Grid Computing(10/29) 12M37037 Iwabuchi Keita

A GPU implementation of inclusion-based points-to analysis

Mario Mendez-Lojo, Martin Burtscher, and Keshav Pingali. (PPoPP'12)

I. Introduction

I.I GPU Computing

• GPU

- GPU hardware is designed to process blocks of pixels at high speed and with wide parallelism
- well suited for executing regular algorithms that operate on dense vectors and matrices
- Irregular algorithm
 - Irregular algorithm use dynamic data structure(Graph, Tree)
 - BFS, n-body simulations etc.

I.2 Graph algorithm on GPU

- Most of Irregular algorithms that have implemented on GPU do not modify the structure of graph
 - modifications can be predicted statically and appropriate data structures can be pre-allocated for the program
- morph algorithm
 - edges or nodes are dynamically added to (or removed from)
 - compiler optimizations, social network maintenance
 - Implementation of a morph algorithm on a GPU is challenging
 - how to support dynamically changing graph on a GPU

I.3 contributions

- A GPU implementation of Andersen's points-to analysis
 - useful for understanding some of the differences between optimizing codes for multicores and GPUs
- Propose Graph data structure(of morph algorithms) suited for GPU
 - allowing to add and remove edges dynamically
 - takes into account three performance factor global address alignment, shared memory bank conflicts and thread divergence.
- GPU code outperforms an existing CPU version
 - achieving an average speedup of 7x

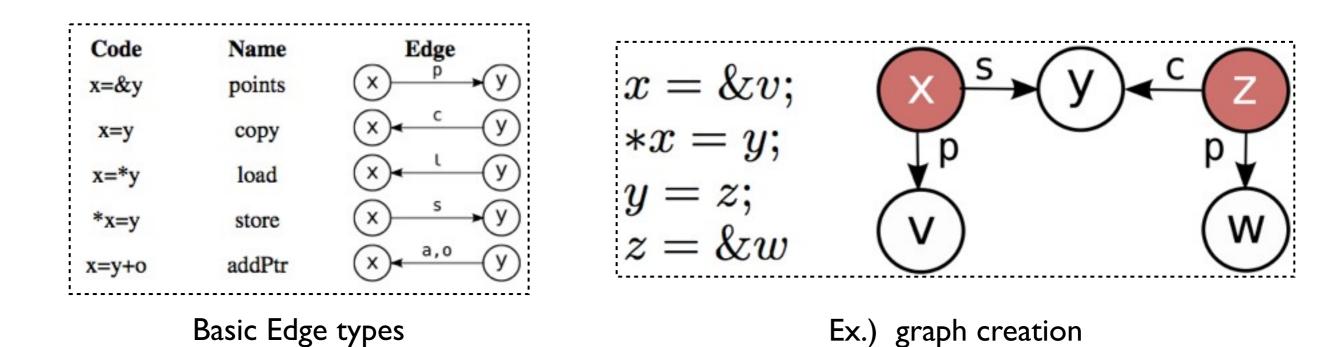
2 Inclusion-based points-to analysis

2.1 Andersen-style points-to analysis

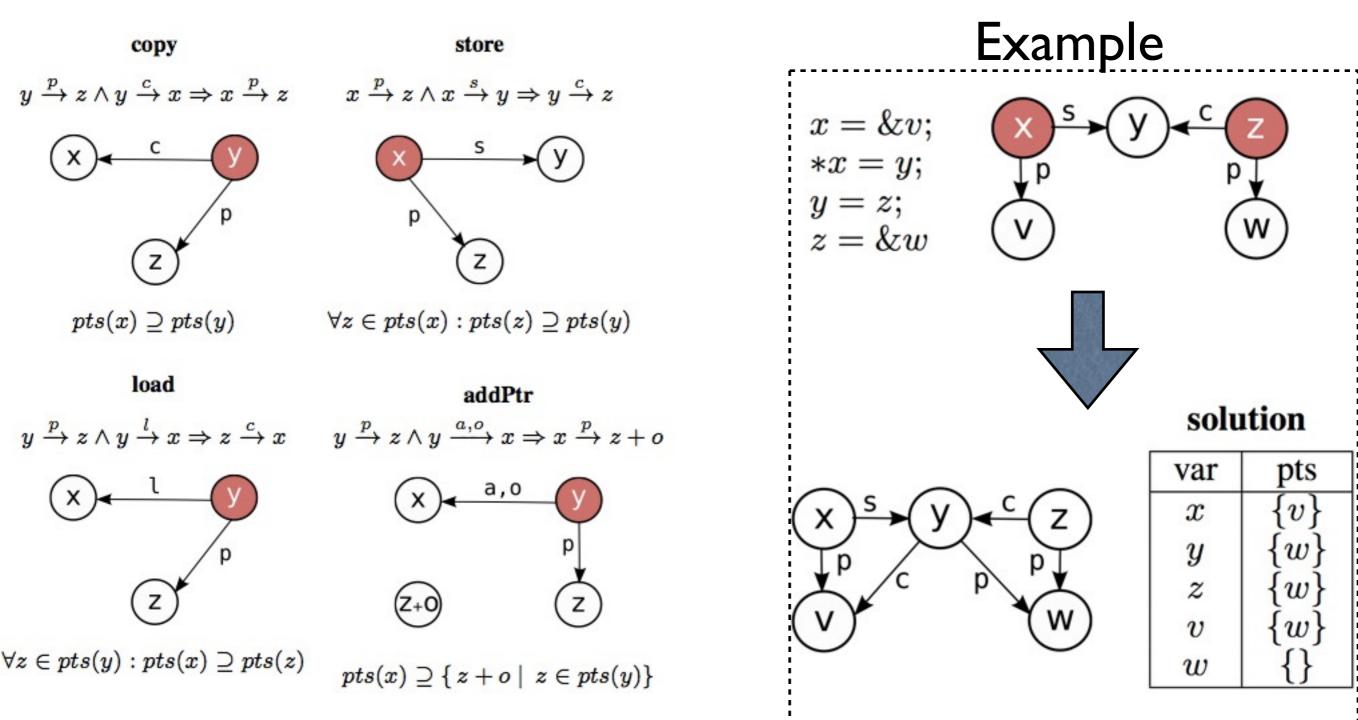
- Points-to analysis algorithm
- A popular algorithm (also called inclusion-based analysis)
- The asymptotic worst-case complexity is O(n^3) ,where *n* is the number of variables
- Can be formulated in terms of graph rewriting rules

