {Ȧ} to specify the set of
uncached memory accesses and {Ā} to specify the set of cached
memory accesses. The shape of D’s region cached in shared
memory during each stage of the kth streaming loop is denoted
with ShMem(Di, k); k = 0 corresponds to cached data for mem-
ory accesses outside any streaming loops. ShMem(Di, k) is a
footprint defined in Section 6.3 and can be obtained by Equa-
tion 5.
Loop Unrolling. Loop unrolling reduces instructions due

to loop overhead and is especially important for computation-
bounded workloads. It can be expressed by L = {li, ..., ln},
where li is the number of iterations to be unrolled for the ith
loop. According to our empirical studies of the NVCC com-
piler [29], GROPHECY applies loop unrolling to any inner-thread,
branch-free loops whose number of iterations can be determined

1In a code layout, the dimensionality of a modeled thread block
is not restricted since a high-dimensional loop space can be flat-
tened and reduced to a lower-dimensional space.
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statically.2 Iterations are batched into groups, each concatenat-
ing 16 unrolled iterations. Its effect is reflected in the estimated
instruction count.

In summary, a code layout can be uniquely represented by
using {B, S,O,F, {Ȧ}, {Ā}, {ShMem(Di)},L}. Varying thread
block size, folding, and staging can all be regarded as forms
of tiling. There has been much research on tiling [16, 34, 35]
and loop unrolling [9] in CPU code optimizations. GROPHECY
models and projects their effects on computational intensity and
data access patterns for GPUs.

6.2 The Search Space
A brute-force search for code layouts would explore all pos-

sible combinations of the factors described above. Note that
factors determining a code layout have noncyclic dependencies:
B → F → [S,O] → [{Ȧ}, {Ā}, {ShMem(Di)},L], where X → Y
means “Y depends on X.” Therefore, as long as the space
exploration follows such dependencies, the probed space and
the resulting projection would remain the same; further phase-
ordering does not matter [33].

The pseudocode for space exploration of code layouts is de-
scribed below:

1 for all B such that size(B) ≤ Max block size:
for all F such that size(B)× size(F) ≤ size(Loop space):

3 for all S:
for all O:

5 for all {{Ȧ}, {Ā}, {ShMem(D i)}}:
maximize L for any applicable loops

7 emit {B, S, O, F, {Ȧ}, {Ā}, {ShMem(D i)}, L}

Users can provide hints in an input file to narrow down the search
space. Hints can be written by specifying domains of each factor
in the code layout. GROPHECY will then probe only the space
defined by the specified domains. In fact, users can specify a
particular code layout to be evaluated.

Without any hints, GROPHECY would autoprune the space
to trade-off accuracy for speed. Different B’s and F’s with values
that are reasonably far apart are explored. As a result, subopti-
mal code layouts may be recommended as a tradeoff for reduced
projection overhead.

The space can be further pruned by identifying data accesses
that might benefit from caching and by determining appropriate
staging sizes; both require analysis of data usage.

6.3 Data Usage Representations
The unique set of data elements referenced by a group of loop

indices upon one particular data access statement, A, is defined
as a pattern, which is a blocked regular section (BRS), too. We
use P(A,T) to denote a pattern, where T is a tile referring to the
ranges into which loop indices fall. Formally, T = {t1, ..., tn},
where component is a range defined with a lower bound, an
upper bound, and a stride, represented as ti : 〈T

l
i , T

u
i , T

s
i 〉. The

size of a tile can be calculated as size(T) =
∏n

i=1⌊(T
u
i − T l

i ) ÷
T s
i ⌋. The shape and size of a pattern can be obtained by simply

replacing scalar indices of I in A(D,Θ, I) with corresponding
ranges in T. The tile can represent loop indices in various scopes.
In fact, F defines the rectangular shape of the tile associated with
parallel for loop indices assigned to a thread, and B defines the

tile shape for thread blocks. We use F̂ to represent the tile
associated with a thread plus full ranges of all inner-task loop

indices and B̂ to represent the tile associated with a thread block

plus F̂.
As an example, for the code skeleton of MatMul (Listing 2),

the access statement to A is A[i][k]. The tile associated with a
16 × 8 thread block beginning at loop indices of [i = X, j = Y ]
is B = [i : 〈X, (X + 16), 1〉; j : 〈Y, (Y + 8), 1〉]. The pattern of A
associated with this thread block is P(A[i][k],B+[k : 〈0, K, 1〉]) =
A[〈X, (X + 16), 1〉][〈0, K, 1〉].
2Our experiments show NVCC only applies loop unrolling when
the number of iterations is sufficiently small. Nevertheless, a
programmer can manually turn on loop unrolling by rewriting a
large loop as iterations of smaller loops.

A footprint, denoted with H(D,T) = ∪{P(A(D),T)|∀A(D)},
is the unique set of data elements in D referenced by all patterns
within the kernel function (i.e., all data access statements) over
a tile T. In the MatMul example, because there is only one access
to A, the footprint of A over the entire thread block is the same

as the access pattern: H(A, B̂) = A[〈X, (X + 16), 1〉][〈0, K, 1〉].
For calculating the size of tiles, patterns, and footprints, the
values of X and Y do not matter and can be assumed to be 0.
When a footprint contains multiple patterns, it might not be

straightforward to estimate the number of unique elements in
it, because of pattern overlapping. To balance accuracy and
time, we first use the INTERSECT operator in BRS to determine
overlapping patterns. We then use the UNION operator in BRS
to merge overlapping patterns and eventually leave only non-
overlapping patterns in the footprint. The size of a footprint,
denoted with size(H), is the total number of data elements in
the footprint and can be calculated as the summed size of all
non-overlapping patterns in that footprint.
The size of a pattern for an indirect access statement can also

be estimated. Because indirect indices may point to anywhere in
the corresponding dimension, the worst case is assumed; the re-
sulting index range covers the entire dimension. However, users
can provide hints about the range of indirect indices.

