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1: Introduction

Recently, GPUs have evolved from a graphics-specific acceler-
ator to a general-purpose computing device.

Scientists have begun to take advantage of the unprecedented
amount of parallelism available in GPUs.

Sientific applications typically employ a checkpoint/restart mec-
hanism, but the efficiency of these mechanisms depends on 
the “resilience” characteristics of system.

Unfortunately, their resilience characteristics in a large-scale 
computing system have not been well studied. 
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2: Background

2.1 GPU Architecture and Resilience Support

SM (Streaming Multiprocessor)

・The thread block scheduler dispatches
one or more blocks of threads to an idle
SM.

・Each SM has multiple CUDA cores.

・All SMs have access to the shared L2
cache and the device memory.

・The Shared memory and L1 cache reg-
ions are a dedicated resource for each 
SM.

・Each SM has a dedicated register file.
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2: Background

2.1 GPU Architecture and Resilience Support

CUDA (Compute Unified Device 
Airchitecture)

・The warp scheduler selects a warp(a 
group of threads) to be executed next
on the CUDA cores.
(Then the instruction dispatch unit dis-
patches instructions.)

・Each CUDA core executes only one 
thread at a time.

・Each CUDA core has access to the sh-
ared memory and the L1 cache region.
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2: Background

2.1 GPU Architecture and Resilience Support

The storage structures

・ex) device memory, L2 cache, inst. ca-
che, register files, shared memory and
L1 cache region

・are protected with (SECDED) ECC.

The scheduler structures

・ex) thread block scheduler, warp sche-
duler, inst. dispatch unit and interconn-
ect network

・are protected with ECC much lower…

SECDED: Single Error Correct and Double Error Detect

ECC: Error Check and Correct
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2: Background

2.1 GPU Architecture and Resilience Support

The scheduler structures may not be correctly logged by system.

Therefore, in addition to the field data, authors decided to do neutron 
beam tests, which could find the effect of corruptions in these areas.
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2: Background

2.2 GPU Errors and Their Impact

On Table 1, there are the XIDs and
impacts of respective GPU errors.

XID: the number of the list on“http:/
/docs.nvidia.com/deploy/xid-errors/
index.html”(References[3])
There are the potential causes of
the GPU error which has XID.

→The potential cause of the GPU
error which doesn’t have XID has
been not revealed.
(Single Bit Error and Off the bus)
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3: Methodology
3.1 Data Sources and Data Collection Methodology

The authors analyzed the data that were collected from console log.

・The console log has a record for each GPU related event.
(the node location, time-stamp and description of the event)

・Single bit errors are not logged to the console log.

nvdia-smi utility on all the GPU nodes

・Reporting the single and double errors and ECC page retirement related errors

・Providing the information of a particular event

※The authors collected GPU error logs from the Titan Supercomputer
and  the Moonlight GPGPU cluster.
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3: Methodology

3.2 Neutron Beam Test

What used: the neutron flux

→Does it bring about some failures?

No, the probability of more than one neutron generating a failure in a
single code execution remains practically negligible. 
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4: Understanding and Quantifying GPU…

4.1 Temporal characteristics of GPU failures

From Fig.4, the frequency of GPU 
related failure events occurred once
in 2 days on an average.

This is a significant result(fairly low)
in the context of such a large-scale
system where more than 2 failures
per day are occurred on an average

→It is estimated using vendor-
specified MTBF for the GPU card.

Figure 4: Monthly frequency of different types of GPU failures

For the Titan supercomputer

MTBF: Mean Time Between Failures
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4: Understanding and Quantifying GPU…

4.1 Temporal characteristics of GPU failures

Off the bus failures were dominant
only before GPU production run
(December 2013).

A system integration issue with 
GPU cards was identified and
resolved by soldering the cards
before the system went into 
production with GPUs.
(We can customize GPU cards 
before GPU production run.)

Figure 4: Monthly frequency of different types of GPU failures

For the Titan supercomputer
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4: Understanding and Quantifying GPU…

4.1 Temporal characteristics of GPU failures

The mean time to application interruption in the production is more than
40 hours, significantly higher than the estimated MTBF of the whole 
system (11.7 hours).
(using the vendor-specified MTBF for the GPU card)

→Only a small fraction of “bad” GPU cards encounter most of the errors 
repeatedly, and hence, are enough to bring down the MTBF of the whole 
system significantly.