Step 1,2: Initialization, Graph creation

- I. Initialization read statements related to pointer manipulations
- 2. Constraint graph creation For each pointer variable in the input program, add a new node to a constraint graph



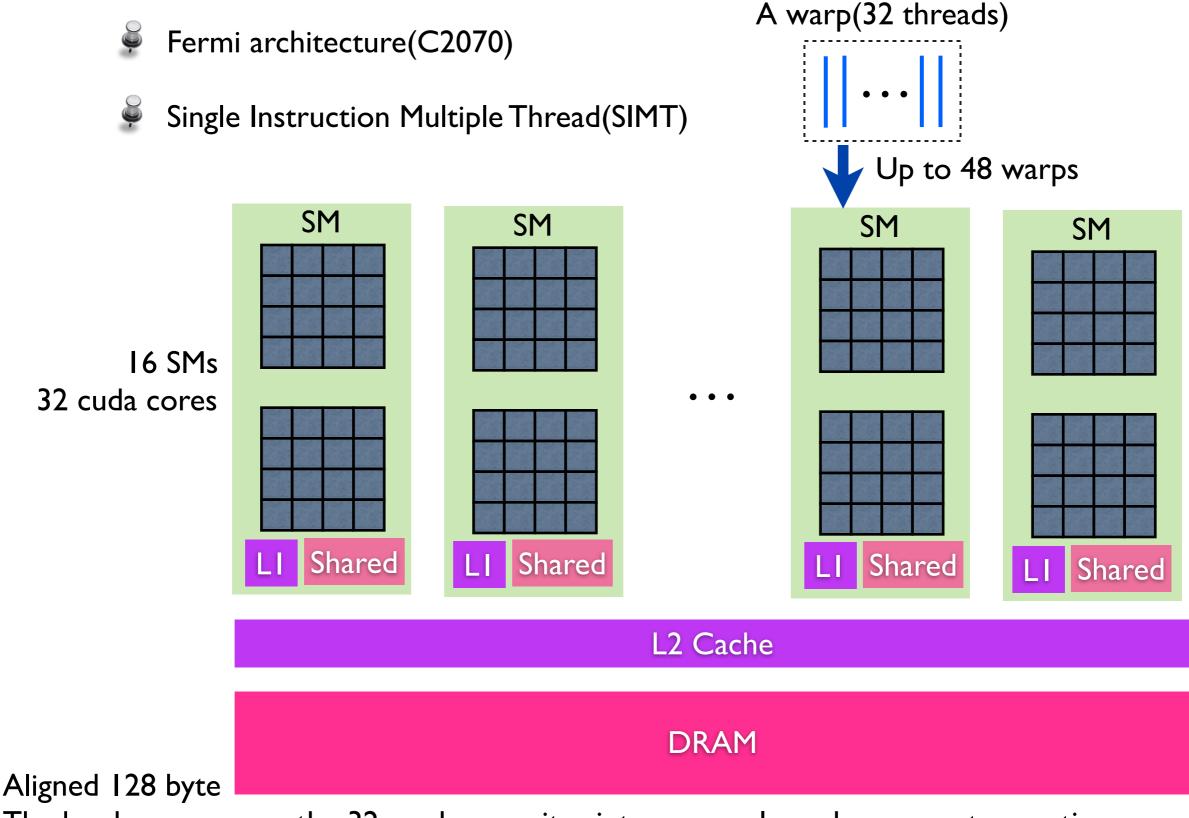
Step 3 : Solving constraints



Constraint Graph rewriting rules

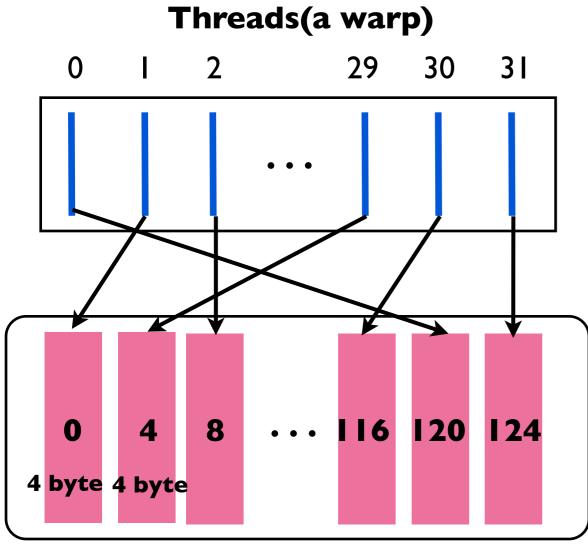
3. GPU architecture and programming model

