
Fault Tolerance

2014/11/26
14D54033 – Shweta Salaria (Matsuoka Lab)

Today’s Paper

Checkpointing Orchestration: Toward a Scalable HPC
Fault-Tolerant Environment

 Hui Jin – Illinois Institute of Technology
 Tao Ke – Illinois Institute of Technology
 Yong Chen – Texas Tech University
 Xian-He Sun – Illinois Institute of Technology

CCGrid’12

Outline
•  Checkpointing/Restart
•  Checkpointing in large scale systems
•  Checkpointing Orchestration
•  Traditional Checkpointing
•  Orchestration Design
•  Implementation
•  Performance Evaluation
•  Related Work
•  Conclusion
•  Future Work
•  Thoughts on Paper

Checkpointing/Restart

•  De-facto fault tolerant mechanism for parallel
applications

•  Periodic checkpoints to store a snapshot of application to
a stable storage

•  Parallel File Systems (PFS) serves as the storage of
checkpoint images

 - mitigates I/O wall problem
•  Resumes the application from last checkpoint in case of

failures
•  Saves work loss

Checkpointing in large-scale systems

•  Concurrent I/O requests to PFS in a burst
•  Data access contention

 - excess data access

•  I/O contention
 - no. of compute nodes > no. of I/O servers

•  More processes, Higher Contention
•  Limits scalability

Checkpointing in large scale systems

�	

Impact of I/O Contention:
A cluster of 32 compute nodes, 4 I/O server nodes,
PVFS2, Open MPI, synthetic parallel application,
16 GB checkpoint size
	

Average bandwidth was halved when the number of
processes were increased from 16 to 256

Checkpointing in large scale systems

•  I/O contention as the dominant performance factor
•  Checkpointing scalability

 - limits scalability of applications
•  Challenge: optimization of checkpointing under existing

hardware and software stack to maintain its feasibility at
post-Petascale.

•  Proposed Solution: Checkpointing Orchestration

Checkpointing Orchestration

•  Objective is to reduce contention caused by burst of
checkpoint requests

•  Two-fold orchestration
1.  Vertical checkpointing

 - rearranges the data layout of checkpoint files on PFS
 - reduces data access contention

2. Staged checkpointing marshaling
 - serializes the concurrent checkpoint on each compute

 node
 - reduces I/O contention

Traditional Checkpointing

•  Type
 - Coordinated, Uncoordinated

•  Level
 - Application-level, system-level

•  Pattern
 - N-N, N-1

Traditional Checkpointing
•  Data striped over multiple I/O servers

 - facilitates fast processing time
 of single checkpoint
•  PFS client on each compute node

 - captures I/O requests to/from
 I/O server
•  A burst of write requests by data

intensive application
•  Services requests in round-robin

fashion
•  Overhead

 - context switch
 - contention causes physical disk

 head movement
•  Processing time of one single

checkpoint represents overall
performance
 - need to reevaluate role of stripping

	

Orchestration Design
Vertical Checkpointing

•  Disables stripping
•  One dedicated I/O server for each checkpoint

 - reduces contention
•  Mapping File

 - hashes PFS clients to PFS servers
•  Works well for well optimized MPI applications

 - each I/O server with same no. of
 compute nodes & associated checkpoints
•  Irregular workload

 - need to work on mapping file
•  Reduces no. of checkpoint requests served by

each I/O server
•  Lessens cost of coordination among I/O

servers
•  Problem: I/O interleaving of checkpointing

requests

Orchestration Design
Staged Checkpointing Marshaling	

•  Serializes checkpoints on each
compute node

•  Staging phase
 - stages checkpoint to local memory
 - mitigates the impact of small VFS

 writes
 - operates in memory and thus faster

•  Flushing phase
 - flushes checkpoint from local

 memory to PFS server
 - mutex to govern multiple

 checkpoint requests in a stream
 - reduces contention

	
 	

Orchestration Design
Staged Checkpointing Marshaling	

•  StageMutex limits one checkpoint
process for staging at one time

•  PFSMutex marshals the concurrent
checkpoints in a serialized manner

•  Interleaved mutexes
 - avoids excessive memory usage

•  Different compute nodes processes
competes concurrently for shared

 I/O server
•  Marshalling checkpoint from all

compute nodes that share one I/O
server slows down the performance
 - the lag of current checkpoint

 delays all other checkpoints

	

	

	

	

	

Implementation
•  Vertical checkpointing implementation

 - PVFS2
 - directory attributes reset to enforce single I/O server access
 - each checkpoint processes the mapping file and piggybacks

 hashed I/O server information in the hint field of PFS client
 - services both regular I/O request and checkpoint I/O request

•  Staged checkpointing marshaling
 - Open MPI
 - fcntl system call for mutex locks
 - ram-based file as the mutex lock file
 - lock file is shared by a limited no. of processes inside one

 compute node

Performance Evaluation
Test Environment
•  A cluster of 32 Sun Fire Linux-based compute nodes
•  Dual 2.7 GHz Opteron quad-core processors
•  8 GB memory, 250 GB SATA hard drive
•  1 Gigabit NIC, fat tree topology
•  Open MPI v1.4 as the MPI
•  NAS Parallel Benchmark (NPB) as parallel application
•  PVFS2 (4 I/O server nodes)
•  64 KB stripe size
•  Each I/O server is also a metadata server

Performance Evaluation
Performance with Different Benchmarks

•  Checkpointing orchestration
saved 254 seconds for
benchmark FT

	

•  157.41 -> 105.99 seconds
for LU
 - speedup close to 30%

	

	

Performance Evaluation
Task Scaling Performance

•  Overhead increases was less than 15%
for LU and CG when the no. of
processes are doubled

•  Gap b/w traditional & orchestration is
enlarged as the no. of processes
increase

•  Both traditional & vertical checkpointing
exhibit bandwidth degradation

•  Orchestration shows relatively stable
bandwidth for CG & FT

•  Traditional : 50% bandwidth reduction
•  Orchestration : less than 25%

Performance Evaluation
Problem Size Scaling Performance

•  As problem size increases
 - checkpointing cost increases
 - advantage of orchestration

 drops
 - I/O overhead increases
 - contention overhead doesn’t

 increase at the same pace
•  Low performance improvement

for class D problems

Related Work
•  File system optimization for checkpointing

 - Lightweight File System (LWFS), Parallel Log-Structured
 File System (PLFS)

 - No consideration for I/O contention
 - Collective I/O, data sieving – implemented in MPI-I/O
 - Most checkpointing utilities adopts POSIX API

•  Checkpointing System Optimization
 - Modifying coordination protocols
 - aggregating the write requests
 - No consideration for concurrent parallel checkpoints

Conclusion
•  Controlled management of both PFS and checkpointing

system
•  PFS – customize data distribution to reduce data access

contention
•  Checkpointing system – reorganize checkpointing order

to avoid I/O contention
•  Considers mixed workloads of the system
•  ORCHECK software

Future Work
•  Checkpointing orchestration for large-scale computing

environment
•  PFS on emerging storage media such as SSD
•  Build a coordinated framework that facilitates both

checkpointing and parallel file systems

Thoughts	
 on	
 Paper	

•  Checkpointing orchestration over traditional checkpointing

 - increases aggregated bandwidth
 - reduces contention
 - scalable to some extent

•  Low performance improvement as no. of processes
increase

•  Problem size increases
 - I/O increases
 - checkpointing cost increases
 - overhead on I/O server increases (verticalization)