6.4 Identifying Cacheable Data
We define the degree of sharing as the average number of

threads in a thread block that access the same data element.
Any array with a degree of sharing larger than one becomes
a candidate for caching in GPU’s shared memory. The set of
cacheable arrays are denoted with {D̄}. Given an array D, its
degree of sharing can be calculated as follows.

ShrDegree(D) =
size

(

H(D, F̂)
)

× size(B)

size
(

H(D, B̂)
) (1)

There may also be data elements that are accessed multiple
times within an individual thread. GROPHECY assumes com-
pilers or programmers can identify such patterns and use regis-
ters to reuse such elements. For data access statements whose
indices can be statically determined to address the same element,
only the first load and the last store are marked as memory ac-
cesses; all other accesses are treated as computation instructions
and are not considered for caching.

6.5 Determining Staging Sizes
An appropriate staging size has to be large enough so that

in each stage, all threads can simultaneously load different data
elements into the shared memory. Ideally, a multiple of size(B)
elements within an array can be cached in each stage. Therefore,
for each data reference addressed with the streaming loop index,
we calculate the suggested staging size and then evaluate only
these staging sizes in space exploration.

StageShrDegree(D,k) =

size
(

H(D, B̂ ∧ [k : 〈0, 1, 1〉])
)

× size ([k : 〈Kl,Ku,Ks〉])

size
(

H(D, B̂ ∧ [k : 〈Kl,Ku,Ks〉])
) (2)

StageSize(D,k) =
size(B)× StageShrDegree(D,k)

size
(

H(D, B̂ ∧ [k : 〈0, 1, 1〉])
) (3)

NumStages(k) =

(
⌈

size([k:〈Kl,Ku,Ks〉])
StageSize(k)

⌉

, if k > 0

1, if k = 0

)

(4)

For an involved array, D, the suggested staging size is ob-
tained by dividing the thread block size by the average number
of unique data elements referenced by an individual thread, ex-
pressed in Equation 3, where k is the identifier of the streaming
loop index with the range k : 〈Kl,Ku,Ks〉, and the operator
“X ∧ Y ” sets the ranges of indices in tile X with corresponding
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ranges in Y . The tile H(D, B̂ ∧ [k : 〈0, 1, 1〉]) corresponds to the
entire thread block within one iteration of the streaming loop.
Equation 4 calculates the number of stages associated with the
streaming loop; k = 0 refers to the global scope outside of any
streaming loops.

6.6 Estimating Shared Memory Usage
The number of elements in D to be cached during one stage

is defined as ShMem(D, k), and it can be calculated using Equa-
tion 5. ShMem(D, 0) refers to data cached outside of any stream-
ing loops. Theoretically, the same shared memory space can be
reused to cache arrays at different periods of time; currently
GROPHECY does not consider this optimization and shared
memory space is allocated for every ShMem(D, k). We use
ElemBytes(D) to refers to the number of bytes per each ele-
ment in D, which is given by the code skeleton.

ShMem(D, k) =
(

H(D, B̂ ∧ [k : 〈0, StageSize(k), 1〉]), if k > 0

H(D, B̂), if k = 0

)

(5)

ShMemAlloc(D) =

ElemBytes(D)×
∑

k

size (ShMem(D, k)) (6)

When staging is applied, the modeled code layout is added
with a loop to iterate through stages, a set of instructions to
cache data into shared memory, and two synchronization instruc-
tions per stage to coordinate among threads about the start and
end of the caching process.

6.7 Effects of Approximation
Note that BRS’s UNION operator produces a new pattern in

the form of BRS that can best approximate the merged patterns.
Although the resulting pattern remains simple, it may cover ad-
ditional elements, which can lead to overestimation of footprint
sizes. This may artificially increase the sharing degree of an ar-
ray and include unnecessary arrays as caching candidates; the
effect is longer space exploration time.

An oversized merged pattern may also lead to larger shared-
memory allocation; however, for the purpose of both programma-
bility and performance, GPU programmers usually prefer to ex-
plicitly cache a simple, regular array region with a few unused
elements, rather than to cache several smaller array fragments
without redundancy. The approximation used in the UNION op-
erator actually captures such behavior.

7. Characterizing Code Layouts
Given the parameterization of a code layout in Section 6, the

next step of GROPHECY is to characterize its performance on
some candidate GPU hardware (recall Figure 1, Step 3). This
section describes this characterization. The characteristics of
a GPU implementation is synthesized by using parameters that
describe the corresponding code layout the underlying hardware.
Table 1 and Table 5 lists the two sets of parameters, respectively.

Table 2 lists the synthesized characteristics that eventually
serve as inputs to the GPU performance model. While several
characteristics can be obtained directly from Table 1, the num-
bers of active thread blocks per SM, computation instructions,
and each category of memory instructions are yet to be calcu-
lated.