3.1 GPU architecture and programming model



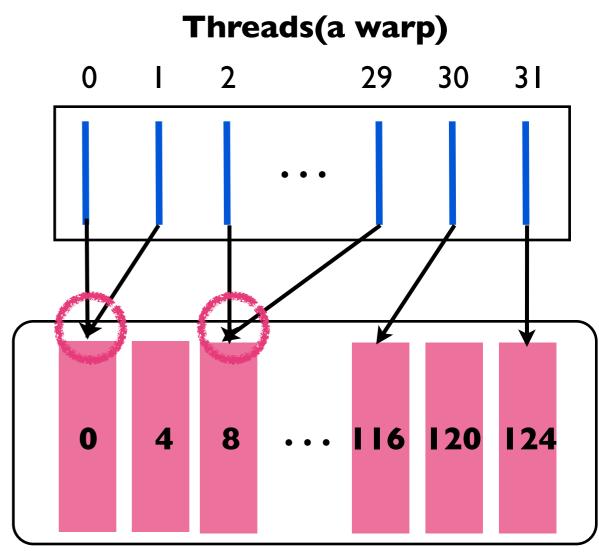
The hardware merges the 32 reads or writes into one coalesced memory transaction

*** Bank Conflict**



Shared memory banks I word(4byte) * 32

No Bank Conflict



Shared memory banks I word(4byte) * 32

2-way Bank Conflict

4. Graph representation on the GPU

4.1 Graph representation on the GPU

- The analysis of the linux kernel results in a constraint graph with 1.498 billion edges
- The memory layout of the graph has to be specifically designed for the GPU architecture to...
 - ✓ minimize memory transactions
 - ✓ maximize coalescing
 - \checkmark avoid divergence within the threads of a warp

4.2 adjacency matrix model

n × *n* dense matrix where *n* is the number of the variables

Graph rewrite rules -> matrix-matrix multiplications be performed quickly(CUBLUS)

Wast a lot of space

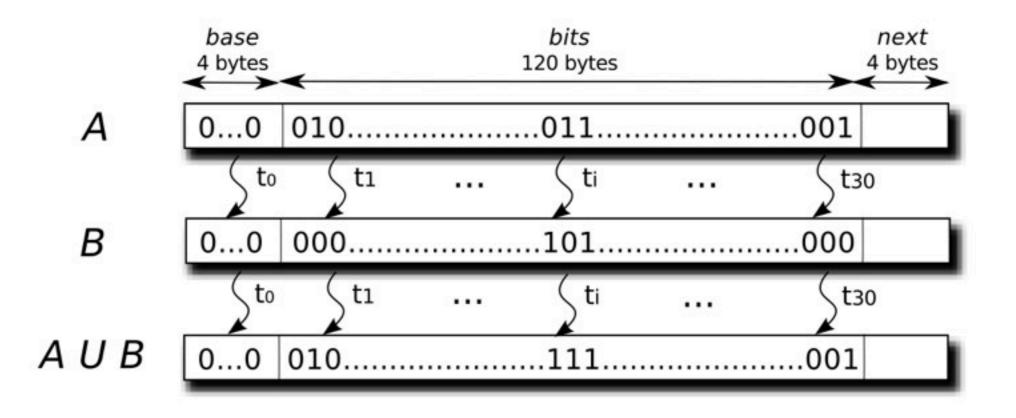
input	P_i	P_{f}	C_i	C_f
gcc	$5 * 10^{-7}$	$6 * 10^{-4}$	$6 * 10^{-6}$	$4 * 10^{-5}$
vim	$2 * 10^{-7}$	$8 * 10^{-4}$	$10*10^{-7}$	$2 * 10^{-5}$
linux	$1 * 10^{-7}$	$2 * 10^{-3}$	$2 * 10^{-7}$	$2 * 10^{-4}$

4.2 CSR model

CSR : Compressed Sparse Row where *n* is the number of the variables **Can use space efficiently** X Difficult to add edges dynamically $A = \begin{pmatrix} 0 & | & 0 & 0 & 0 \\ 0 & 0 & | & 0 & | \\ 0 & | & 0 & | & 0 \end{pmatrix}$ col_ind = {1,2,4,1,3} row_ptr = {1,2,4}

