The Power of Randomization: Distributed Submodular Maximization on Massive Datasets

11/08/2016 Sekiya Akira

Selected Paper

The Power of Randomization Distributed Submodular Maximization on Massive Datasets^{*}

Rafael da Ponte Barbosa¹, Alina Ene¹, Huy L. Nguyễn², and Justin Ward^{†1}

¹Department of Computer Science and DIMAP University of Warwick {rafael, A.Ene, J.D.Ward}@dcs.warwick.ac.uk ²Simons Institute University of California, Berkeley hlnguyen@cs.princeton.edu

April 23, 2015

· ICML, 2015

Background - distribution

- Because computers have limited amount of memory, when we want to solve larger problems, we need to distribute them
- In MapReduce model, each machines can only communicate and exchange data during the shuffle phage

Background - sub modular functions

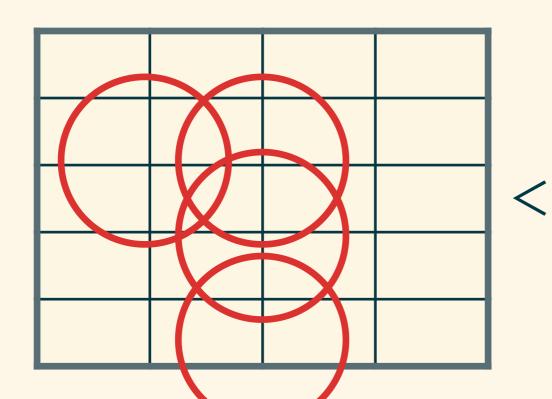
- Wide variety of problems in machine learning / image
 clustering / sensor placement can be cast as sub
 modular function maximization
 - These problems sometimes too large to be solved on a single machine

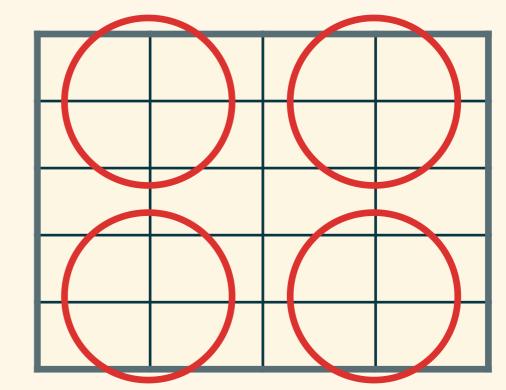
Submodular Maximization

- Submodular function (劣モジュラ関数)
 - A set function $f: 2^V \to \mathbb{R}$ where For every $S, T \subseteq V, f(S) + f(T) \ge f(S \cup T) + f(S \cap T)$
 - · i.e. for all $A \subseteq B \subseteq V, e \notin B$, $f(A \cup \{e\}) - f(A) \ge f(B \cup \{e\}) - f(B)$
 - "A set function that the difference in the incremental value decreases as the size of the input set increases"

Submodular Maximization

- Maximization of Submodular function $\operatorname*{argmax}_{A \in C \subseteq 2^V} f(A)$ where C is the family of feasible solutions
- e.g. Sensor Placement Problem
 - · Place sensor to measure the temperature of a board

