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GPU

• Graphics Processing Unit

– Dedicated processor for rendering 
graphics

– Massively multithreaded manycore
chip

• Hundreds of scalar processors

• Tens of thousands of concurrent threads

• 1 TFLOP peak performance

• Fine-grained data-parallel computation

– Manyfold speedups can be achieved 
on GPUs



CUDA
• Compute Unified Device Architecture

• A scalable parallel programming model

– Minimal extensions to C/C++

– Heterogeneous serial-parallel programming model

• Initialize some data on the 
host memory (CPU)

• Copy data from host 
memory to device memory 
(GPU)

• Execute GPU kernel 
functions

• Copy the computed results 
back from device to host 
memory

A typical CUDA program



Background

• Heterogeneous computing platforms are 
increasing

• Challenges: how to exploit the aggregate 
computing power of multi-core CPUs and 
GPUs effectively

– Programmability

– Performance

– Work distribution



Purpose

• Develop a compiler and runtime support for 
heterogeneous multiprocessors

– Focus on generalized reduction computations

– Address three challenges:

• Programmability 
– Applications which follow this structure can be written in a 

sequential C interface + some annotations

• Performance
– Show significant speedups over CPU-only and GPU-only results

• Work distribution
– Propose an effective dynamic work distribution scheme
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Generalized Reduction Structure

cannot be 
parallelized

Associative or commutative 
operation

Data parallel



Parallelization approach for multicore
CPUs

• Divide data instances among processing 
threads

• The reduction object is shared among all 
processing threads

• Privatize the reduction object
– Avoid data races

– Each thread has its own copy of the reduction 
object

• Middleware system
– Not discussed in this paper



GPU computing for Generalized 
Reductions

• Reduction objects are shared by all GPU threads

• Replicating reduction object for each thread
– Avoid potential data races

• Data block is divided into small blocks
– Each thread processes one block at a time
– Implementing a reduction computation requires:

• Read a data block
• Compute the reduction object updates based on the data instance
• Write back the reduction object update

– Results from each thread are merged to form the final 
result



System Design



Dynamic Work Distribution

• Dynamic distribution schemes have two possible 
approaches
– Work sharing

• The work is enqueued in a globally shared work list
• An idle processor consumes work from the list

– Work stealing
• A private work list is maintained with each processor
• An idle processor searched other busy processors for the work it 

could steal

• This work choose a work sharing approach
– For data parallel applications
– High latency in communication with GPU
– GPU memory size limitation 



Uniform-chunk distribution scheme



Non-uniform-chunk distribution scheme
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User Input

• The user has to identify the generalized 
reduction structure and uses reduction 
functions to express an application

• Information required in each function

– Variable list for computing
• Variable format:  name, type, size[value]

• Example: update_centers float* 5 K 

– Sequential reduction function

• A reduction loop can be expresses as a function



Program Analysis (1/2)
• Variable Analysis and Classification

– Variables are classified into: Input,Output, 
Temporary

– Variable analysis
• Use LLVM to generate intermediate representations (IR) 

of reduction functions

• Apply Andersen’s points-to analysis to get the set of 
pointers points-to

• Trace the entire function in IR form and when encounter 
a store operation, classify variables:

– If the destination of store is a points-to set of any 
varibale in the argument’s list and the source is not in the same 
set, it is an output

– Otherwise, all variables in the argument list are input

– Not in the argument list are temporary



• Code Analysis
– Extract the reduction objects with their combination 

operation
• output variables are reduction objects

• Identify operator being used for updateing reduction object 
variables

– Extract the parallel loops
• Extract loop variables in 

foreach loop
– num_iter: number of iterations

– loop variable: accessed only with 

an affine subscript of the loop index

Program Analysis (2/2)



Code Generation for CUDA (1/2)
• Generating Host function

– Declare and Copy
• Allocate device memory for variables, except temporary, 

used in kernel function

• Disjoint portions of loop variables are distributed across 
threads

• Other read/write variables are updated my multiple threads 
simultaneously and are replicated for each thread

– Compute
• Execution configuration (thread/block config.) is defined

• Invoke the kernel function

– Copy Updates
• Results from kernel computation are copied back to host

• Output variables from each block are combined to produce 
the final result



Code Generation for CUDA (2/2)

• Generating Kernel Code
– Divide the loop to be parallelized by # of thread 

blocks and # of threads in a block

– Regroup the array index
• Ex: data[i]data[i+index_n]

– index_n: offset for each thread in the entire grid

– Optimize the use of GPU’s shared memory
• Shared memory is allocated in increasing order to 

capitalize fast accesses of GPU’s shared memory

– combine() performs merging all threads’ results

– _syncthreads()provides synchronization
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Experiment Environment

Machine AMD Opteron 8350

OS Redhat Linux

CPU 8 CPU cores, 16 GB main
memory

GPU GeForce 9800 GTX, 512 MB 
memory

Application K-means PCA

Data Size 6.4 GB 8.5 GB

# of clusters : 
125

# of columns: 
64

Target applications

• Goals
– Evaluate performance of a multi-core CPU and GPU 

independently and study how chunk-size impacts 
performance

– Study performance gain while simultaneously exploiting 
both multi-core CPU and GPU

– Provide elaborate evaluation with two dynamic 
distribution schemes



9x

GPU-only version is 2.2x faster than 8-core CPU-only version

2.2x

20x



6.35x
4x

1.75x

8-thread CPU-only version is 1.75x faster than the GPU-only version



Best case is 25x faster than 1-
thread CPU version

23.9% performance improvement compared to the 
faster of CPU-only and GPU-only version



32x faster than 1-thread 
CPU version

60% performance improvement compared to the 
faster of CPU-only and GPU-only version

36% performance improvement over UCS



45.2% performance improvement 
compared to the faster of CPU-
only and GPU-only version

Best case is 9x faster than 1-

thread CPU version



18.6% performance improvement over UCS

63.8% performance 
improvement compared to 
the faster of CPU-only and 
GPU-only version

Best case is 
10.4x faster 
than 1-thread 
CPU version



• Consider 1+8 thread configuration with large 
chunk size 

– Contention  between CPU threads is highest



Best performance 
when GPU 70.4%    
CPU 29.6%

Best performance 
when GPU 68.75%    
CPU 31.25%



Best performance 
when GPU 18%    
CPU 82%

Best performance 
when GPU 22%    
CPU 78%



Related Work

• OpenCL
– Enables data parallel programming on CPU, GPU and any other 

device

• Other efforts
– Exochi, Venkatasubramanian, Kuzman, Helios,Qilin

• Diffrences from existing works
– Map sequential code to data parallel code
– Support very high-level programming API
– Improve performance through a dynamic work distribution 

scheme

• In last few years
– CUDA-lite, Pycuda
– Translating OpenMP to CUDA
– Automatic CUDA code generation



Conclusions

• Developed compiler and runtime support 
targeting generalized reduction computations 
on  a heterogeneous system

• Discuss two dynamic work distribution schemes 
that can effectively improve performance

• Gain considerable speedups on K-means and 
PCA applications



Comments

• The performance speedup is quite impressive

• The specific input for generalized reduction 
applications may be troublesome for users

• No user guide for this framework

• Little detail on the implementation