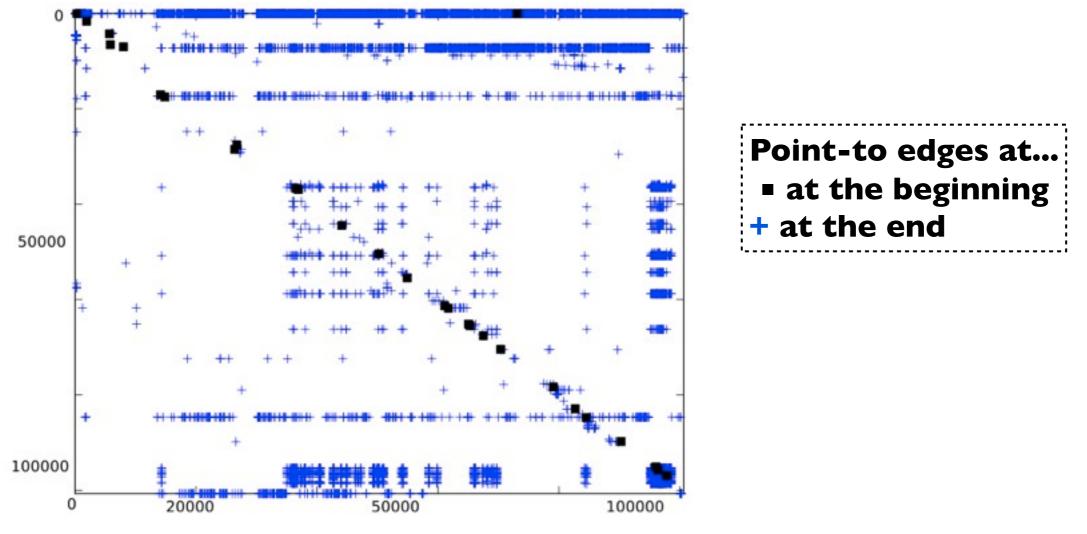
4.2 Sparse bit vector model - 1/2

- Linked list, three fields (base, bit, next-ptr)
- I 28 bytes width matches the GPU memory bus
 I 28 bytes / 32 threads(warp) = 4 byte/threads
- Is I 20-byte large size?(in many CPU implementations is 4 bytes) 960 elements occupies I 20 bytes while the standard representation requires 360 bytes (thirty elements)



4.2 Sparse bit vector model - 2/2

- Identifiers are sequentially assigned to variables as they appear in the program
 - \rightarrow points to variables with identifiers close to it
- variables point to others that appear close together

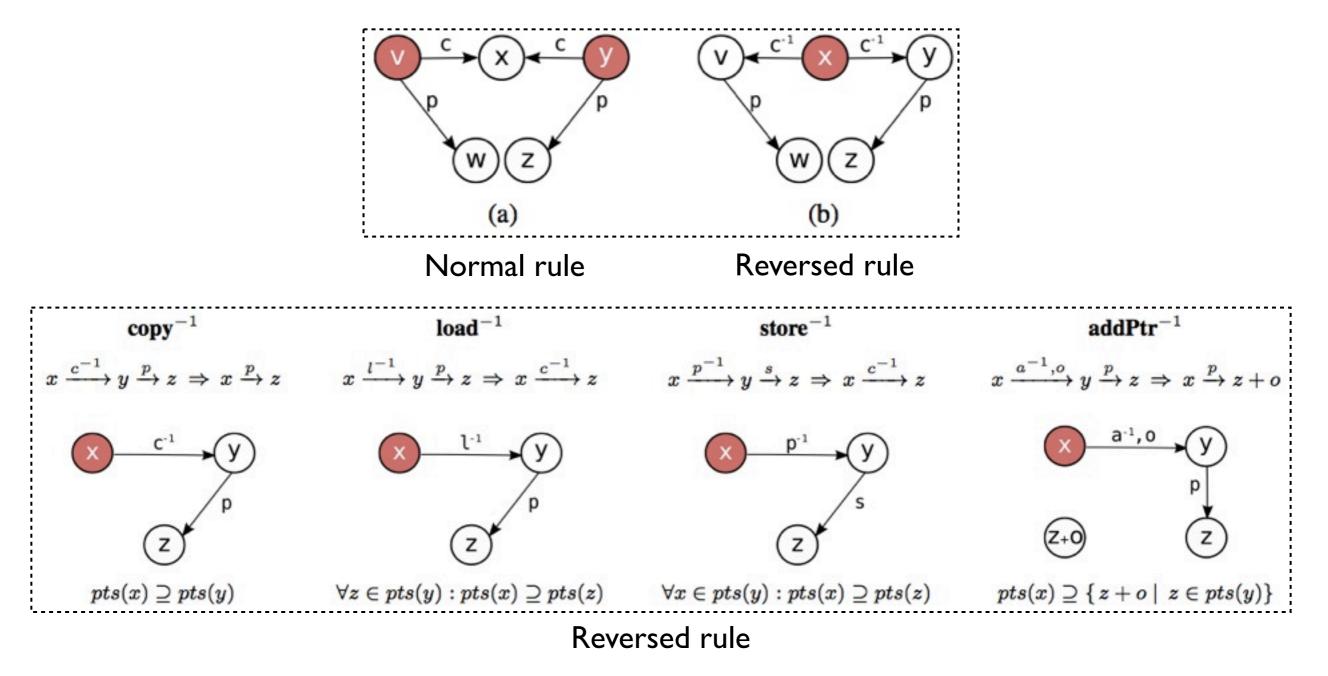


Adjacency matrix of the gcc points-to graph(gcc:120K variables)