7.1 Active Thread Blocks per SM
The number of concurrent thread blocks on each SM is de-

termined by four factors: the number of thread blocks available
on each SM, the maximum active thread blocks imposed by the
hardware, the maximum active warps imposed by the hardware,
and the number of thread blocks that the shared memory can
accommodate given the consumption of each thread block. The
limited number of registers imposes an additional constraint;

however, it remains future work to model register usage and in-
clude that information in the framework. The number of active
thread blocks per SM is calculated as follow:

SharedMem bytes per block =
∑

i

ShMemAlloc(Di) (7)

Blks per ShrM =

⌊

SharedMem size

SharedMem bytes per block

⌋

warps per block =

⌈

Thread per block

warp size

⌉

Active blocks per SM = min(
Max active warps per SM

warps per block
,

Blks per ShrM,Max active blks per SM,
Blocks

Active SMs
) (8)

7.2 Global Memory Accesses
Since latency in accessing shared memory is similar to that

of register accesses, we treat shared memory loads and stores
as computation instructions, not memory accesses. The average
number of bytes accessed by a SIMD memory instruction is as
follows.

data reqs(Di) =
∑

k

size (ShMem(Di, k)) +
∑

j

size
(

P(Ȧj(Di), B̂)
)

(9)

Avg elem bytes =

∑

i
(ElemBytes(Di)× data reqs(Di))

∑

i data reqs(Di)
(10)

Load bytes per warp = Avg elem bytes×warp size (11)

Instructions that access global memory have two categories.
Those that cache data into shared memory are synthesized by
GROPHECY and are referred to as caching memory instruc-
tions. They can be counted according to shared-memory usage.
Those that directly use global memory data for computation are
referred to as direct memory instructions. They can be counted
according to access statements specified in code skeletons.

caching mem insts(D) =
∑

k

(⌈

size(Shmem(D,k))

Thread per block

⌉

×NumStages(k)

)

(12)

direct mem insts
(

Ȧj(D)
)

= size
(

P(Ȧj(D), F̂)
)

(13)

Whether a caching memory instruction is coalesced depends
on what data elements are simultaneously accessed by a warp.
We assume that adjacent threads access adjacent shared-memory
elements. We then generate memory access indices correspond-
ing to the first warp size elements of a shared-memory object
ShMem(D, k). This sequence of indices is analyzed to determine
whether the access is coalesced and how many memory transac-
tions (Mem trans) are incurred. The algorithm to determine
coalescing and the number of resulting memory transactions are
inferred from [14, 29].3 Note that the algorithm varies across
GPU generations.
Whether a direct memory instruction is coalesced depends on

the data access pattern of a warp. We use W to refer to the tile
whose indices associated with the parallel for loop correspond to

3In a nutshell, for compute capabilities < 1.3, a SIMD memory
access issues two memory transactions if and only if threads ac-
cess adjacent array elements and the first address is aligned; oth-
erwise every thread incurs one memory transaction. For higher
compute capabilities, coalescing occurs for regularly strided ar-
ray indices. The address span of all memory accesses from a
half warp is computed; the number of memory transactions per
a half warp is calculated by dividing the address span with the
memory transaction size. If addresses are not aligned, there is an
additional memory transaction. In the worst case, every thread
incurs one memory transaction.
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Table 1: Parameters describing a code layout

Parameter Description Obtained

B The shape of the thread block Enumeration

F Parallel for loop indices assigned to one thread along each dimension Enumeration

F No. of tasks assigned to each thread Definition

ShMem(Di, k) Elements of Di cached by a thread block in one stage of the kth streaming loop Equation 5

ShMemAlloc(Di) Shared memory allocation used to cache D Equation 6

NumStages(k) No. of stages for the kth streaming loop Equation 4

The set of global memory access statements for an individual thread

{Ȧi} (not including global memory accesses that cache data into shared memory) Definition

ElemBytes(Di) No. of bytes per element in Di Code skeleton

compj No. of instructions per basic block Code skeleton

Table 2: Workload characteristics serving as inputs to the GPU performance model

Parameter Description Obtained

Thread per block No. of threads in a thread block size(B)

Blocks No. of thread blocks size(Loop space)÷ (size(B)× F )

Active blocks per SM No. of concurrently running blocks on one SM Equation 8

Total insts Dynamic no. of instructions in one thread Comp insts +Mem insts

Comp insts Dynamic no. of computation instructions in one thread Section 7.3

Mem insts Dynamic no. of global memory instructions in one thread Uncoal Mem insts + Coal Mem insts

Uncoal Mem insts No. of uncoalesced memory instructions in one thread Equation 15

Coal Mem insts No. of coalesced memory instructions in one thread Equation 14

Synch insts No. of synchronization instructions in one thread Section 7.3

Load bytes per warp Average no. of bytes accessed by a warp’s SIMD memory instruction Equation 11

warp size adjacent indices. All other inner-thread loop indices
in W are fixed as a constant (which corresponds to a particular

iteration). The pattern of a warp’s global memory access, Ȧ(D),

can then be calculated as P(Ȧ(D),W). The resulting sequence
of indices is analyzed in the same way as caching accesses to
determine coalescing.

We use † for coalesced data accesses and ′ for uncoalesced
data accesses. The numbers of coalesced and uncoalesced mem-
ory instructions are calculated in Equation 14 and Equation 15,
respectively. The average number of memory transactions per
uncoalesced instruction is calculated in Equation 16.

