
Exploiting	iterative-ness	
for	parallel	ML	computations

Kazuki Osawa :	16M30444
High	Performance	Computing	8th lecture

25	Oct.	2016



Selected	paper

• SoCC’14	3-5	Nov.	2014,	Seattle,	Washington,	USA.
• ACM	978-1-4503-3252-1.

http://dl.acm.org/citation.cfm?doid=2670979.2670984

1



The	contributions	of	this	paper

1. Identify iterative-ness	in	ML	applications

2. Specializations	for	exploiting	iterative-ness	

3. Concept	of	“virtual	iteration”

2



Abstract

3



Machine	learning	applications

• Optimization	problem	
• Find	the	“optimal”	parameter	values
• The	chosen	model	match	the	input	data	

• Many	ML	applications	use	iterative	algorithms
• Same	pattern	of	access	to	parameters
• Can	and	should	be	exploited

4



Parameter	server	approach

• Share	model	parameters	among	worker	threads
• Exploiting	the	repeating	pattern

• Reduce dynamic cache	and	server	structures
• Use	static pre-serialized	structures
• Inform	prefetch and	partitioning decisions
• Data	placement	avoiding	contention	and	slow	accesses

5



Experiments

• 3	target	ML	applications
• Collaborative	Filtering	(CF)
• Topic	Model	(TM)
• PageRank	(PR)

• Exploitation	reduce	per-iteration	time	by	33-98%
• Robust	to	variation	in	the	patterns

6



Outline

1. Introduction
2. Iterative	ML	and	systems
3. Exploiting	iterative-ness	for	performance
4. Implementation
5. Evaluation
6. Conclusion

7



Outline

1. Introduction
2. Iterative	ML	and	systems
3. Exploiting	iterative-ness	for	performance
4. Implementation
5. Evaluation
6. Conclusion

8



ML	approaches

• Determine	model	parameter	best	fit	input	data
• Algorithm	iterates	over	the	input	data
• Refine	current	best	estimate	of	parameter	values

9



Parallelizing	ML	computations

• Partition	input	data	among	worker	threads
• Worker	threads	across	cores	and	machines
• Share	only	parameter	values
• Maintain	distributed	values	by	parameter	server
• Synchronize	each	iteration	with	a	barrier
• BSP	(:	Bulk	Synchronous	Parallel)	style

10



Bulk	Synchronous	Parallel	Model

• A	number	of	components
• A	router	deliver	messages	between	2	components
• Facilities	for	synchronizing	components

11



Knowable	repeating	patterns

• Each	thread	processes
• Its	portion	of	the	input	data
• In	the	same	order	in	each	iteration	

• Same	subset	of	parameters	are	read	&	updated
• Each	iteration	involves	the	same	pattern

12



Exploiting	patterns

• Within	a	machine
• State	can	be	placed	in	memory	NUMA	zone
• Closest	to	the	core	on	which	it	runs
• Reduce	lock	contention
• Synchronize	only	when	required

• Cross-machine	overheads
• Partitioning
• Prefetching

• Static	structure	for	servers’	and	workers’	state

13



Outline

1. Introduction
2. Iterative	ML	and	systems
3. Exploiting	iterative-ness	for	performance
4. Implementation
5. Evaluation
6. Conclusion

14



Iterative	fitting	of	model	parameters

• Major	subset	of	ML	approaches
• Process	a	set	of	input	data
• Identify	mathematical	model	that	fits	data
• Minimize	an	objective	function	that	describes	error

15



Parallel	computation	model

• “Big	Data”	required	for	detail	model
• Partition	input	data	among	the	worker	thread
• iterative	ML	based	on	BSP

16



Parameter	server	architecture

• All	state	shared	among	worker	threads
• Kept	in	key-value	store
• Worker	threads	process	assigned	input	data

• READ
• UPDATE
• CLOCK

17



Example	applications

• Collaborative	Filtering
• Used	in	recommender	systems
• Discover	latent	interactions	between	two	entities

• Topic	Model
• Unsupervised	method	
• Discovering	hidden	semantic	structures	

• PageRank
• Assign	weighted	score	to	every	vertex	in	a	graph
• Score	measures	its	importance	in	the	graph

18



Outline

1. Introduction
2. Iterative	ML	and	systems
3. Exploiting	iterative-ness	for	performance
4. Implementation
5. Evaluation
6. Conclusion

19



Obtaining	per-iteration	access	sequence

• Two	options	
• Explicit	reporting	of	the	sequence
• Explicit	reporting	of	the	iteration	boundaries

• Report	access	sequence	once
• Report	at	beginning		

20



Virtual	iteration

• Each	application	thread	reports	operations	for	an	
iteration	(READ,	UPDATE,	CLOCK)
• No	real	values	are	involved