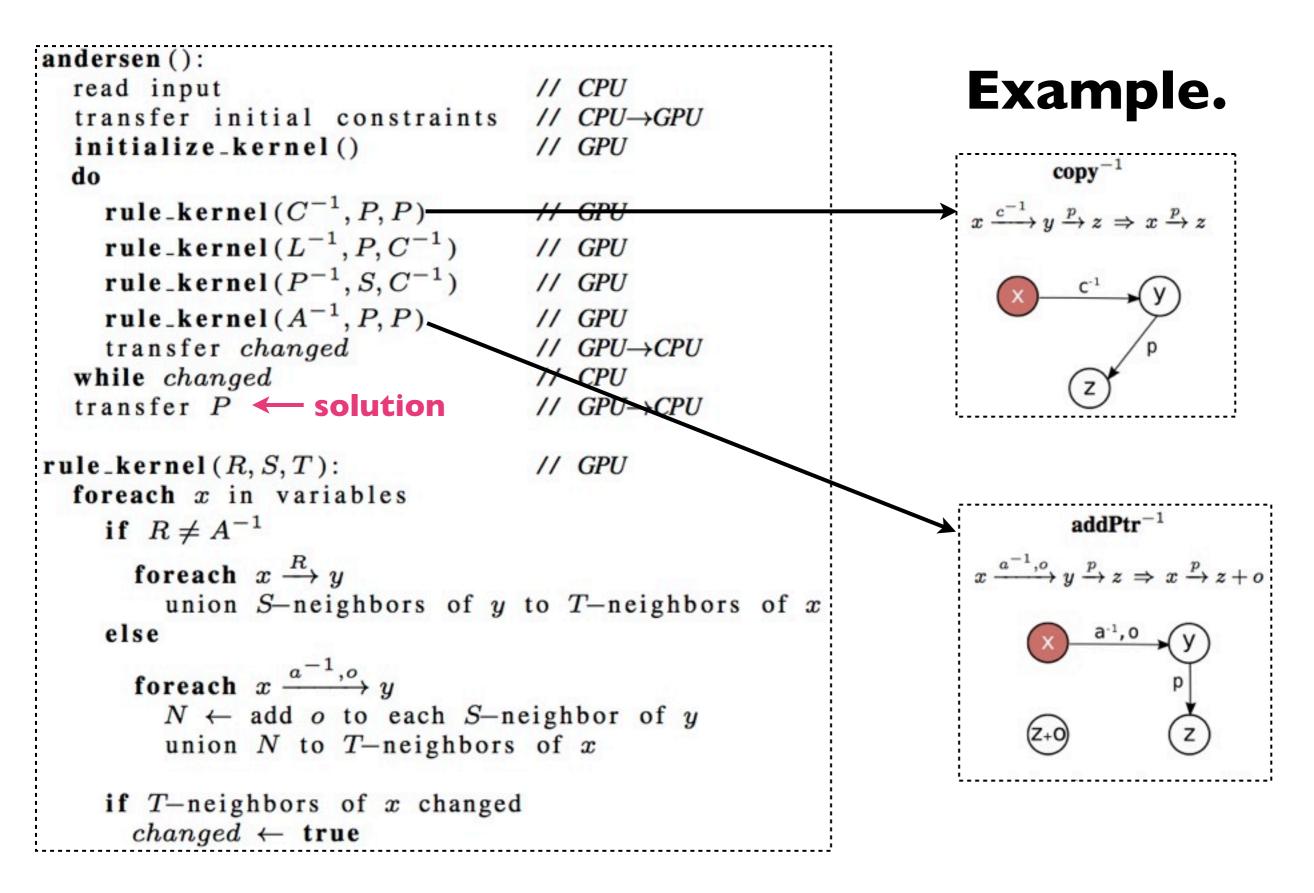
5. Parallel rule application on the GPU

5.1 modify rewrite rule

Reduce synchronization

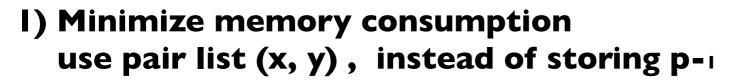


5.1 Pseudo-code(GPU)



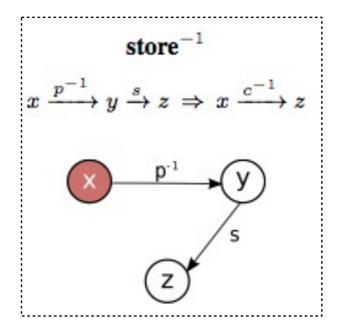
6. Optimizations

6. Optimizations 1/2



edges data

```
* y has outgoing "s" edges and y \rightarrow x
```



2) Collapse cycles detection
Offline : look for cycles during a preprocessing phase a = b; b = a;
Online : look for cycles during the solving process *a = b; b = *a;

```
HCD(Hybrid Cycle Detection)
combine the Offline and Online method
```

*** Offline method implementation is only CPU ver.**

6. Optimizations 2/2

3) Avoid redundant rule application

• If the points-to sets of all the variables have not changed at current iteration, then return solution

transfer ΔP from the GPU to CPU by using streams
 ΔP : edges which added during the last and current iterations
 ΔP is updated in the end of each iteration.

 $\Delta P = \Delta P - P$ and $P = P \cup \Delta P$

• Computing differences between sets of edges is suited for warp centric model

4) Detect pointer-equivalent variables

 $\Delta \textbf{P}-equivalent$ variables have the same outgoing $\Delta \textbf{P}$ edges in the current iteration

		K			V	
	$\{a, c\}$	<i>{b}</i>	$\{a,c\}$	X	у	Z
hash(K)	38	12	38	X	у	Z
sort(K,V)	12	38	38	y	x	Z
diff(K)	0	1	0	y	х	Z
prefix(K, max)	0	1	1	у	х	Z

Example of detection of ΔP -equivalent variables

7. Experimental evaluation

7.I Experimental evaluation

Three implementation..I. CPU2. Multi-CPU3. GPU

program	vars	stmts	program	vars	stmts
ex	11	13	vim	246	108
perl	54	68	php	339	325
python	92	111	mplayer	537	377
nh	97	114	gimp	558	649
svn	107	139	pine	612	315
gcc	120	156	linux	1,503	420
gdb	232	241	tshark	1,555	1,789

Benchmark suite: number of variables and statements (in thousands)