Coal Mem insts =
∑

j

direct mem insts(Ȧ†
j) +

∑

i

caching mem insts
†(Di) (14)

Uncoal Mem insts =
∑

j

direct mem insts(Ȧ′
j) +

∑

i

caching mem insts
′(Di) (15)

Uncoal per mw =
∑

j
Mem trans(Ȧ′

j) +
∑

i,k
Mem trans (ShMem′(Di, k))

Uncoal Mem insts
(16)

7.3 Computation Instructions
Instruction count of a GPU implementation can be a lot dif-

ferent from the corresponding CPU implementation because of
differences in ISA, compilers, and code structure. To estimate
GPU instruction count from the CPU code, we categorize GPU
instructions into two categories.

Functional instructions are those at the core of an algo-
rithm that perform the actual computation. Their quantity is
rarely affected by code transformation. Users include the in-
struction counts in the code skeleton as inputs to GROPHECY.

Peripheral instructions are those that assist functional in-
structions in data preparation, branching, loop management,
and synchronization. They vary significantly according to code
transformations. GROPHECY synthesizes and deduces their in-
struction counts without user intervention.

The CPU code can be viewed as a summary of functional
instructions. In order to account for ISA and compiler differ-
ences between CPU and GPU, functional instructions have to
be counted based on codes compiled for GPU, which can be
obtained as PTX assembly produced by NVCC [29]. To ac-
complish this step, users prefix the target CPU function with
“ global ” so that the function is treated by NVCC as a GPU
kernel. In addition, users mark the boundary of every basic block
in the CPU kernel code with embedded assembly markers like
“asm(“ Begin ”)” and “asm(“ End ”)”. In the produced PTX
code, the numbers of instructions between the markers are then
recorded in the code skeleton. A script is provided to automate
this process. Note that with this method, loop and branch in-
structions are not counted; they will be synthesized as peripheral
instructions.
While the PTX assembly generated in this way has all mem-

ory instructions as global memory accesses and uses a single
thread to calculate the entire workload, instruction counts for
the marked code region in inner loop bodies are similar to those
of actual GPU implementation. Note that this approach takes
into account CUDA-specific instructions such as “multiply-and-
add”. Given N basic blocks each having Ins instructions and
looping LP times within a task, the number of functional in-
structions for a given thread with F tasks is as follows.

Func insts = F ×

N
∑

i=1

(Insi × LPi) (17)

GROPHECY synthesizes several types of peripheral instruc-
tions.
Loop and branch management instructions include in-

structions that increment loop indices, test branch conditions,
and the branches themselves. Note that they are not included
when counting functional instructions in basic blocks. The per
iteration or per branch instruction counts are multiplied by the
number of loop iterations or branches, and are then added to
the total instruction count. Unrolled loops do not have loop
management instructions.
Data preparation instructions are those that move fetched

global memory data to corresponding shared-memory addresses
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during caching. They are added for every caching instruction.
Index calculation instructions are used to calculate indices

for global array accesses. Often, they are needed when adjacent
threads do not use adjacent indices. They are added for every
uncoalesced memory access.

Synchronization instructions are needed after caching data
into the shared memory. They are also needed at the end of every
stage before the next stage overwrites the cached arrays. They
can be calculated as twice the number of stages.

We studied several PTX codes and empirically obtained the
numbers of peripheral instructions in each of the above cases, as
listed in Table 3. The number of computation instructions is the
sum of all functional instructions and all peripheral instructions.

Table 3: Compiler parameters used in GROPHECY

Parameter Estimated Value

No. of loops to unroll 16
No. of peripheral instructions

per conditional branch 3
No. of peripheral instructions

per loop iteration 5
No. of peripheral instructions for

loading an element into shared memory 2
No. of peripheral instructions to calculate

an index for an uncoalesced access 4

7.4 Adopting a GPU Performance Model
We adopt the GPU performance model developed by Hong

and Kim [13], which has an average error of 13% according to
their experiments. This analytical model approximates the exe-
cution of a GPU kernel as computation phases of equal length,
with global memory accesses in between. It then estimates the
average overlapping between memory accesses and computation
to determine whether the execution is computation bounded or
memory bounded. The execution time is estimated by using
workload characteristics in Table 2 and hardware specifications
in Table 5.

While this GPU performance model mostly uses off-the-shelf
hardware specifications, it obtains a couple of hardware param-
eters (namely, DRAM access latency and delays between mem-
ory transactions) by measuring microbenchmarks on a physical
GPU. Nevertheless, users need not go through this step because
such observed hardware parameters can be made public by a
third party.

8. Methodology
Two GPUs, Quadro FX5600 and Tesla C1060, are used in our

experiments to validate the projection across GPU generations.
Their characteristics are listed in Table 5.4

The benchmarks used for our evaluation are listed in Table 4.
All implementations use single precision. The sizes of matrices in
IspinEx and SpinFlap are according to real input data. GPU
implementations are compiled with NVCC over an Intel Xeon
E5430 CPU. Host codes are compiled using GCC 4.0.1 with
“-O2” optimization. The GPU kernel execution time is measured
by surrounding kernel calls with “cudaThreadSynchronize” and
counting the number of CPU cycles in between using the “rdtsc”
instruction. Time is then converted to microseconds according
to the CPU clock rate. The measured execution times are the
average of 10 runs.

9. Evaluation
The benchmarks are manually implemented and tuned as GPU

kernels. We record such development process and compare it
with the process using GROPHECY. For validation, implemented
GPU source codes are manually inspected and compared with

4Due to architectural similarities in shader cores between
C1060 and GTX280, we adopt the values of Mem LD,
Departure del uncoal, and Departure del coal for C1060 from
those reported in [13] for GTX280.