So, authors can identify such “bad” cards early and consequently, 
increase the mean time to application interruption significantly.
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4: Understanding and Quantifying GPU…

4.1 Temporal characteristics of GPU failures

From fig.5, a significant fraction of the failures occur much before the observed 
MTBF. These results indicate that there exists a strong “temporal locality” 
between GPU failures.
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4: Understanding and Quantifying GPU…

4.2 Distinct number of cards affected by different failures

How many GPU cards are affected
by different GPU failure types.

Authors chose nearly 150 out of 
more than 18000 cards.

Fig.9 shows that the ECC page re-
tirement and DBE errors affect ne-
arly half the numbers of GPU cards

Moreover, Fig.9 also shows that
there are a few cards which exper-
ience DBEs multiple times.

(Continuing…)
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4: Understanding and Quantifying GPU…

4.2 Distinct number of cards affected by different failures

(Continuation of pre-page)

In fact, 6 GPU cards are responsi-
ble for 25% of all DBEs.

Regarding ECC page retirement,
one particular card is responsible
for more than 10% of the ones. 

→Certain GPU cards may experien-
ce DBEs and ECC page retirement
errors multiple times, motivating to
identify such cards early.
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4: Understanding and Quantifying GPU…

4.3 Temperature sensitivity of GPU failures

Authors investigate if GPU failures have sensitivity towards temperature. 
The results are as follows on Fig.10.

There are 3 cages, including the same GPU cards.
(Cage1: 27℃ Cage2: 30.5℃ Cage3: 34℃)
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4: Understanding and Quantifying GPU…

4.3 Temperature sensitivity of GPU failures

The results

・DBEs and Off the Bus may be sensitive to temperature as well.

・ECC page retirement errors are not sensitive to temperature.  
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4: Understanding and Quantifying GPU…

4.3 Temperature sensitivity of GPU failures

However, some cards themselves may be more prone to these errors 
and variance in the temperature data may further complicate the problem.

Though our field data suggests that some GPU failures may exhibit sen-
sitivity toward temperature, there is a need for more experimental eviden-
ce to establish the correlation between GPU errors and temperature with 
higher confidence…
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4: Understanding and Quantifying GPU…

4.4 Analysis of GPU Single Bit Errors (SBE)

※offender = GPU card

From Fig.12, overall the L2 ca-
che region is major contributer
in SBE events(showing 98%), 
and the top 10 offenders also 
show the same behavior (99%
of the SBE events occurred in
the L2 cache)

However, once eliminating the top 10 offenders, the device memory is the 
structure where most of the SBEs occur (94% of all SBEs).
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4: Understanding and Quantifying GPU…

4.4 Analysis of GPU Single Bit Errors (SBE)

GPU cards which experience most of the SBEs are likely to have all the 
SBEs occur in the device memory instead of the L2 cache. 

This finding can be used to identify the top offenders early on. 

Our results may also be useful for future architects in terms of which 
structures need better protection (device memory and L2 cache) and 
which structures may not need additional costly protection schemes (L1 
cache, register file and texture memory).
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4: Understanding and Quantifying GPU…

The summary of Section 4

4.1 Temporal characteristics of GPU failures

・ “bad” GPU cards encounter most of the errors repeatedly.

→We can identify such bad cards. And…

・The mean time to application Interruption in the production run is much higher than the 
estimated MTBF.

・ There exists a strong “temporal locality” between GPU failures.

4.2 Distinct number of cards affected by different failures

・Certain GPU cards may experience DBEs and ECC page retirement multiple times.

→We can identify such bad cards.
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4: Understanding and Quantifying GPU…

The summary of Section 4

4.3 Temperature sensitivity of GPU failures

・DBEs and Off the Bus may be sensitive to temperature as well.

・ECC page retirement errors are not sensitive to temperature.

→However, it is solely possible that certain cards are impacted by temperature.

4.4 Analysis of GPU Single Bit Errors (SBE)

・The breakdown of SBEs of both All and Top 10 offenders occur in the L2 Cache.

・The breakdown of SBEs of eliminating the top 10 offenders occur in the device memory.

→Finding that both the L2 Cache and the device memory need better protection.

24



5: Experience with Moonlight GPU Cluster

5.1 Performance Variation

Authors observed significant perfor-
mance variation on the GPUs deplo-
yed in Moonlight.(M2090 GPUs)

Fig.13 shows that 2 GPUs on the 
same node exhibit significant perfor-
mace variation.

This behavior is particularly proble-
matic for HPC workloads which hea-
vily rely on global synchronization.
Because of the global synchronizati-
on, the overall system performance is determined by the slowest GPU.