7.2 Experiment environment

I. CPU AMD Opteron 4-core 2.7GHz * 4 Socket Ubuntu 10 Memory:24GB LI:64KB, L2:512KB, L3:6MB C++,-03 Multi-CPU implementation is written in Java JVM : 64-bit un HotSpot server version 1.6.0 24. 2. **GPU** NVIDIA Tesla C2070(1.15 GHz) 14 SMs, 448 cuda cores **Memory:6GB** LI: 16 KB, L2: 768 KB

Shared memory : 48 KB

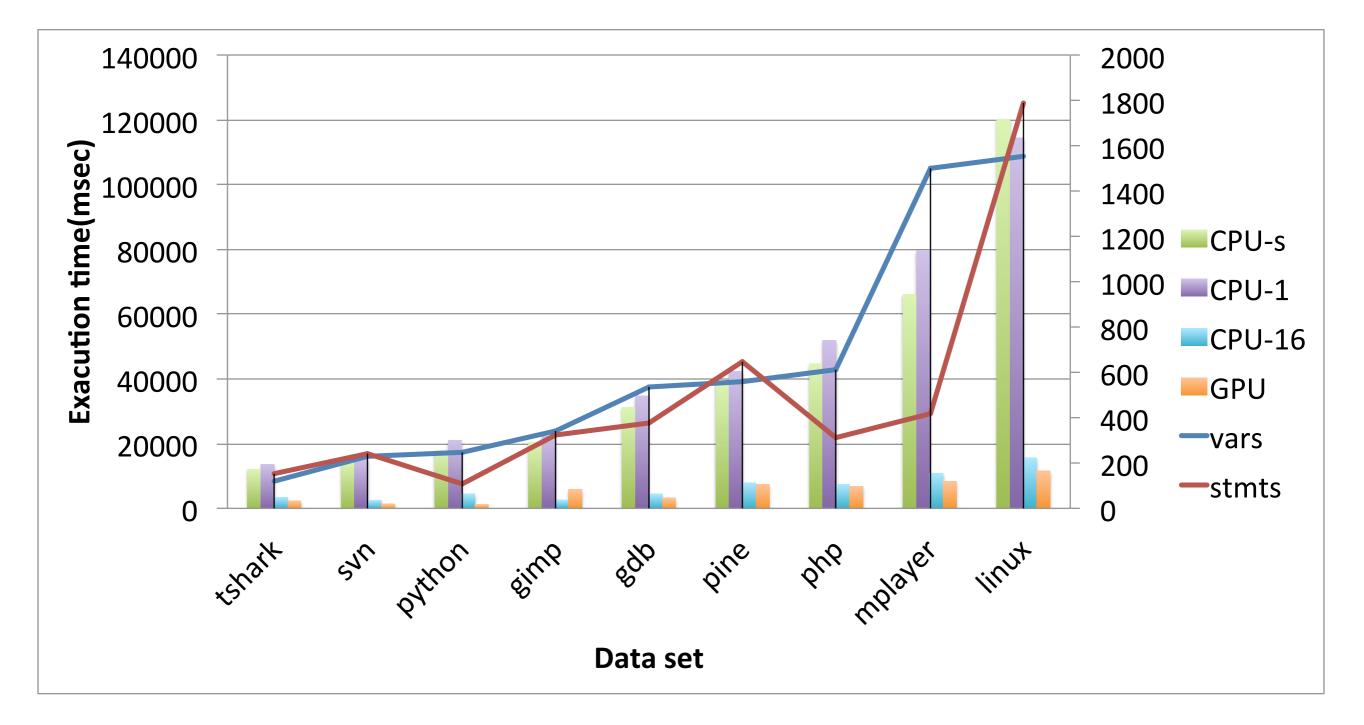
CUDA 4.1

7.2 Experiment result

input	CPU-s	CPU-1	CPU-16	GPU
ex	400	3.17	1.54	5.00
gcc	1,000	1.20	4.63	3.57
nh	1,280	1.22	5.54	6.74
perl	1,990	1.12	6.18	6.22
vim	10,110	1.30	9.39	1.28
tshark	12,110	0.89	3.53	5.13
svn	14,630	0.96	5.70	10.09
python	17,890	0.85	3.99	14.54
gimp	20,500	0.92	7.83	3.45
gdb	31,300	0.90	6.95	9.40
pine	38,950	0.92	4.93	5.21
php	44,670	0.86	5.97	6.54
mplayer	66,260	0.83	6.07	7.97
linux	120,340	1.05	7.67	10.39

