
Grid Computing(10/29)
12M37037 Iwabuchi Keita

1

A GPU implementation of
inclusion-based points-to analysis

Mario Mendez-Lojo, Martin Burtscher, and Keshav Pingali.
(PPoPP’12)

2

1. Introduction

3

1.1 GPU Computing

• GPU

• GPU hardware is designed to process blocks of pixels at high
speed and with wide parallelism

• well suited for executing regular algorithms that operate on
dense vectors and matrices

• Irregular algorithm

• Irregular algorithm use dynamic data structure(Graph,Tree)

• BFS, n-body simulations etc.

4

1.2 Graph algorithm on GPU

• Most of Irregular algorithms that have implemented on GPU do
not modify the structure of graph

• modifications can be predicted statically and appropriate
data structures can be pre-allocated for the program

• morph algorithm

• edges or nodes are dynamically added to (or removed from)

• compiler optimizations, social network maintenance

• Implementation of a morph algorithm on a GPU is
challenging

• how to support dynamically changing graph on a GPU

5

1.3 contributions

• A GPU implementation of Andersen’s points-to analysis

• useful for understanding some of the differences between
optimizing codes for multicores and GPUs

• Propose Graph data structure(of morph algorithms) suited
for GPU

• allowing to add and remove edges dynamically

• takes into account three performance factor
global address alignment, shared memory bank conflicts
and thread divergence.

• GPU code outperforms an existing CPU version

• achieving an average speedup of 7x

6

2 Inclusion-based points-to
analysis

7

2.1 Andersen-style points-to
analysis

• Points-to analysis algorithm

• A popular algorithm (also called inclusion-based analysis)

• The asymptotic worst-case complexity is O(n^3)
,where n is the number of variables

• Can be formulated in terms of graph rewriting rules

8

Step 1,2 : Initialization, Graph creation

1. Initialization
read statements related to pointer manipulations

2. Constraint graph creation
For each pointer variable in the input program, add a new
node to a constraint graph

Basic Edge types

9

Ex.) graph creation

Step 3 : Solving constraints

10

Constraint Graph rewriting rules

Example

3. GPU architecture and
programming model

11

3.1 GPU architecture and programming model

12

SM

L1

SM SM SM

…

L2 Cache

DRAM

Fermi architecture(C2070)

Single Instruction Multiple Thread(SIMT)
…

A warp(32 threads)

Shared L1 Shared L1 Shared L1 Shared

Up to 48 warps

16 SMs
32 cuda cores

Aligned 128 byte
The hardware merges the 32 reads or writes into one coalesced memory transaction

※ Bank Conflict

13

0 4 8 　 116 120 124

Shared memory banks
1word(4byte) * 32

…

…

Threads(a warp)

0 1 2 29 30 31

No Bank Conflict

…

…

Threads(a warp)

0 1 2 29 30 31

2-way Bank Conflict

Shared memory banks
1word(4byte) * 32

0 4 8 　 116 120 124

4 byte 4 byte

4. Graph representation on the
GPU

14

4.1 Graph representation on the
GPU

• The analysis of the linux kernel results in a constraint
graph with 1.498 billion edges

• The memory layout of the graph has to be specifically
designed for the GPU architecture to...

✓ minimize memory transactions

✓ maximize coalescing

✓ avoid divergence within the threads of a warp

15

4.2 adjacency matrix model

n × n dense matrix
where n is the number of the variables

Graph rewrite rules -> matrix-matrix multiplications
be performed quickly(CUBLUS)

Wast a lot of space

16

4.2 CSR model

CSR : Compressed Sparse Row
where n is the number of the variables

Can use space efficiently

Difficult to add edges dynamically

0 1 0 0 0
0 0 1 0 1
0 1 0 1 0

col_ind = {1,2,4,1,3}

row_ptr = {1,2,4}()A =

17

4.2 Sparse bit vector model - 1/2
• Linked list, three fields (base, bit, next-ptr)

• 128 bytes width matches the GPU memory bus
128 bytes / 32 threads(warp) = 4 byte/threads

• Is 120-byte large size?(in many CPU implementations is 4 bytes)
960 elements occupies 120 bytes
while the standard representation requires 360 bytes (thirty
elements)

18

4.2 Sparse bit vector model - 2/2

• Identifiers are sequentially assigned to variables as they
appear in the program
→ points to variables with identifiers close to it

• variables point to others that appear close together

Adjacency matrix of the gcc points-to graph(gcc:120K variables)

Point-to edges at...
■ at the beginning

+ at the end

19

5. Parallel rule application on the
GPU

20

5.1 modify rewrite rule

• Reduce synchronization

Reversed ruleNormal rule

Reversed rule

21

5.1 Pseudo-code(GPU)

22

Example.

solution

6. Optimizations

23

6. Optimizations 1/2

1) Minimize memory consumption
　 use pair list (x, y) , instead of storing p-1

edges data
　※ y has outgoing “s” edges and y → x

2) Collapse cycles detection
 Offline : look for cycles during a preprocessing phase
 a = b; b = a;
 Online : look for cycles during the solving process
 *a = b; b = *a;

 HCD(Hybrid Cycle Detection)
 combine the Offline and Online method

※ Offline method implementation is only CPU ver.

