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Checkpointing/Restart

De-facto fault tolerant mechanism for parallel
applications

Periodic checkpoints to store a snapshot of application to
a stable storage

Parallel File Systems (PFS) serves as the storage of
checkpoint images

- mitigates 1/O wall problem

Resumes the application from last checkpoint in case of
failures

Saves work loss



Checkpointing in large-scale systems

Concurrent 1/O requests to PFS in a burst
Data access contention

- excess data access

/O contention

- no. of compute nodes > no. of /O servers
More processes, Higher Contention

Limits scalability



Checkpointing in large scale systems

Impact of I/O Contention:

A cluster of 32 compute nodes, 4 I/O server nodes,
PVFS2, Open MPI, synthetic parallel application,
16 GB checkpoint size

Aggregated Bandwldth (MB/s)
- - N

igure 1. Aggregated Bandwidth under Contentions

Average bandwidth was halved when the number of
processes were increased from 16 to 256



Checkpointing in large scale systems

I/O contention as the dominant performance factor
Checkpointing scalability
- limits scalability of applications

Challenge: optimization of checkpointing under existing
hardware and software stack to maintain its feasibility at
post-Petascale.

Proposed Solution: Checkpointing Orchestration



Checkpointing Orchestration

« QObjective is to reduce contention caused by burst of
checkpoint requests

« Two-fold orchestration
1. Vertical checkpointing
- rearranges the data layout of checkpoint files on PFS
- reduces data access contention
2. Staged checkpointing marshaling
- serializes the concurrent checkpoint on each compute
node
- reduces |/O contention



Traditional Checkpointing

« Type

- Coordinated, Uncoordinated
 Level

- Application-level, system-level
« Pattern

- N-N, N-1



Traditional Checkpointing

Data striped over multiple 1/O servers
- facilitates fast processing time
of single checkpoint
PFS client on each compute node
- captures /O requests to/from
I/O server
A burst of write requests by data
intensive application
Services requests in round-robin
fashion
Overhead
- context switch
- contention causes physical disk
head movement
Processing time of one single
checkpoint represents overall
performance
- need to reevaluate role of stripping
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Figure 2. Traditional Checkpointing
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Orchestration Design
Vertical Checkpointing
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Figure 3. Vertical Checkpointing

Disables stripping
One dedicated I/O server for each checkpoint
- reduces contention
Mapping File
- hashes PFS clients to PFS servers
Works well for well optimized MPI applications
- each /O server with same no. of
compute nodes & associated checkpoints
Irregular workload
- need to work on mapping file
Reduces no. of checkpoint requests served by
each /O server
Lessens cost of coordination among 1/O
servers
Problem: 1/O interleaving of checkpointing
requests



Orchestration Design
Staged Checkpointing Marshaling

Compute Node 1 Compute Node 2

Serializes checkpoints on each -
compute node . . o .
Staging phase & hoa
- stages checkpoint to local memory Q%J\ 5
- mitigates the impact of small VFS I
writes :

- operates in memory and thus faster
Flushing phase
- flushes checkpoint from local
memory to PFS server
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- mutex to govern multiple
checkpoint requests in a stream
- reduces contention

Figure 4. Staged Checkpointing Marshaling



Orchestration Design
Staged Checkpointing Marshaling

« StageMutex limits one checkpoint

, process for staging at one time
Wait(StageMutex)  PFSMutex marshals the concurrent
Stage Checkpoint onto local memory checkpoints in a serialized manner
. * Interleaved mutexes
Wait(PFSMutex) - avoids excessive memory usage
Signal (StageMutex) » Different compute nodes processes
competes concurrently for shared
Flush checkpoint to PFS server /O server
. * Marshalling checkpoint from all
Signal(PFSMutex) compute nodes that share one 1/0

server slows down the performance
- the lag of current checkpoint
delays all other checkpoints

Algorithm 1. Pseudo Code for Staged Marshaling



Implementation

« Vertical checkpointing implementation
- PVFS2
- directory attributes reset to enforce single 1/0 server access
- each checkpoint processes the mapping file and piggybacks
hashed I/O server information in the hint field of PFS client
- services both regular I/O request and checkpoint I/O request
« Staged checkpointing marshaling
- Open MPI
- fentl system call for mutex locks
- ram-based file as the mutex lock file
- lock file is shared by a limited no. of processes inside one
compute node



Performance Evaluation

Test Environment

A cluster of 32 Sun Fire Linux-based compute nodes
Dual 2.7 GHz Opteron quad-core processors

8 GB memory, 250 GB SATA hard drive

1 Gigabit NIC, fat tree topology

Open MPI v1.4 as the MPI

NAS Parallel Benchmark (NPB) as parallel application
PVFS2 ( 4 1/O server nodes)

64 KB stripe size

Each I/O server is also a metadata server



Performance Evaluation

Performance with Different Benchmarks

Problem Size

Class=C

Class=D

Benchmarks/# of Procs 256 32/36 64 128/196 256
LU 2.5GB 12GB 12GB 14GB 16GB
CG 2.1GB 20GB | 20GB 21GB 22GB
BT 42GB 26GB | 28GB 31GB 32GB
SP 3.7GB 22GB | 24GB 27GB 28GB
FT 9.3GB N/A 81GB 81GB 82GB

Table I: Benchmarks and the Overall Image Size (GB)

e 157.41 -> 105.99 seconds

for LU

- speedup close to 30%

» Checkpointing orchestration
saved 254 seconds for
benchmark FT

Performance with Different Benchmarks
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Performance Evaluation

Task Scaling Performance
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Figure 6. Task Scaling Performance (class=D)

« Both traditional & vertical checkpointing
exhibit bandwidth degradation

» Orchestration shows relatively stable
bandwidth for CG & FT

e Traditional : 50% bandwidth reduction
 QOrchestration : less than 25%

Overhead increases was less than 15%

for LU and CG when the no. of
processes are doubled

Gap b/w traditional & orchestration is
enlarged as the no. of processes
increase
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Figure 7. Task Scaling Bandwidth (class=D)



Performance Evaluation

Problem Size Scaling Performance

* As problem size increases
- checkpointing cost increases
- advantage of orchestration
drops
- 1/O overhead increases
- contention overhead doesn’t
Increase at the same pace
* Low performance improvement
for class D problems
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Related Work

* File system optimization for checkpointing
- Lightweight File System (LWFS), Parallel Log-Structured
File System (PLFS)
- No consideration for I/O contention
- Collective I/O, data sieving — implemented in MPI-I/O
- Most checkpointing utilities adopts POSIX API
» Checkpointing System Optimization
- Modifying coordination protocols
- aggregating the write requests
- No consideration for concurrent parallel checkpoints



Conclusion

Controlled management of both PFS and checkpointing
system

PFS — customize data distribution to reduce data access
contention

Checkpointing system — reorganize checkpointing order
to avoid I/O contention

Considers mixed workloads of the system
ORCHECK software



Future Work

Checkpointing orchestration for large-scale computing
environment

PFS on emerging storage media such as SSD

Build a coordinated framework that facilitates both
checkpointing and parallel file systems



Thoughts on Paper

Checkpointing orchestration over traditional checkpointing
- increases aggregated bandwidth

- reduces contention

- scalable to some extent

Low performance improvement as no. of processes
Increase

Problem size increases

- 1/O increases

- checkpointing cost increases

- overhead on /O server increases (verticalization)