• Very	fast
• Require	not	so	much	coding	effort
⇒Virtual	iteration

• Require	too	much	coding	effort
⇒Explicit	identification	of	iteration	boundary

21



Identification	of	iteration	boundaries

• Identify	the	start	&	end	of	an	iteration
• Remove	the	need	for	pattern	recognition
• Allow	the	parameter	server	to	transition	to	more	
efficient	operation	after	1st iteration
• Involve	some	overheads

• Initialization	&	1st iteration	are	not	iterative-ness	
specialized

22



Exploiting	access	information

• Data	placement	across	machines
• Data	placement	inside	a	machine
• Static	per-thread	caches
• Efficient	data	structures
• Prefetching

23



Data	placement	across	machines

• If	parameters	are	co-located	with	computation	that	
use	them
• Communication	demands		&	latency	can	be	reduced

• Accessing	of	each	input	data
• Involve	only	a	subset	of	the	parameters

• Accessing	of	parameters	by	different	workers
• With	different	frequencies

24



Data	placement	inside	a	machine

• Modern	multi-core	machines
• Multiple	sockets
• Multiple	memory	NUMA	zones

• Memory	access	speed	depending	on	“distance”
• Knowledge	of	access	sequences

• Co-locate	worker	threads	&	data	
• They	access	frequently	to	the	same	NUMA	memory	
zone	

25



Static	per-thread	caches

• Per-worker-thread	caching
• Contention	between	worker	threads
• Access	to	remote	NUMA	memory	zone

• Employing	a	static	cache	policy
• The	best	set	of	entries	to	be	cached
• Never	evicts	them

26



Efficient	data	structures

• Knowledge	of	access	pattern
• Knowledge	of	full	set	of	entries

• More	efficient,	less	general	data	structure
• Reducing	marshaling	overhead	by	eliminating	the	
need	to	extract	and	marshal	each	value	one-by-one	

27



Prefetching

• Each	worker	thread	must	use	updated	value	after	
each	CLOCK	(BSP)
• Prefetching	can	help	mask	the	high	latency
• Knowing	access	pattern	maximize	the	potential	
value	of	prefetching
• Constructing	large	batch	prefetch requests	once	
and	using	them	each	iteration	is	more	efficient

28



Outline

1. Introduction
2. Iterative	ML	and	systems
3. Exploiting	iterative-ness	for	performance
4. Implementation
5. Evaluation
6. Conclusion

29



System	architecture

• IterStore:	distributed	parameter	server
• Follows	the	BSP	model
• keeper	threads:	manage	the	data	in	master	store
• pusher	threads:	move	data	from	process	cache	to	
master	stores

• puller	threads:	move	data	from	master	to	process	cache

30



Outline

1. Introduction
2. Iterative	ML	and	systems
3. Exploiting	iterative-ness	for	performance
4. Implementation
5. Evaluation
6. Conclusion

31



Experimental	setup

• Hardware	Information
• 8-node	cluster	of	64-core	machines
• Each	node	has	four	2-die	2.1	GHz	16	core	AMD	Opteron	
6272	packages,	with	a	total	of	128GB	of	RAM	and	eight	
memory	NUMA	zones	

• The	nodes	run	Ubuntu	12.04	and	are	connected	via	an	
Infiniband network	interface

32



Application	benchmarks

• CF	
• Netflix	dataset
• 480k-by-18k	sparse	matrix	with	100m	known	elements

• TM
• Nytimes dataset
• 100m	tokens	in	300k	documents
• Vocabulary	size	of	100k
• Generate	1000	topics

• PR
• Twitter-graph	dataset
• 40m	nodes	and	1.5b	edges

33



IterStore seup

• One	application	process	on	each	machine
• Each	machine	creates	64	computation	threads
• Each	machine	is	linked	to	one	instance	of	IterStore
library	with	32	partitions
• Assume	each	machine	has	enough	memory	to	not	
need	replacement	in	its	process	cache

34



Overall	performance

35



Optimization	effectiveness	break	down

36



Contention	and	locality-aware	caching

37



Pipelined	prefetching

38



Inaccurate	information

39



Comparison	w/	single	thread	baselines

40



Outline

1. Introduction
2. Iterative	ML	and	systems
3. Exploiting	iterative-ness	for	performance
4. Implementation
5. Evaluation
6. Conclusion

41



Conclusion

• Many	ML	applications	make	the	same	pattern	of	
read	and	update	accesses	each	iteration.
• The	pattern	can	be	exploited	in	parallel	ML	
computations.
• Parameter	server	can	specialize

• Data	structures
• Data	placement
• Caching
• Prefetching	policies

• Experiments	show	the	exploitation	of	iterative-ness	
reduce	per-iteration	execution	times	by	33-98%

42