Table 4: Workload properties

Benchmark Key Properties Input Size

MatMul dense linear algebra A[800][400] × B[400][800]
HotSpot [15] stencil computation

structured grid 512 × 512
sparse linear algebra A[132][132](sparse,

IspinEx real numbers)×B[132][2048]
[17, 31, 32] (dense, complex numbers)

irregular data exchange
SpinFlip similar to 132 × 2048

[17, 31, 32] spectral methods (complex numbers)

statistics generated from their corresponding code layouts. The
code layout associated with an actual GPU implementation is
obtained by specifying the parameters in Table 1 as hints to
GROPHECY when generating the code layout. In all our ex-
periments, the measurements of shared-memory usage and the
number of coalesced and uncoalesced memory instructions are
precise. We further validate GROPHECY by evaluating the ac-
curacy of projected performance and the quality of automatically
suggested code layouts. The time to transfer data between CPU
and GPU remains the same for all code layouts generated from
the same code skeleton; therefore, we report only the GPU kernel
execution time for comparison purposes.
GROPHECY also uses the underlying analytical model to

estimate the bottleneck of a workload. Memory Warp Paral-
lelism (MWP) refers to the maximum number of overlapping
global memory accesses given the latency delay between memory
transactions and the memory bandwidth. Computation Warp
Parallelism minus one (CWP-1) refers to the demanded num-
ber of warps whose computation can together hide the latency
of an outgoing global memory access. The number of warps
that are active on an SM is denoted with ActiveWarps, and
ActiveWarps − 1 is the number of available warps for latency
hiding. The workload is memory bounded if MWP is the small-
est, computation bounded if CWP−1 is the smallest, and paral-
lelism bounded (i.e., not enough warps) if N−1 is the smallest.5

9.1 MatMul: Staging and Loop Unrolling
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Figure 2: Validating projections of MatMul. In all cases, the thread block
size is 16 × 16. Enlarged markers for measured data correspond to man-
ually tuned implementations. Enlarged markers for projected data corre-
spond to code layouts suggested by GROPHECY. Staging reduces mem-
ory instructions and transforms the GPU kernel from memory bounded
(MWP < CWP − 1) to computation bounded (MWP > CWP − 1).
Without loop unrolling, the number of computation instructions almost
doubles.

The baseline implementation (denoted with Naı̈ve) fetches ev-

5The original performance model compares MWP , CWP , and
N instead. Deduction shows that comparison of MWP and
CWP − 1 determines whether an SM can issue another global
memory access by the time the next one is encountered. Our
experiments also show that such comparison is a better clue in
identifying the bottleneck. Because of space limitation, the proof
is omitted.
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Table 5: Hardware parameters. Parameters marked with “*” are used in modeling code layouts and generating workload statistics. All other parameters
are used by the underlying GPU performance model.

Parameter Description Obtained FX5600 C1060

SharedMem size∗ The size of the shared memory DeviceQuery 16 KB 16 KB
Max active blks per SM∗ The maximum No. of thread blocks that CUDA Occupancy Calculator 8 8

can run concurrently on one SM
Max active warps per SM∗ The maximum No. of warps that CUDA Occupancy Calculator 24 32

can run concurrently on one SM
warp size∗ No. of threads in a warp [29] 32 32
Active SMs No. of stream processors DeviceQuery 16 30
Issue cycles No. of cycles to execute on instruction [19] 4 4

Freq Clock frequency DeviceQuery 1.35GHz 1.3GHz
Mem Bandwidth Memory bandwidth Machine specification 76.8GB/s 104.2GB/s

Mem LD DRAM access latency [13] 420 cycles 450 cycles
Departure del uncoal Delay between two uncoalesced memory transactions [13] 10 cycles 40 cycles
Departure del coal Delay between two coalesced memory transactions [13] 4 cycles 4 cycles

Peak flop rate (Not used by GROPHECY) Machine specification 518.4 GFlops 933.1 GFlops
Compute capability Better coalescing mechanism if it is ≥ 1.3 DeviceQuery 1.0 1.3

ery column and row from the global memory when computing
each element. As shown in Listing 3, in order to utilize lim-
ited shared-memory space, the manually tuned implementation
(denoted with Stage+LoopUnroll) caches a block of data from
each of the two input matrices into the shared memory, com-
putes the partial dot product, and moves on to the following
blocks while aggregating the partial sums. Cached data can be
reused by multiple threads in the same thread block. This is a
typical example of staging. Given the code skeleton in Listing 2,
GROPHECY parameterizes the code layout with a stage size of
16 so that every thread in a 16 × 16 thread block can load an
element in every batch.

In fact, Stage+LoopUnroll is exactly the code layout suggested
by GROPHECY after searching the space of 6372 code layouts.
It achieves 167 Gflop/s on FX5600 and 375 Gflop/s on C1060.
The measured achieved performance on FX5600 and C1060 de-
viates from the projected performance by 2% and 23%, respec-
tively. Using statistics generated from the code layout, Figure 2b
shows that global memory accesses are drastically reduced af-
ter staging is applied, which effectively transforms the memory
bounded workload to computation bounded (Figure 2c).

Moreover, the NVCC compiler implicitly unrolls the innermost
loop, which has significant performance benefit. GROPHECY
evaluates its benefit by disabling loop unrolling. Such code lay-
out is denoted with Stage in Figure 2. Without loop unrolling,
the number of computation instructions doubles, which almost
doubles the total execution time of a computation bounded im-
plementation.

