Compiler and runtime support for
enabling generalized reduction
computations on heterogeneous
parallel configurations

Reference

 Compiler and runtime support for enabling
generalized reduction computations on
heterogeneous parallel configurations

— Vignesh T.Ravi, Wenjing Ma, David Chiu, Gagan
Agrawal

— International Conference on Supercomputing (ICS)
2010

Outline

* Introduction to GPU & CUDA

* Background

* Approach and System Design

* Language support and Code generation
* Experimental Results

* Related Work

* Conclusions

e Comments

GPU

* Graphics Processing Unit
— Dedicated processor for rendering
graphics
— Massively multithreaded manycore
chip

* Hundreds of scalar processors A NVIDIA Tesla C1060 Computing

Processor

* Tens of thousands of concurrent threads
1 TFLOP peak performance
* Fine-grained data-parallel computation

— Manyfold speedups can be achieved
on GPUs

CUDA

 Compute Unified Device Architecture
* A scalable parallel programming model

— Minimal extensions to C/C++
— Heterogeneous serial-parallel programming model

CPU Serial Code j e | * Initialize some data on the
GPU Parallel Kernel hOSt memory (CPU)
KernelA<<< nBIk, nTid >>>(args); e Co py data from host
memory to device memory
CPU Serial Code ; (G PU)
Grid 1
GPU Parallel Kernel * Execu.te GPU kernel
KernelB<<< nBIk, nTid >>>(args); functions

* Copy the computed results
back from device to host
memory

A typical CUDA program

Background

* Heterogeneous computing platforms are

Increasing

* Challenges: how to exploit the aggregate
computing power of multi-core CPUs and

GPUs effectively
— Programmability
— Performance

— Work distribution

CPU

GPU

Streaming Processing Units

Core 0 Core 1 | eo

Main

T = -
| Core2 | CoreM |
L1 [L1]
L -
L2

C1 (C2 | C3 —E‘-':CI C1 | GC2|C3 —
e |En-1| Cn C4 | ... |[Cn-1]| Cn
_‘_I] I L_rl [
Shared Shared

M - -—
Memory Memory

Global Device Memory

Memory *

Figure 1: A Popular Heterogeneous Computing Platform

Purpose

* Develop a compiler and runtime support for
heterogeneous multiprocessors

— Focus on generalized reduction computations

— Address three challenges:
* Programmability

— Applications which follow this structure can be written in a
sequential C interface + some annotations

* Performance

— Show significant speedups over CPU-only and GPU-only results
* Work distribution

— Propose an effective dynamic work distribution scheme

Outline

* Approach and System Design

Generalized Reduction Structure

cannot be [/ * errer* Sequential Loop ™/
varallelized <« While (unfinished) |
[* Reduction Loop ™ /
Foreach (element &) {
/ (1,val) = process(e);
Data parallel Reduc(1) = Reduc(1) op val;
} s
! Associative or commutative
operation

Figure 2: Generalized Reduction Processing Structure

Parallelization approach for multicore
CPUs

Divide data instances among processing
threads

The reduction object is shared among all
processing threads

Privatize the reduction object
— Avoid data races

— Each thread has its own copy of the reduction
object

Middleware system
— Not discussed in this paper

GPU computing for Generalized
Reductions
* Reduction objects are shared by all GPU threads

e Replicating reduction object for each thread
— Avoid potential data races

* Data block is divided into small blocks
— Each thread processes one block at a time

— Implementing a reduction computation requires:
* Read a data block
 Compute the reduction object updates based on the data instance
* Write back the reduction object update

— Results from each thread are merged to form the final
result

ser Input with Simple

C interface

CuUuDA/Multi-core
Code Generator

)

Create Workers Rsu;::;n;,‘e
and Repl_lr.ate Data Back-
Reduction o
Object per ek
worker
¥ ¥ J
Map multi-core Map EUDA Dynamic Work
code to CPU code to GPU Distribution svatem

Workers Workers y

1.

1 |

Compute
Reduction
on CPU

Compute
Reduction
on GPU

Merge
Results for
CPUIGPU

F

| Final Results |

Figure 3: High-level Architecture of the System

System Design

Dynamic Work Distribution

 Dynamic distribution schemes have two possible
approaches
— Work sharing

* The work is enqueued in a globally shared work list
* Anidle processor consumes work from the list

— Work stealing
* A private work list is maintained with each processor

* Anidle processor searched other busy processors for the work it
could steal

* This work choose a work sharing approach
— For data parallel applications
— High latency in communication with GPU
— GPU memory size limitation

