High Performance Computing 4th Lecture

11/Oct/2016

Yuya Kobayashi

Reviewed Paper

- Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, Pritish Narayanan. Deep Learning with Limited Numerical Precision. Proceedings of the 32nd International Conference on Machine Learning (ICML-15)

Background

- Natural error resiliency of neural network (NN) [Bottou \& Bousquet, 2007].
- In the presence of statistical approximation and estimation errors, high-precision computing is not necessary for DNN.
- Large scale systems specialized for DNN do not utilize natural error resiliency, except for Asynchronous SGD.
- This paper shows a performance of NN and a prototype hardware with 16-bit fixed point number.
- Fixed point compute units are faster, consume less resources and power.
- A data is of smaller data size.

Idea of system

application

 mitigating impacts of error
hardware

low-precision fixed point arithmetic

- simpler component
- smaller memory

Limited Precision Arithmetic fixed-point number type

bit-length for integer part

bit-length for fraction part

This notation provides how long bit is assigned to integer part and fraction part in a decimal number.

Rounding Mode

$\varepsilon=2^{-\mathrm{FL}}$ (minimum value in $\langle\mathrm{FI}, \mathrm{FL}\rangle$)
$\lfloor x\rfloor=\max \{y \mid(y / \varepsilon)$ is integer, $y<=x\}$

Round ($x,\langle\mathrm{IL}, \mathrm{FL}\rangle$)

- Round-to-nearest(RtN) • Stochastic rounding

Rounding Mode

If a calculated result is outside the range of <IL, FL>, then we saturate it to upper or lower bound of <IL, FL>.

$$
\begin{align*}
& \text { Convert }(x,\langle\mathrm{IL}, \mathrm{FL}\rangle)= \\
& \qquad \begin{cases}-2^{\mathrm{IL}-1} & \text { if } x \leq-2^{\mathrm{IL}-1} \\
2^{\mathrm{IL}-1}-2^{-\mathrm{FL}} & \text { if } x \geq 2^{\mathrm{IL}-1}-2^{-\mathrm{FL}} \\
\operatorname{Round}(x,\langle\mathrm{IL}, \mathrm{FL}\rangle) & \text { otherwise }\end{cases} \tag{1}
\end{align*}
$$

Multiply and accumulate (MACC) operation

Calculating $\mathbf{c}_{0}=\mathbf{a} \cdot \mathbf{b}$ by 2 steps.
$-\mathbf{a}, \mathbf{b}:<L L, F L>$ fixed-point number d-dimension vector
$-c_{0}:\langle\tilde{\mathrm{I}}, \mathrm{I}, \mathrm{F}\rangle$ fixed-point number

1. Compute $z=\sum_{i=1}^{d} a_{i} b_{i}$
$-a_{i} b_{i}:\langle 2 \mathrm{IL}, 2 \mathrm{FL}\rangle$ fixed-point
$-z:\left\{\log _{2} \mathrm{~d}+2(\mathrm{IL}+\mathrm{FL})\right\}$ bit length fixed-point
2. Convert: $c_{0}=\operatorname{Convert}(z,\langle\tilde{\mathrm{IL}}, \tilde{\mathrm{IF}}\rangle)$

Multiply and accumulate (MACC) operation

- advantage of this 2 -steps methodology
- easy to implement with FPGA
- one rounding per one multiplying operation
- easy to simulate in CPU/GPU, BLAS library

Evaluation

Going to evaluate error of network with 16-bit fixed point arithmetic by comparing with 32-bit floating point one.

- Network
- DNN
- Convolutional Neural Network(CNN)
- Data set
- MNIST
- CIFAR10

Evaluation

- Weights and Biases in network are to be initialized randomly.
- HyperParameters (e.g. number of layer, momentum, learning rate, ...) is the same between baseline experiment and 16-bit fixed point one.
- Fixed-point number is represented in 16 bits.

error in DNN for MNIST

MNIST

－60，000 training images／10，000 test images
－ 28×28 pixels in a image
－Each pixel in the images has a value in［0，1］．

from テストの実行－MNIST 画像認識データ セットに取り組む （https：／／msdn．microsoft．com／ja－jp／magazine／dn745868．aspx）

error in DNN for MNIST

- Fully connected network
- Each weight is initialized randomly from $N(0$, 0.01). The bias vector initialized to 0.

error in DNN for MNIST

Training DNN by minibatch SGD method.

- the minibatch size is 100

error in DNN for MNIST

- Precision of fixed point in which test error is close to the one with float is <2,14> in RtN scheme, or $<8,8>$ in Stochastic rounding scheme.
- RtN lose gradient information more readily, then some weights are not updated.

error in DNN for MNIST

error in CNN for MNIST

The network is similar to LeNet-5.

- $5 * 5$ filter, $2 * 2$ non-overlapped pooling

fully connected

error in CNN for MNIST

- parameter
- learning rate $=0.1^{*}(0.95)^{(\# \text { of completed epoch) }}$
- momentum $=0.9$
- weight decay $=0.0005$
- Output from layer is represented in $<6,10>$ fixedpoint.
- If IL < 6, outputs from convolutional layers are higher than a number the fixed-point can represent.

error in CNN for MNIST

error in CNN for CIFAR10

- The CIFAR-10 dataset consists of 6000032×32 color images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.
- The image RGB values are scaled to $[0,1]$ for the evaluation.

error in CNN for CIFAR10

- 64 5*5 filters
- $3 * 3$ pooling window using a stride of 2

error in CNN for CIFAR10

- Parameter
- learning rate is 0.01 (at begin), 0.005 (after 50 epoch), 0.0025(after 75 epoch), 0.00125(after 100 epoch).
- Outputs from layers are represented in the <4,12> format.

error in CNN for CIFAR10

Hardware Prototyping

- FPGA-based hardware accelerator for matrixmatrix multiplication
- FPGA contains DSP units that are well-suit to implement fixed point arithmetic.
- FPGA has potential in performance and power efficiency.

Components of the prototype

- Xilinx Kintex325T FPGA
- 840 DSP multiply-accumulate unit
- 2 MB on-chip lock RAM
- cache of matrix data
- 8GB DDR3
- to store matrix data
- PCle Bus between the FPGA and the Host
- The data bandwidth between the off-chip DDR3 memory and the FPGA is $6.4(\mathrm{~GB} / \mathrm{s})$.

Inside of the accelerator

Figure 4. Block diagram of the FPGA-based fixed-point matrix multiplier.

calculation in the prototype

- calculating
$\mathbf{C}=\mathbf{A B}$
B
k

calculation in the prototype

move from the DDR3 to the FPGA on-chip memory

B

calculation in the prototype

move from the DDR3 to the FPGA on-chip memory

calculation in the prototype

move from the DDR3 to the FPGA on-chip memory

B

calculation in the prototype

move from the DDR3 to the FPGA on-chip memory

calculation in the prototype

move from the DDR3 to the FPGA on-chip memory

calculation in the prototype

move from the DDR3 to the FPGA on-chip memory

A

calculation in the prototype

move from the DDR3 to the FPGA on-chip memory

Systolic Array(SA) Architecture

matrix multiplication in SA

Evaluating the prototype

- 28×28 SA is implemented on the FPGA.
- The throughput is 260 G-ops/s.
- The power efficiency is $37 \mathrm{G}-\mathrm{ops} / \mathrm{s} / \mathrm{W}$.
- The range of power efficiency of NVIDIA GT650m and GTX780, the Intel i7-3720QM is $1 \sim 5$ G-ops/s/W

以降，予備スライド