9.2 HotSpot: Folding and Coalescing
HotSpot is an ordinary differential equation solver used in sim-

ulating microarchitecture temperature. Every element is com-
puted by gathering a 3 × 3 neighborhood of elements (i.e., the
stencil) from the input array. The Naı̈ve implementation does
no caching. Manually improved code, denoted with ShM, caches
neighborhood data so it can be reused among neighboring threads.6

As Figure 3a shows, this improves performance on FX5600, but
slightly degrades performance on C1060. Such a phenomenon is
correctly projected by GROPHECY. Furthermore, GROPHECY
searches the space of 3804 code layouts and suggests a folding
degree of 2 and 4 in the first and second dimension of the loop
space, respectively (i.e., every thread computes eight elements).
This code layout is denoted with ShM+Fold 2 × 4. After imple-
menting this suggested code layout, experiments show that the
suggested implementation has a speedup of 1.37× and 1.26× over
ShM on FX5600 and C1060, achieving 5 Gflop/s and 11 Gflop/s,
respectively. The measured achieved performance on FX5600
and C1060 deviates from the projected performance by 31% and
27%, respectively.

6Some code transformations are not captured by GROPHECY.
For example, the performance of HotSpot can be further im-
proved by using the pyramid method to replicate computation
and reduce data movement. This would require a different code
skeleton.
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Figure 3: Validating projections of HotSpot. In all cases, the thread block
size is 16×16. Enlarged markers for measured data correspond to manually
tuned implementations. Enlarged markers for projected data correspond
to code layouts suggested by GROPHECY. Naı̈ve is memory bounded
(MWP < CWP − 1) on FX5600, but it is already computation bounded
(MWP > CWP − 1) on C1060 because of better coalescing. Therefore
caching has different effects on the two GPU hardware.

Naı̈ve has many uncoalesced memory accesses. On FX5600,
it leads to a significant number of memory transactions (large
Uncoal per mw); therefore, Naı̈ve is memory bounded (Fig-
ure 3b), and ShM reduces global memory accesses to overcome
the memory bottleneck. In the case of C1060, the hardware’s im-
proved coalescing mechanism already groups requests into fewer
memory transactions. As a result, Naı̈ve is already computa-
tion bounded (Figure 3c). ShM actually increases the instruction
count for the purpose of caching; therefore, its performance is
even slightly worse than Naı̈ve.
By allowing a thread to process more neighborhood-gathering

tasks, folding improves data reuse; the larger amount of data to
gather also reduces memory accesses that do not utilize the full
SIMD width. Moreover, folding reduces per task computation
instructions by initializing thread indices and loading arguments
once for all tasks within a thread. Hence it improves performance
on both FX5600 and C1060.

9.3 IspinEx: Sparsity and Code Restructuring
IspinEx is a piece of code that lies in the core of GFMC [17, 31,

32], a quantum physics application that performs Monte Carlo
calculation for light nuclei. It multiplies a 132× 132 sparse ma-
trix of real numbers with a 132× 2048 dense matrix of complex
numbers. The sparse matrix A is compressed and represented
with three vectors: T, J, and I. T[n] stores the values of nonzero
elements. A’s first nonzero element in the jth row corresponds
to the T element with the index of J[j]. I[n] stores the col-
umn number of the nth element in T . In other words, the mth
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Figure 4: Validating projections of IspinEx. Enlarged markers for mea-
sured data correspond to manually tuned implementations. Enlarged
markers for projected data correspond to code layouts suggested by
GROPHECY. Although C1060 has more SMs, each SM has an insuffi-
cient number of warps to hide latency (ActiveWarps − 1 < MWP and
ActiveWarps − 1 < CWP − 1) because of limited input size of real data
set. Therefore C1060 does not gain much performance compared with
FX5600.

nonzero element in the jth row of A is A[j][I [J [j] + m]], which
corresponds to T [J [j] + m]. Listing 4 is the code skeleton of
IspinEx.

To project the performance of IspinEx, To estimated the over-
all workload size, GROPHECY is “hinted” that the average
number of nonzero elements in one row is 14. Because rows
in A have different numbers of nonzero elements, the numbers of
tasks associated with different rows also vary. To balance the
workload among threads, we force a thread to process all tasks
in columns by setting the folding degree in the first dimension
(corresponding to index j) as 132.

Listing 4: Baseline code skeleton of
IspinEx. Array B is in the form of
complex numbers

1 /* compute data as
* complex numbers

3 */
#define ELEMS 1848

5 #define ROWS 132
#define COLS 2048

7

int J[ROWS+1]
9 int I[ELEMS]

float T[ELEMS]
11 float B[ROWS][COLS][2]

float C[ROWS][COLS][2]
13 parallel_for (ROWS , COLS)

: j, i
15 {

ld J[j]
17 ld J[j+1]

begin = J[j]
19 end = J[j+1]

comp 4
21 /* The No. of nonzero

* elements depends
23 * on data in array J.

* Non -constant boundary
25 * disables unrolling.

* Hint the average loop
27 * size.