Uniform-chunk distribution scheme

Fast Workers

» Worker 1

™ Workerm

Master/ Job FCFS

scheduler Policy
Slow Workers

—» Worker 1

[™{ Worker n

Figure 4: Uniform Chunk-Size Distribution Scheme

Non-uniform-chunk distribution scheme

Initial Data Division
GPU Request
Chunk 1
Chunk 2 . GPU Worker(s)
Chunk 3 Runtime
System 4
Chunk 4 /
Response:
: Large Chunk
Job Scheduler —» Data Merging

Response: Chunk

Size Unchanged
Chunk k CPU Worker(s)

CPU Request

Figure 5: Non-Uniform Chunk-Size Distribution Scheme

Outline

* Language support and Code generation

User Input

 The user has to identify the generalized
reduction structure and uses reduction
functions to express an application

* Information required in each function
— Variable list for computing

* Variable format: name, type, size[value]
* Example: update centers float* 5 K

— Sequential reduction function

* A reduction loop can be expresses as a function

Program Analysis (1/2)

e Variable Analysis and Classification

— Variables are classified into: Input, Output,
Temporary

— Variable analysis

e Use LLVM to generate intermediate representations (IR)
of reduction functions

* Apply Andersen’s points-to analysis to get the set of
pointerspoints-to

* Trace the entire function in IR form and when encounter
a store operation, classify variables:

— If the destination of storeisapoints-to set of any
varibale in the argument’s list and the source is not in the same
set, itis an output

— Otherwise, all variables in the argument list are input
— Notin the argument list are temporary

Program Analysis (2/2)

* Code Analysis
— Extract the reduction objects with their combination
operation

* output variables are reduction objects
* |dentify operator being used for updateing reduction object

varia b | es |* Outer Sequential Loop * |
While (unfinished) |
| * Reduction Loop * |
Foreach (element) |

— Extract the parallel loops Wil ovens SN

e Extract loop variables in :
foreach loo P Figure 2: Generalized Reduction Processing Structure

—num_iter: number of iterations
— loop variable: accessed only with
an affine subscript of the loop index

Code Generation for CUDA (1/2)

* Generating Host function
— Declare and Copy

* Allocate device memory for variables, except temporary,
used in kernel function

 Disjoint portions of 1 oop variables are distributed across
threads

e Other read/write variables are updated my multiple threads
simultaneously and are replicated for each thread

— Compute
» Execution configuration (thread/block config.) is defined
* Invoke the kernel function

— Copy Updates

e Results from kernel computation are copied back to host

 Qutput variables from each block are combined to produce
the final result

Code Generation for CUDA (2/2)

* Generating Kernel Code

— Divide the loop to be parallelized by # of thread
blocks and # of threads in a block
— Regroup the array index

* Ex:data[i]=2>data[i+index n]
— index n: offset for each thread in the entire grid

— Optimize the use of GPU’s shared memory

* Shared memory is allocated in increasing order to
capitalize fast accesses of GPU’s shared memory

— combine () performs merging all threads’ results
— syncthreads () provides synchronization

Outline

* Experimental Results

Experiment Environment Target applications

Redhat Linux Data Size 6.4 GB 8.5 GB
CPU 8 CPU cores, 16 GB main
memory # of clusters : # of columns:
125 64
GPU GeForce 9800 GTX, 512 MB
memory
Goals

— Evaluate performance of a multi-core CPU and GPU
independently and study how chunk-size impacts
performance

— Study performance gain while simultaneously exploiting
both multi-core CPU and GPU

— Provide elaborate evaluation with two dynamic
distribution schemes

350

Execution Time (sec)

—k - A% [\%] ™)
o wn -] wn -]
o -] -] -] -]

9]
o

only

CPU Threads (Chunk Size = 12.5MB)
2 4 6 8

—

——1{3— CPU-only Execution
----- O ---- GPU-only Execution

2.2X

12.5 25 50 100 200

GPU Chunk Size (MB)

GPU-only version is 2.2x faster than 8-core CPU-only version
Figure 7: Scalability ot K-Means with CPU-only and GPU-

CPU Threads (Chunk Size = 16MB)
1 2 4 6 e

500 | | | | |

— 31— CPU-only Execution
----- O ---- GPU-only Execution

400

Y
o
o

o
o
o

Execution Time (sec)

100

1.75x

16 32 64 128 256
GPU Chunk Size (MB)

8-thread CPU-only version is 1.75x faster than the GPU-only version

Figure 8: Scalability of PCA with CPU-only and GPU-only

Uniform Chunk Sizes
(CPU Chunk Size = GPU Chunk Size)

