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Key Takeaways 

• Learn algorithms for fast unsupervised pre-
training of Neural Networks using RBMs and 
Spare Auto-encoder on the Intel Xeon Phi. 

• Understand the architecture of the Intel Xeon Phi 
co-processor and its advantages and 
disadvantages compared to GPUs. 

• See benchmarks between a traditional sequential 
training algorithm vs. parallel algorithm on the 
Xeon Phi co-processor. 



Use of the Intel Xeon Phi for 
training neural networks. 



Prerequisites 



Unsupervised pre-training 

• When neural networks get deeper, they face 
the vanishing gradient problem. 

• Basically when training a NN using back 
propagation, you might get zero or really high 
gradients sometimes. 

• An additional unsupervised pre-training step 
before the actual training solves this problem. 



Unsupervised pre-training 

• It finds patterns in the data by reconstructing 
the input. 

• This is done with unlabeled data and forces 
the NN to decide which of the features are 
most important, eventually acting as a feature 
extraction engine. 

• Sparse Auto Encoder and Restricted Boltzmann 
Machine are two main ways of achieving this. 



Sparse Auto-encoder 

A sparse auto-encoder is an 
unsupervised learning algorithm that 
applies back propagation, setting the 

target values to be equal to the inputs. 
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Forward propagation 

Takes input            through input layer x and 
maps it to the hidden layer y with the function: 

 

 

W1 is the weight, b1 is the bias of the layer and s  
is an activation function like sigmoid that brings 
y in the domain of [0,1]. 



Forward propagation 

Takes input            through hidden layer y and 
maps it to the output layer z with the function: 

 

 

W2 is the weight, b2 is the bias of the layer and s  
is an activation function like sigmoid that brings 
z in the domain of [0,1]. 



Loss function 

The square error function is usually used as the 
loss function: 

 

 

 



Cost function 

We make use of the following cost function to 
train our neural network: 

 

 

 

The goal of the algorithm is to  

minimize this function. 

 



Cost function 

 

 

 

m  signifies the number of IID samples that will 
be used to train this neural network from a set 

of samples {x1, x2 … xm}. 



Cost function 

 

 

 

λ is the weight decay parameter that controls 
the relative importance of the two terms.  

It tends to decrease the magnitude of the 
weights, and thereby prevent over-fitting. 

 

 



The auto-encoder tries to 
approximate the identity function  

such that z = fW,b(x). 



Sparse auto-encoder 

The identity function seems like  

a trivial function to learn. 

 

But, by limiting the number of 

hidden units, we can discover  

interesting correlations in the data. 



Sparsity parameter ρ 

It is observed that structures in the data are 
better observed if the number of hidden 
neurons that fire is limited.  

 

The parameter ρ determines how many neurons 
will fire. All hidden neurons firing does not lead 
to the best results. 



Final cost equation 

ρi -> average activation of the hidden node i 
given the training set. 
h -> number of hidden nodes. 
𝛽 -> Additional learning rate parameter. 



Stacked Auto-encoder 



Restricted Boltzmann Machine 



Top level structure 



RBM Overview 

• Used for building Deep Belief Networks (DBM). 

• Two-layer fully-connected network. 

• Works based on ‘Energy’ equation of neurons 
back propagation using Contrastive Divergence. 

• Trains the NN for each layer; layer by layer. 

• Uses unlabeled data. 



Training stage 

• Consist of ‘forward pass’ and ‘backward pass’. 

• Works like a 2 way translator. 

• Input -> encoding translation in the forward 
pass. 

• Encoding -> input translation in the backward 
pass. 



Feature detection 

• The input vector corresponds to the visible 
units because they are observed. 

• Feature vector corresponds to the hidden 
layer. 

• Weights are converted into most important 
features due to weight adjustment. 



Energy function 

• RBM is an Energy Based Model (EBM) – It 
defines the probability via an energy function. 

• The actual probability of firing is controlled by 
the weights between the neurons and their 
individual biases. 

• An energy function assigns probabilities to 
different configurations of a system. 



Energy function 

• The energy function for a joint distribution of 
(v,h) can be defined as follows: 

 

 

• The probability of firing in RBM is inversely 
proportional to the energy: 

𝑝 𝑣, ℎ  ∝  
1

𝑒𝐸(𝑣,ℎ)
 

 



Probability from energy equation 

The probability of visible vector v, is given by 
summing over all the probabilities: 

𝑝 𝑣 =  
𝑒−𝐸(𝑣,ℎ)

 𝑒−𝐸(𝑣,ℎ)ℎ

 

 

Due to the nature of RBM, the probabilities of 
visible and hidden units are independent of 
each other. 



Calculating conditional probabilities 

Bi -> bias of the visible layer. 
Ci -> bias of the hidden layer. 
Wij -> Weight from visible to hidden layer. 
Wji -> Weight from hidden to visible layer. 



Contrastive Divergence 

• RBM uses this technique to adjust weights 
during training. 

• Calculates the partial derivatives of log 
likelihood of probability equation with respect 
to weight and biases. 



Calculating partial derivatives 



Intel Xeon Phi 

• Upto 60 cores. 

• 1.053 GHz per core. 

• Cores connected by a ring bus. 

• 8 GB GDDR5 memory. 

• Each core supports 512-bit wide SIMD 
instructions. 

• All tools and programs used on Intel x86 
processors can be used with little change. 

 



Hardware interconnect 



Advantages of Xeon Phi 

• Ability to login and run ‘native applications’ 
without intervention from host CPU. Very 
different from GPU! 

• Run x86 code on the co-processor without 
major modifications. 

 



Elaboration of solution 



Key considerations for design 

• Memory transfers between Host and Phi are 
relatively slow. Thus, we load training data 
into Phi memory in large chunks. 

• Use threads to load data into the Phi so that 
our algorithm does not need to wait for data 
loading. 



Data loading overview 





Parallelize RBM 



Parallelization steps (1) 

1. Since size of model is small, keep all 
parameters including W, b and c in the Phi 
global memory. 

2. Vectorize the sampling and update step of 
RBM training using 512-bit wide VPU. 



Vectorizing equations 

Vectorizing sampling step: 

 

 

 

Vectorizing the update step: 

 

 



Parallelization steps (2) 

3. Parallelize matrix operations using Intel MKL. 

4. Parallelize matrix operations based on sequence of 
execution. 

 



Parallelize  
Sparse Auto-encoder 



Parallelization steps 

1. Limited scope in parallelization due to 
complexity of back propagation algorithm. 

2. Use matrix multiplications tackled by Intel 
MKL packages. 

3. Parallelize loops with OpenMP. 



Performance Evaluation 



Evaluation criteria 

• Comparison of Intel Xeon Phi vs. Intel Xeon 
CPU core. 

• Comparison done in three aspects of network 
size, dataset size and batch size. 

• Dataset consists of a range of handwritten and 
nature images. Training samples extracted by 
randomly taking patches from images. 



Impact of Network Size 



Impact of dataset size 



Impact of batch size 



Successive performance optimizations 



Conclusion 

• Xeon Phi provides almost 300-fold increase in 
computation speed compared to sequential 
algorithm. 

• Due to the general-purpose programming 
model for Xeon Phi, programmers can quickly 
transplant their original program on host 
machine to the Intel Xeon Phi platform 



THANK YOU! 