24

6. Optimizations 2/2
3) Avoid redundant rule application
 ● If the points-to sets of all the variables have not changed at
current iteration, then return solution
 ● transfer ΔP from the GPU to CPU by using streams
 ΔP : edges which added during the last and current iterations
 ΔP is updated in the end of each iteration.
 ΔP = ΔP - P and P = P U ΔP
 ● Computing differences between sets of edges is suited for warp
centric model

4) Detect pointer-equivalent variables
 ΔP-equivalent variables have the same outgoing ΔP edges in the
current iteration

25

Example of detection of ΔP-equivalent variables

7. Experimental evaluation

26

7.1 Experimental evaluation

27

Benchmark suite: number of variables
and statements (in thousands)

Three implementation..
1. CPU
2. Multi-CPU
3. GPU

7.2 Experiment environment

28

1. CPU
AMD Opteron 4-core 2.7GHz * 4 Socket
Ubuntu 10
Memory : 24GB
L1 : 64KB, L2 : 512KB, L3 : 6MB
C++ , -O3
Multi-CPU implementation is written in
Java
JVM : 64-bit un HotSpot server version
1.6.0 24.

2. GPU
NVIDIA Tesla C2070(1.15 GHz)
14 SMs, 448 cuda cores
Memory : 6GB
L1 : 16 KB, L2 : 768 KB
Shared memory : 48 KB
CUDA 4.1

7.2 Experiment　result

29

Runtimes(in ms)for the sequential online phase(CPU-
s column), and speedups achieved by CPU-x and GPU

7.2 Experiment　result

30

0"
200"
400"
600"
800"
1000"
1200"
1400"
1600"
1800"
2000"

0"

20000"

40000"

60000"

80000"

100000"

120000"

140000"

tsh
ark
"

svn
"

py
tho
n"

gim
p"

gd
b"

pin
e"

ph
p"

mp
lay
er"

lin
ux
"

Ex
ac
u&

on
)&
m
e(
m
se
c)
�

Data)set�

CPU?s"
CPU?1"
CPU?16"
GPU"
vars"
stmts"

Runtimes(in ms)for the sequential online phase(CPU-
s column), and speedups achieved by CPU-x and GPU

7.2 Breakdown of the execution time

31

Breakdown of the execution time
for the vim and python benchmarks

CPU-16 GPU GPU-1SM CPU-16 GPU CPU-1

vim(CPU is faster) python(GPU is faster)

7.2 Compares the total analysis runtimes

32

Comparison of runtimes(in ms) for the whole analysis:
CPU (sequential), CPU (parallel, 16 threads), and GPU

• Offline phase is always executed on the CPU
• Data exchanging time CPU GPU is not bottleneck
 (due to overlapping the data transfer)

Average : 6x Average : 7x

8. Conclusions

33

8. Conclusions

• 35% more person-hours to implementation on the GPU

• GPU(CUDA) version is quite compact

※Due to size of Implementation of data structure

34

CPU
GPU

Source code size(line)

3,000
9,000

GPU(14SMs) implementation achieves
✓ 7x speedup compare to a sequential CPU ver.
✓ outperforms a same algorithm on 16 CPU cores

Point-to Analysis using BDDs

7.2 Breakdown of the execution time

36

Breakdown of the execution time
for the vim and python benchmarks

CPU-16 GPU GPU-1SM

vim(CPU is faster)

※ Binary Decision Diagram(BDD)

Reduced BDDBool function using BDD

○ Efficient memory space
 & Low calculation cost(in proportion to size of the graph)

× Finding the best variable ordering is NP-hard

※ Point-to Analysis using BDDs

X : D1×D2, X = {(00,01), (01,00), (01,10)}
Y : D1×D3, X = {(00,00), (01,01), (10,10)}
R : X & Y = {(00,01), (01,00), (10,01)}

Point-to Copy-to Point-to

Memoizing
 Reuse previously processed inputs to reduce redundant work