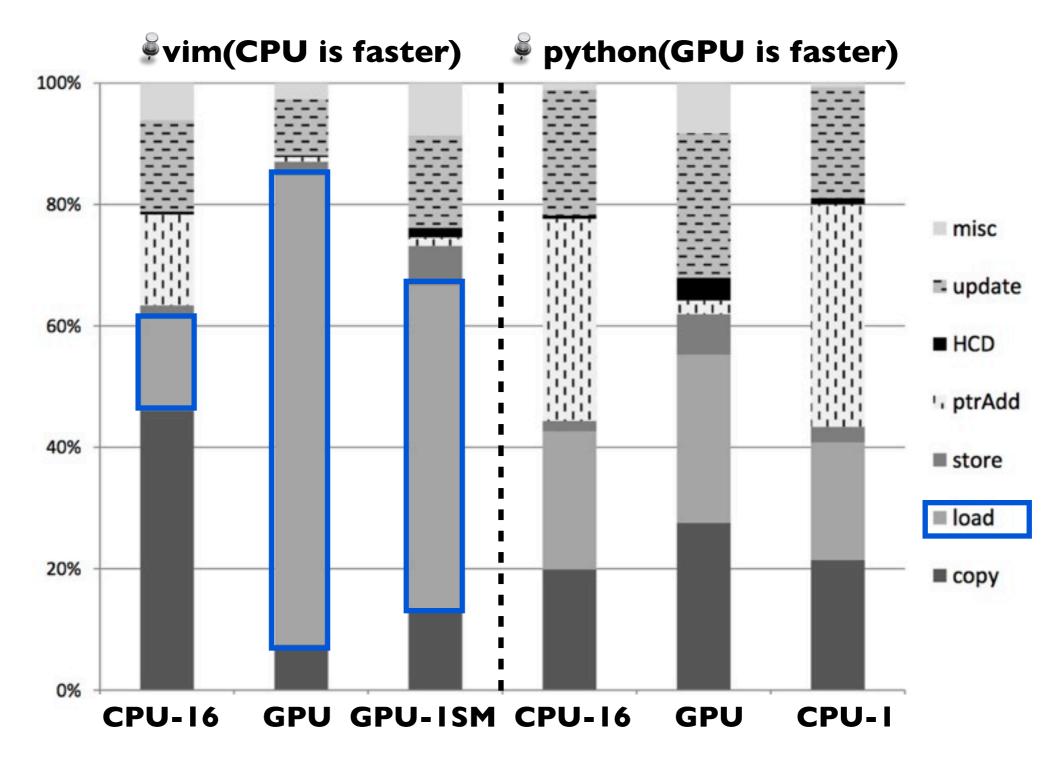
Runtimes(in ms)for the sequential online phase(CPUs column), and speedups achieved by CPU-x and GPU

7.2 Experiment result



Runtimes(in ms)for the sequential online phase(CPUs column), and speedups achieved by CPU-x and GPU

7.2 Breakdown of the execution time



Breakdown of the execution time for the vim and python benchmarks

7.2 Compares the total analysis runtimes

Average : 6x

- Offline phase is always executed on the CPU
- Data exchanging time CPU ↔ GPU is not bottleneck (due to overlapping the data transfer)

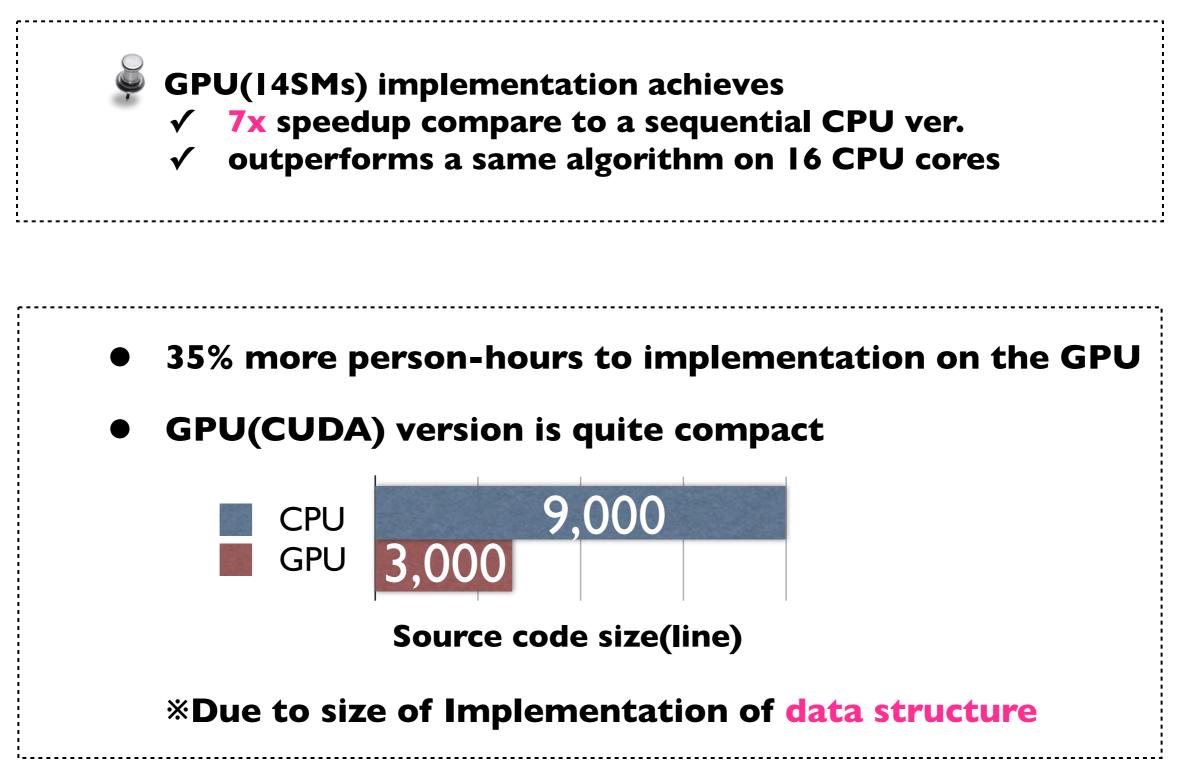
Average : 7x

	CF	PU-s		CPU-16			GPU	
input	offline	online	offline	online	speedup	offline	online	speedup
ex	20	400	73	259	1.27	73	80	2.75
gcc	340	1,000	210	216	3.15	210	280	2.73
nh	270	1,280	156	231	4.01	156	190	4.48
perl	160	1,990	121	322	4.85	121	320	4.88
vim	250	10,110	153	1,077	8.42	153	7,870	1.29
tshark	3,090	12,110	1,567	3,432	3.04	1,567	2,360	3.87
svn	210	14,630	188	2,568	5.38	188	1,450	9.06
python	220	17,890	167	4,488	3.89	167	1,230	12.96
gimp	1,110	20,500	634	2,618	6.65	634	5,950	3.28
gdb	490	31,300	265	4,502	6.67	265	3,330	8.84
pine	670	38,950	333	7,900	4.81	333	7,470	5.08
php	620	44,670	352	7,486	5.78	352	6,830	6.31
mplayer	750	66,260	375	10,921	5.93	375	8,310	7.72
linux	1,210	120,340	543	15,685	7.49	543	11,580	10.03