*/
29 stream n = begin:end

(hint:14)
31 {

ld T[n]
33 ld I[n]

r = I[n]
35 /* indirect accesses to

* the complex number
37 */

/* real part */
39 ld B[r][i][0]

/* imaginal part */
41 ld B[r][i][1]

/* sum+=T[n]*B[r][i] */
43 comp 22

}
45 /* C[j][i] = sum */

comp 2
47 st C[j][i][0]

st C[j][i][1]
49 }

Listing 5: Modified code skeleton
of IspinEx. Array B is in the form
of real numbers

1 /* compute data as
* complex numbers

3 */
#define ELEMS 1848

5 #define ROWS 132
#define COLS 4096

7

int J[ROWS+1]
9 int I[ELEMS]

float T[ELEMS]
11 float B[ROWS][ COLS]

float C[ROWS][ COLS]
13 parallel_for (ROWS , COLS)

: j, i
15 {

ld J[j]
17 ld J[j+1]

begin = J[j]
19 end = J[j+1]

comp 4
21 /* The No. of nonzero

* elements depends
23 * on data in array J.

* Non -constant boundary
25 * disables unrolling .

* Hint the average loop
27 * size.

*/
29 stream n = begin:end

(hint:14)
31 {

ld T[n]
33 ld I[n]

r = I[n]
35 /* indirect accesses */

ld B[r][i]
37 /* sum+=T[n]*B[r][i] */

comp 11
39 }

/* C[j][i] = sum */
41 comp 2

st C[j][i]
43 }

Despite the fact that indirect accesses make it impossible to
statically calculate the exact array access indices, GROPHECY
is able to estimate the size of array footprints because there
is a one-to-one mapping between indirect indices and the actual
indices they point to. Because all threads share the same indirect
index r when accessing array B (Line 39 and 41 in Listing 4),
GROPHECY deduces that all threads access the same row. The
degree of coalescing can then be inferred solely from the column
indices, i, which is not indirect.

Similar to MatMul, GROPHECY identifies the opportunity of
staging given the streaming loop. Staging enables thread blocks
to cache T, J, and I; hence C.Blk-64+Stage outperforms the
näıve C.Blk-64 implementation. Note that array B is not cached;
the indirect access can refer to any row in B, and the shared
memory is too small to accommodate all rows.
GROPHECY further reveals that C.Blk-64+Stage exhibits a

significant amount of uncoalesced accesses on FX5600, mostly
due to strided accesses caused by the interleaved real and imag-
inary parts of complex numbers. Therefore, the developer ad-
justs the CPU implementation by treating the real part and
imaginary part of a complex number as independent elements
that can be processed in parallel. The user can simply adjust
the code skeleton from Listing 4 to Listing 5. Given the up-
dated code skeleton, GROPHECY deduces that uncoalesced in-
structions per thread can be reduced from 4,050 to 0 and that
performance can be further improved by 3.7× on FX5600. We
adjusted the actual GPU implementation accordingly and found
it gained 3.9× speedup over the previous implementation. This
layout is denoted with R.Blk-64+Stage. GROPHECY searches
a space of 2448 code layouts and suggests the same code layout
for C1060. For FX5600, GROPHECY suggests the same layout
with a thread block size of 256, denoted with R.Blk-256+Stage,
which performs almost identically to the manually tuned ver-
sion of R.Blk-64+Stage. Specifically, R.Blk-64+Stage achieves
13 Gflop/s on both GPU generations. The measured achieved
performance on FX5600 and C1060 deviates from the projected
performance by 28% and 25%, respectively.
GROPHECY also projects that the suggested code layout will

not benefit much from upgrading to C1060. As Figure 4b shows,
the number of active warps is usually the performance bottle-
neck, hence it cannot spawn enough warps to fully exploit GPU’s
latency hiding capability. Note that the input size is obtained
from real data sets.

9.4 SpinFlap: Indirect Accesses and
Thread Block Sizes

SpinFlap is a piece of code that belongs to the same GFMC
application as IspinEx. During its computation, distant columns
of the input matrix are grouped into units of four. In each
group, the four complex numbers in the same row are processed
together. However, which columns to be grouped together is
determined by values in another matrix. The code skeleton is
illustrated in Listing 6.

Listing 6: Code skeleton of SpinFlap

1 #define ROWS 132
#define COLS 2048

3 float A[ROWS][COLS][2]
float B[ROWS][COLS][2]

5 float C[ROWS][COLS][2]
/* M: index array for indirect accesses.

7 * A sample data array is provided as a hint to better assess coalescing.
*/

9 int M[COLS/4][4] : hints <sample="./M.txt">
parallel_for (ROWS , COLS/4) : j, i

11 {
for n = 0:4

13 {
ld M[i][n]

15 /* load the complex number in A */
ld A[j][M[i][n]][0]

17 ld A[j][M[i][n]][1]
/* load the complex number in B */

19 ld B[j][M[i][n]][0]
ld B[j][M[i][n]][1]

21 comp 56
}

23 comp 228
/* produce the complex numbers */

25 for n = 0:4
{

27 /* store the computed complex number */
st C[j][M[i][n]][0]

29 st C[j][M[i][n]][1]
}

31 }

Except indirect indices in M, no data is reused by multiple
threads. Compared with the Naı̈ve implementation without
caching, code layouts denoted with ShM only gain moderate per-
formance after caching elements in M. The performance therefore
depends largely on the degree of coalescing, and it varies accord-
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ing to values of indirect indices.7 To better assess the coalescing
degree, we group every warp size elements in the same column
of M as indices of a sample SIMD memory access to estimate
coalescing. The average number of memory transactions of all
samples are used as the coalescing degree, or Uncoal per wm, for
the indirect accesses. The value turns out to be 32 for FX5600
and 5.7 for C1060.