→increase in application run time

25



5: Experience with Moonlight GPU Cluster

5.1 Performance Variation

Fortunately, this problem seems to have resolved in the recently

purchased GPUs (K20, kepler architecture). Authors results show less 

than ±0.02% of performance variation.
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5: Experience with Moonlight GPU Cluster

5.2 Inconsistency in Error Logging

Performance variations across GPU cards seem to be fixed on newer 

generation of GPU cards – making GPUs more amenable to HPC work-

loads.

However, inconsistency in error logging (syslog and nvidia-smi output) 

may not have been completely eliminated.

This is critical as system administrators often rely on error counters to 

monitor the health of the system.
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6: Radiation Experiments

6.1 Raw sensitivity of the GPU memory structures

Experimental condition

・GPUs： Kepler architecture based “K20” and Fermi architecture based “C2050”
(The K20 structures are significantly larger and newer than the C2050 structures) 

・What authors measured: the cross section of the L2 cache and the register file
(Cross section = the number of observed errors ÷ (neutrons/𝑐𝑚2))

・Stored intitial pattern: all “1”s or all “0”s

・What authors expose the device to: a controlled high-energy neutron flux  

28



6: Radiation Experiments

6.1 Raw sensitivity of the GPU memory structures

Fig.14 shows that K20 has reliab-
ility than C2050 per bit as well as
for the whole L2 cache and regist-
er area. 

Sgnificant Point

・K20 is larger → better reliability?
(Newer GPUs are ordinarily at
lower feature sizes)
→K20 including a better cell design

・Bits set to “0”s are 40% more prone to corruption than bits in the L2caches for 
both GPUs.
→This is due to the intrinsic asymmetries to the cache cell design.
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6: Radiation Experiments

6.2 Evaluating Radiation Sensitivity of HPC Benchmarks

To evaluate the impact of radiation-sensitivity on real-world HPC applic-
ations, authors chose a representative set of benchmarks.

In fact, many real-world workloads often use the algorithms implemented 
in these benchmarks as their kernel.

On this experiment, authors investigate SDC(Silent Data Corruption) and 
Crash(a program crash) of the different benchmarks, because SDC and
Crash are generated by radiation-induced errors in the GPU memory, 
logic, or scheduler resources. 
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6: Radiation Experiments

6.2 Evaluating Radiation Sensitivity of HPC Benchmarks

The difference among dgemm and MxM is of particular interest as they solve the 

same problem on the same data. (computing-bounded vs. memory bounded)

dgemm execution, being computing-bounded, requires the GPU cores to be al-
ways busy and fully loaded while MxM execution the are often waiting for data.
→ the dgemm SDC and Crash FIT are higher than the MxM ones.

FIT: Failure In Time
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6: Radiation Experiments

6.2 Evaluating Radiation Sensitivity of HPC Benchmarks

Comparing MxM and Hotspot to its 2 benchmarks with ECC support.

→ECC reduces SDC rate up to one order of magnitude.

However, a non-negligible amount of SDC may still occur due to errors in 
unprotected areas (including queues, flip-flops, logics, and schedulers).
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6: Radiation Experiments

6.2 Evaluating Radiation Sensitivity of HPC Benchmarks

Note that Crash increases in case with ECC support.

In spite of ECC support, why does Crash increase? 

(Continuing…)
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6: Radiation Experiments

6.2 Evaluating Radiation Sensitivity of HPC Benchmarks

(Continuation of pre-page)

ECC has the property “SECDED”(Single Error Correct and Double Error Detect).

DBEs(Double bit errors) are benign, but we can detect DBEs as Crash with ECC.

So, though we consider DBEs as benign errors without ECC, we consider DBEs
as Crash with ECC.
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6: Radiation Experiments

The summary of Section 6

6.1 Raw sensitivity of the GPU memory structures

・“K20” is newer and larger than “C2050”. Though K20 is larger(Ordinarily, the newer is 
small.), K20 is better than C2050.
→The reason is that K20 has nice cell design.

・The corruption of bits set to “0”s are particularly big on the cache region.
→Some memory cell designs are intrinsic asymmetric.

6.2 Evaluating Radiation Sensitivity of HPC Benchmarks

・Computing-approaches have more errors than memory-approaches.

・ECC reduces many SDC.

・ECC increases program crashes.
→With ECC, (benign) DBEs are considered as program crashes.
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7: Conclusion

The insights about GPU error characteristics can be used to improve 

operational efficiency of large-scale HPC facilities.

The failure characteristics based on raw sensitivity of the GPU memory

structures tested using neutron-beam experiments can be incorporated 

into the future failure/soft-error modeling, simulation and tool frameworks.
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Thank you for your time and attention.
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