Comparison of runtimes(in ms) for the whole analysis: CPU (sequential), CPU (parallel, 16 threads), and GPU

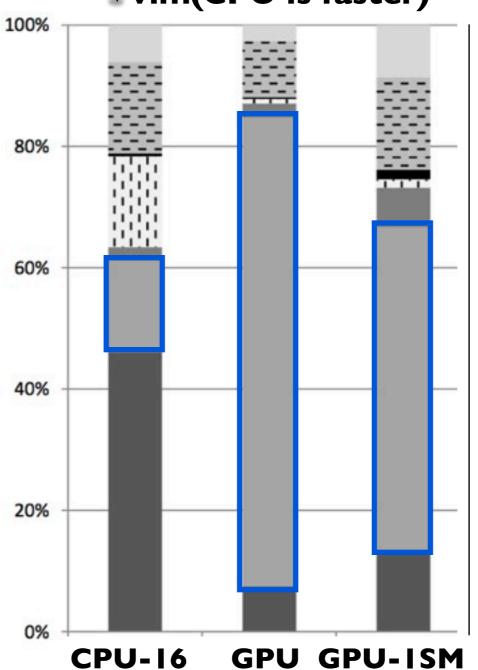
8. Conclusions

8. Conclusions



Point-to Analysis using BDDs

7.2 Breakdown of the execution time



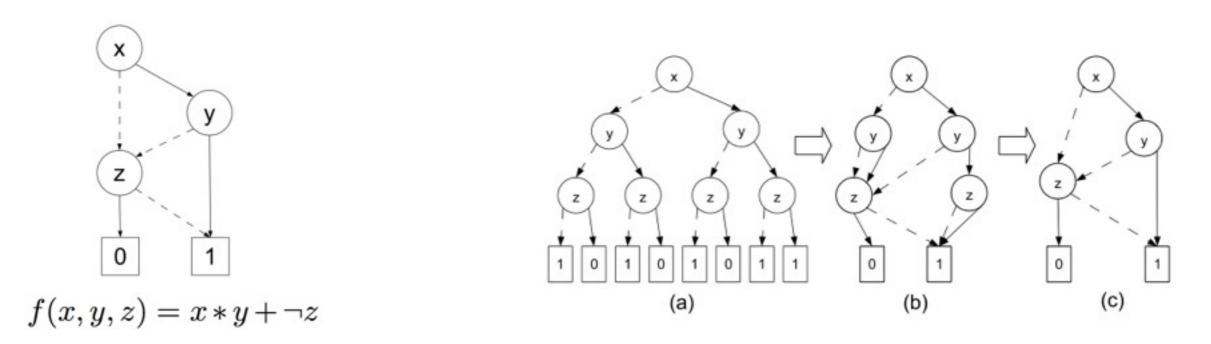
vim(CPU is faster)

Breakdown of the execution time for the vim and python benchmarks

*** Binary Decision Diagram(BDD)**

Bool function using BDD

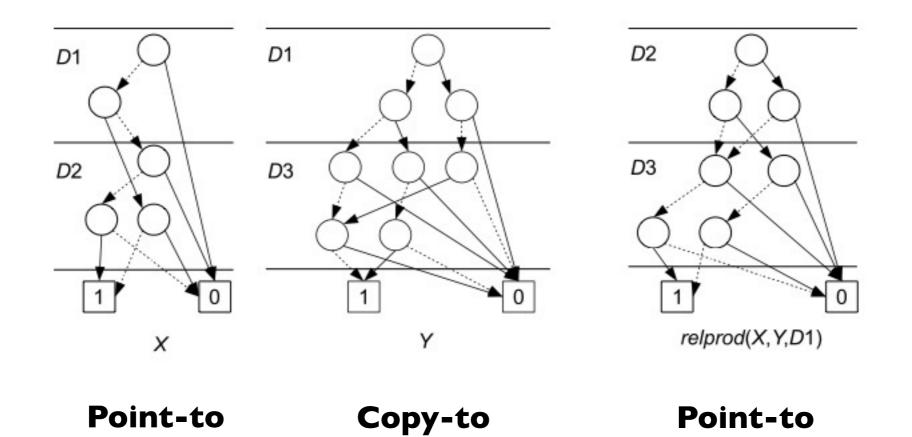
Reduced BDD



- Efficient memory space
 & Low calculation cost(in proportion to size of the graph)
 Y Finding the bast workship ordering is NP, hard
- Finding the best variable ordering is NP-hard

※ Point-to Analysis using BDDs

X: DI×D2, X = {(00,01), (01,00), (01,10)} Y: DI×D3, X = {(00,00), (01,01), (10,10)} R: X & Y = {(00,01), (01,00), (10,01)}



Memoizing Reuse previously processed inputs to reduce redundant work