35

{1 12.5mb
------ O------ 25mb .
eee—A—== EOmb Best case is 25x faster than 1-
30 S — . I
gy il thread CPU version
=+=-=-=- 200mb
ST e —————gy |
S | e
- N4 =T
—— _..-ﬂ" .
Qoo fp e °
7p) R S .v.-._._._.-_.'_-:___._,‘.g‘-_': v/
IR v e V== PRREE
5 —
L eenee O
i o=t /D/
10 I
| | | | I | [1 1 I 1 1 1 1 l 1 [l [1 I
1+1 142 1+4 1+6 1+8

Configuration (GPU + CPU cores)
23.9% performance improvement compared to the

faster of CPU-only and GPU-only version

Figure 9: K-Means Using Heterogeneous Version with Uni-
form Chunk Size

Non-Uniform Chunk Sizes
(GPU Chunk Size Fixed at 200MB)

35

32x faster than 1-thread
CPU version

15

60% performance improvement compared to the
faster of CPU-only and GPU-only version

10

i I 1 | | | I | | | | I | | | | I [l [l | | I.
141 1+2 1+4 146 1+8

Configuration (GPU + CPU cores)

36% performance improvement over UCS

Figure 10: K-Means Using Heterogeneous Version with
Non-Uniform Chunk Size

Uniform Chunk Sizes
(CPU Chunk Size = GPU Chunk Size)

N 3 16mb
10 = oo Qeeeres a2mb | Best case is 9X faster than 1-
[Tm=of=== G4mb thread CPU version
o . ——-0——=- 128mb —
F —e=- .- 256mb
8|
o _
| -
o 'F
& L
a L
(F)) & F
. e 45.2% performance improvement
: ' compared to the faster of CPU-
4 .
" only and GPU-only version
3k -

1+4 1+6 1+8
Configuration (GPU + CPU cores)

Figure 11: PCA Using Heterogeneous Version with Uniform
Chunk Size

Mon-Uniform Chunk Sizes
(GPU Chunk Size Fixed at 256ME)

N 0 16mb A
10 |—+-+-=-0------ 32mb T
- -=--f--- B4mb T .
o o ——=—=—= 128mb AT =TT
n i e
. Best case is e 0
u el —— et
o F |10.4xfaster B s
— B
© 7 than 1-thread
& - .
= CPU version

63.8% performance
improvement compared to
the faster of CPU-only and
GPU-only version

1+1 142 1+4 146 148
Configuration (GPU + CPU cores)

18.6% performance improvement over UCS

Figure 12: PCA Using Heterogeneous Version with Non-
Uniform Chunk Size

K-Means PCA
Chunk S1ze (MB) | Idle % | Chunk Si1ze (MB) | Idle %
100 35.2 [28 1.3
200 45 256 16.9

Table 1: % Idle with Uniform Chunk Size

* Consider 1+8 thread configuration with large
chunk size

— Contention between CPU threads is highest

Work Distribution (%)

Uniform Chunk Sizes Mon-Uniform Chunk Sizes
(CPU Chunk Size = GPU Chunk Size) (GPU Chunk Size Fixed at 200MB)

== T [

Best performance

when GPU 70.4% || [BehSt P(esrsarg;a;c;
CPU 29.6% | when 75%

‘ ‘ ‘ F | CPU 31.25%

100 100

100

jus)
=

on
=

=Y
e

20

GFU IE‘Jhunl-: Size (MB) DF'L.I Chunk Size | MB}
) GPU Work %
| CPU Work %

Figure 13: Work Distribution (K-Means)

Work Distribution (%)

Uniform Chunk Sizes Non-Uniform Chunk Sizes

(CPU Chunk Size = GPU Chunk Size) (GPU Chunk Size Fixed at 256MB)

100

i}
o

(m)
-

i oY
2

20

100
‘ ‘ ‘ »)

Best performance || o
when GPU 18%

1]

Best performance
when GPU 22%

CPU 82% ““I'll CPU 78%
| | | ED | I | I:
0
16 128 258 16 128
DF’U Chunk Size (MB) CPU Dhunl-c Size (MB)
O GPU Work %
| CPU Work %

Figure 14: Work Distribution (PCA)

Related Work

OpenCL

— Enables data parallel programming on CPU, GPU and any other
device

Other efforts
— Exochi, Venkatasubramanian, Kuzman, Helios,Qilin

Diffrences from existing works
— Map sequential code to data parallel code
— Support very high-level programming API

— Improve performance through a dynamic work distribution
scheme

In last few years

— CUDA-lite, Pycuda

— Translating OpenMP to CUDA

— Automatic CUDA code generation

Conclusions

* Developed compiler and runtime support
targeting generalized reduction computations
on a heterogeneous system

* Discuss two dynamic work distribution schemes
that can effectively improve performance

* Gain considerable speedups on K-means and
PCA applications

Comments

The performance speedup is quite impressive

The specific input for generalized reduction
applications may be troublesome for users

No user guide for this framework
Little detail on the implementation

