
Sameer Deshmukh

17M38101

deshmukh.s.aa@m.titech.ac.jp

Training Large Scale

Deep Neural Networks

on the Intel Xeon Phi
Many-core Coprocessor

Lei Jin, Zhaokang Wang, Rong Gu,

Chunfeng Yuan and Yihua Huang

(2014)

Talk Structure

• Key takeaways.

• Prerequisites.

• Elaboration of solution.

• Experiments for verifying result.

• Conclusion.

Key Takeaways

• Learn algorithms for fast unsupervised pre-
training of Neural Networks using RBMs and
Spare Auto-encoder on the Intel Xeon Phi.

• Understand the architecture of the Intel Xeon Phi
co-processor and its advantages and
disadvantages compared to GPUs.

• See benchmarks between a traditional sequential
training algorithm vs. parallel algorithm on the
Xeon Phi co-processor.

Use of the Intel Xeon Phi for
training neural networks.

Prerequisites

Unsupervised pre-training

• When neural networks get deeper, they face
the vanishing gradient problem.

• Basically when training a NN using back
propagation, you might get zero or really high
gradients sometimes.

• An additional unsupervised pre-training step
before the actual training solves this problem.

Unsupervised pre-training

• It finds patterns in the data by reconstructing
the input.

• This is done with unlabeled data and forces
the NN to decide which of the features are
most important, eventually acting as a feature
extraction engine.

• Sparse Auto Encoder and Restricted Boltzmann
Machine are two main ways of achieving this.

Sparse Auto-encoder

A sparse auto-encoder is an
unsupervised learning algorithm that
applies back propagation, setting the

target values to be equal to the inputs.

Input
Layer

Hidden
Layer

Output
Layer

Top level structure

Forward propagation

Takes input through input layer x and
maps it to the hidden layer y with the function:

W1 is the weight, b1 is the bias of the layer and s
is an activation function like sigmoid that brings
y in the domain of [0,1].

Forward propagation

Takes input through hidden layer y and
maps it to the output layer z with the function:

W2 is the weight, b2 is the bias of the layer and s
is an activation function like sigmoid that brings
z in the domain of [0,1].

Loss function

The square error function is usually used as the
loss function:

Cost function

We make use of the following cost function to
train our neural network:

The goal of the algorithm is to

minimize this function.

Cost function

m signifies the number of IID samples that will
be used to train this neural network from a set

of samples {x1, x2 … xm}.

Cost function

λ is the weight decay parameter that controls
the relative importance of the two terms.

It tends to decrease the magnitude of the
weights, and thereby prevent over-fitting.

The auto-encoder tries to
approximate the identity function

such that z = fW,b(x).

Sparse auto-encoder

The identity function seems like

a trivial function to learn.

But, by limiting the number of

hidden units, we can discover

interesting correlations in the data.

Sparsity parameter ρ

It is observed that structures in the data are
better observed if the number of hidden
neurons that fire is limited.

The parameter ρ determines how many neurons
will fire. All hidden neurons firing does not lead
to the best results.

Final cost equation

ρi -> average activation of the hidden node i
given the training set.
h -> number of hidden nodes.
𝛽 -> Additional learning rate parameter.

Stacked Auto-encoder

Restricted Boltzmann Machine

Top level structure

RBM Overview

• Used for building Deep Belief Networks (DBM).

• Two-layer fully-connected network.

• Works based on ‘Energy’ equation of neurons
back propagation using Contrastive Divergence.

• Trains the NN for each layer; layer by layer.

• Uses unlabeled data.

Training stage

• Consist of ‘forward pass’ and ‘backward pass’.

• Works like a 2 way translator.

• Input -> encoding translation in the forward
pass.

• Encoding -> input translation in the backward
pass.

Feature detection

• The input vector corresponds to the visible
units because they are observed.

• Feature vector corresponds to the hidden
layer.

• Weights are converted into most important
features due to weight adjustment.

Energy function

• RBM is an Energy Based Model (EBM) – It
defines the probability via an energy function.

• The actual probability of firing is controlled by
the weights between the neurons and their
individual biases.

• An energy function assigns probabilities to
different configurations of a system.

Energy function

• The energy function for a joint distribution of
(v,h) can be defined as follows:

• The probability of firing in RBM is inversely
proportional to the energy:

𝑝 𝑣, ℎ ∝
1

𝑒𝐸(𝑣,ℎ)

Probability from energy equation

The probability of visible vector v, is given by
summing over all the probabilities:

𝑝 𝑣 =
𝑒−𝐸(𝑣,ℎ)

 𝑒−𝐸(𝑣,ℎ)ℎ

Due to the nature of RBM, the probabilities of
visible and hidden units are independent of
each other.

Calculating conditional probabilities

Bi -> bias of the visible layer.
Ci -> bias of the hidden layer.
Wij -> Weight from visible to hidden layer.
Wji -> Weight from hidden to visible layer.

Contrastive Divergence

• RBM uses this technique to adjust weights
during training.

• Calculates the partial derivatives of log
likelihood of probability equation with respect
to weight and biases.

Calculating partial derivatives

Intel Xeon Phi

• Upto 60 cores.

• 1.053 GHz per core.

• Cores connected by a ring bus.

• 8 GB GDDR5 memory.

• Each core supports 512-bit wide SIMD
instructions.

• All tools and programs used on Intel x86
processors can be used with little change.

Hardware interconnect

Advantages of Xeon Phi

• Ability to login and run ‘native applications’
without intervention from host CPU. Very
different from GPU!

• Run x86 code on the co-processor without
major modifications.

Elaboration of solution

Key considerations for design

• Memory transfers between Host and Phi are
relatively slow. Thus, we load training data
into Phi memory in large chunks.

• Use threads to load data into the Phi so that
our algorithm does not need to wait for data
loading.

Data loading overview

Parallelize RBM

Parallelization steps (1)

1. Since size of model is small, keep all
parameters including W, b and c in the Phi
global memory.

2. Vectorize the sampling and update step of
RBM training using 512-bit wide VPU.

Vectorizing equations

Vectorizing sampling step:

Vectorizing the update step:

Parallelization steps (2)

3. Parallelize matrix operations using Intel MKL.

4. Parallelize matrix operations based on sequence of
execution.

Parallelize
Sparse Auto-encoder

Parallelization steps

1. Limited scope in parallelization due to
complexity of back propagation algorithm.

2. Use matrix multiplications tackled by Intel
MKL packages.

3. Parallelize loops with OpenMP.

Performance Evaluation

Evaluation criteria

• Comparison of Intel Xeon Phi vs. Intel Xeon
CPU core.

• Comparison done in three aspects of network
size, dataset size and batch size.

• Dataset consists of a range of handwritten and
nature images. Training samples extracted by
randomly taking patches from images.

Impact of Network Size

Impact of dataset size

Impact of batch size

Successive performance optimizations

Conclusion

• Xeon Phi provides almost 300-fold increase in
computation speed compared to sequential
algorithm.

• Due to the general-purpose programming
model for Xeon Phi, programmers can quickly
transplant their original program on host
machine to the Intel Xeon Phi platform

THANK YOU!