With this hint about the degree of coalescing, the performance
of SpinFlap can be projected in the same way as other exam-
ples and results are shown in Figure 5. The manually tuned
implementation for C1060 has a thread block size of 1 × 256.
GROPHECY searches a space of 16113 code layouts and sug-
gests the same code layout for C1060. For FX5600, GROPHECY
suggests a code layout with a thread block size of 1× 32 and a
folding degree of 44× 1. The actual implementation of the sug-
gested code layout performs 5% worse than the manually tuned
implementation with a thread block size of 12× 16 and no fold-
ing. The best achieved performance on FX5600 and C1060 is
16 Gflop/s and 50 Gflop/s, respectively. The measured achieved
performance on FX5600 and C1060 deviates from the projected
performance by 30% and 10%, respectively.

Analysis shows that SpinFlap is memory bound. However, it
does not necessarily mean that the performance on FX5600 and
C1060 is proportional to their memory bandwidth. In this case,
it is actually the microarchitectural mechanisms of coalescing
that plays an important role. This phenomenon is captured by
GROPHECY.
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Figure 5: Validating projections of SpinFlap in single precision. Enlarged
markers for measured data correspond to manually tuned implementations.
Enlarged markers for projected data correspond to code layouts suggested
by GROPHECY. GROPHECY can project the performance for workloads
with indirect accesses as well.

10. Limitations
Note that modifying algorithms, restructuring data, and au-

tomatic parallelization are beyond the scope of GROPHECY.
Nevertheless, the framework could be used as a guide while de-
signing a parallel implementation of an existing serial code.

10.1 Challenges in Code Skeletonisation
For some legacy codes, users still have to develop a parallel

implementation first before generating code skeletons. Although
code skeletonisation reduces programming effort compared to
rewriting code in CUDA, it may still take significant time if
the users are not familiar with the CPU code or if the code is
complex. We hope this step can be made easier in the future
using compiler analysis and code annotations.

Currently, the code skeleton works best for kernels with a rep-
resentative control path. Explicitly expressing multiple control
paths would require user-provided hints that describes the prob-
ability of falling into each path. Details will be studied in our

7Transposing the matrix and parallelizing the j loop can produce
more coalesced accesses, but overall it is not beneficial consider-
ing that this would affect other kernels in the same application
(e.g., IspinEx).

future work. Data-dependent control flow may also challenge
code skeletonisation; hints have to be provided to better esti-
mate workload. Line 21 of Listing 4 shows an example of using
hints to specify the average size of a data-dependent loop space.
Moreover, the ability to use code skeletons to express and model
pointer-based irregular data accesses also needs further investi-
gation.

10.2 Constraints in Transformation and
Modeling

Currently, GROPHECY is not able to project performance for
GPU implementations that utilize texture memory and constant
memory, as well as implicit cache hierarchies, which are present
in NVIDIA’s Fermi architecture [1]. In addition, GROPHECY
does not model instruction level parallelism, which may be an
important factor in future GPU generations [38]. Finally, so far
GROPHECY is validated only with single-precision kernels; a
performance model that accounts for longer latency in double-
precision instructions is needed for projecting double-precision
code.
Data transfer time between CPU and GPU is another im-

portant factor for the evaluation of GPU acceleration. How-
ever, it depends more on the PCIe bus than on the GPU itself.
We have modeled the PCIe’s achievable throughput for vari-
ous message sizes and validated this experimentally on various
GPU-integrated systems. Such modeling will be integrated into
GROPHECY in our future work.

10.3 Sources of Inaccuracy
Inaccuracy in the projected performance can result from the

synthesized characteristics and the GPU performance model.
Sources of inaccuracy in the synthesized characteristics include
the following: (1) for irregular data accesses, the estimated size
of data patterns, footprints, and coalescing degree can deviate
from actual values; (2) the number of functional instructions
is estimated from NVCC-compiled CPU source, which can be
different than the optimized GPU code; (3) the number of pe-
ripheral instructions is empirically obtained and can vary across
workloads; and (4) register usage is not considered, but it can
affect the number of active thread blocks per SM.
Sources of inaccuracy intrinsic in the GPU performance model

mainly include the following: (1) the computation and memory
access intensity is assumed to be uniform during execution of
a workload; (2) the DRAM memory scheduler schedules mem-
ory requests equally for all warps; (3) computation instructions
have the same latency; and (4) bank conflicts are not considered.
These factors are discussed in more detail elsewhere [13].

11. Conclusion
We propose a GPU performance projection framework, named

GROPHECY, for fast evaluation of GPU acceleration without
actual GPU hardware or GPU programming. GROPHECY of-
fers several benefits. (1) the potential GPU performance of a
CPU code piece can be projected, and code pieces unsuitable for
GPU acceleration can be identified without GPU development;
(2) structures of favorable GPU implementations are suggested
as a clue for actual GPU development to reduce optimization
effort; and (3) performance trends over different GPU architec-
tures or even future GPU generations can be projected, so that
users can decide whether or not to upgrade to a different GPU
hardware.
In our experiments, we compare the projected optimized GPU

performance with that of manually tuned code. The measured
performance of manually tuned codes deviates from the pro-
jected performance by 17% in geometric mean, with a maximum
of 31%. With GROPHECY, the process of evaluating potentials
of GPU acceleration can be reduced significantly. GROPHECY
also suggests code layouts whose actual performance is no worse
than 95% of that yielded by manually tuned implementations.
In some cases, the suggested implementation even has a speedup
up to 1.37× compared with manually tuned code.
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