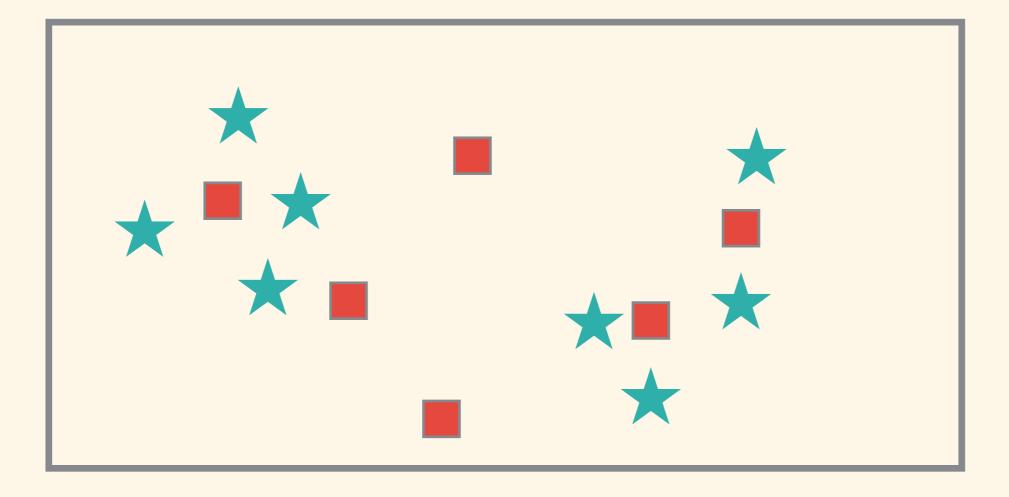




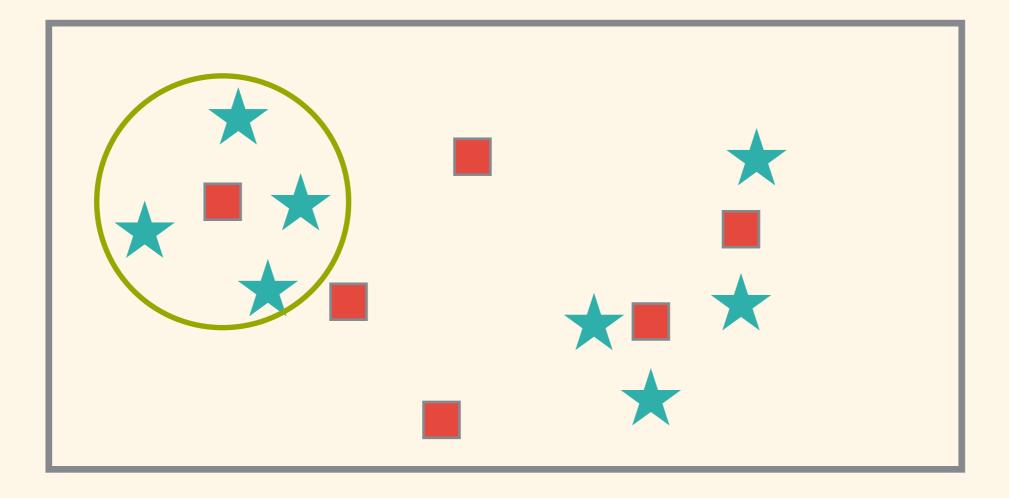
- Loop: Add one element which maximizes the function
- Unable to parallelize because of S's dependency

 $\begin{array}{l} \textbf{Algorithm 1 The standard greedy algorithm GREEDY} \\ S \leftarrow \emptyset \\ \textbf{loop} \\ \text{Let } C = \{e \in V \setminus S : S \cup \{e\} \in \mathcal{I}\} \\ \text{Let } e = \arg\max_{e \in C} \{f(S \cup \{e\}) - f(S)\} \\ \text{if } C = \emptyset \text{ or } f(S \cup \{e\}) - f(S) < 0 \text{ then} \\ \text{ return } S \\ \text{end if } \\ \text{end loop} \\ \end{array}$

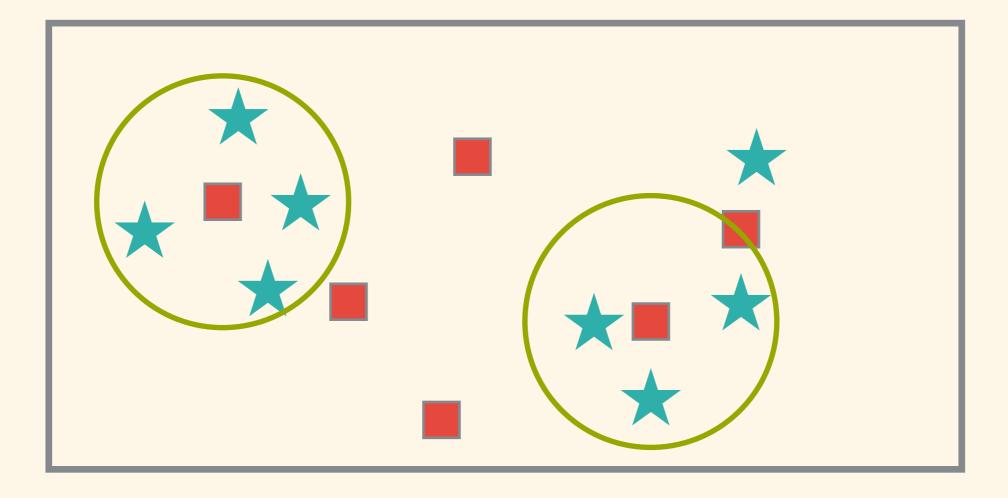
- · Loop: Add one element which maximizes the function
- · Unable to parallelize because of S's dependency



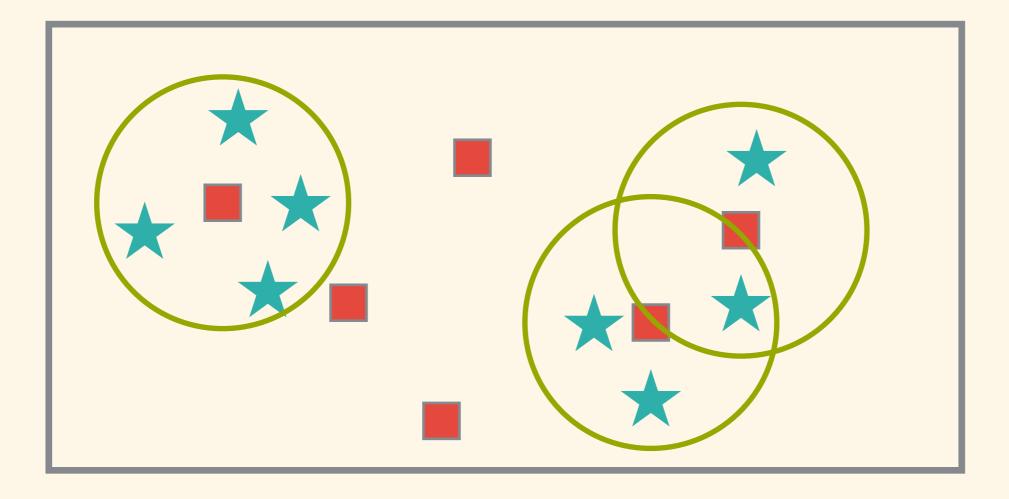
- · Loop: Add one element which maximizes the function
- · Unable to parallelize because of S's dependency



- · Loop: Add one element which maximizes the function
- · Unable to parallelize because of S's dependency



- · Loop: Add one element which maximizes the function
- · Unable to parallelize because of S's dependency



Related work

GreeDi algorithm

- for maximizing a monotone sub modular function with cardinality constraint
- partitions data to each machine by block; runs Greedy algorithm in each machine; gather results in one machine; runs Greedy algorithm for these results
- · very simple and parallel, but worst case approximation guarantee is $1/\Theta\left(\min\left\{\sqrt{k}, m\right\}\right)$
 - · k is cardinality constraint, m is number of machines

Related work

· Sample and Prune

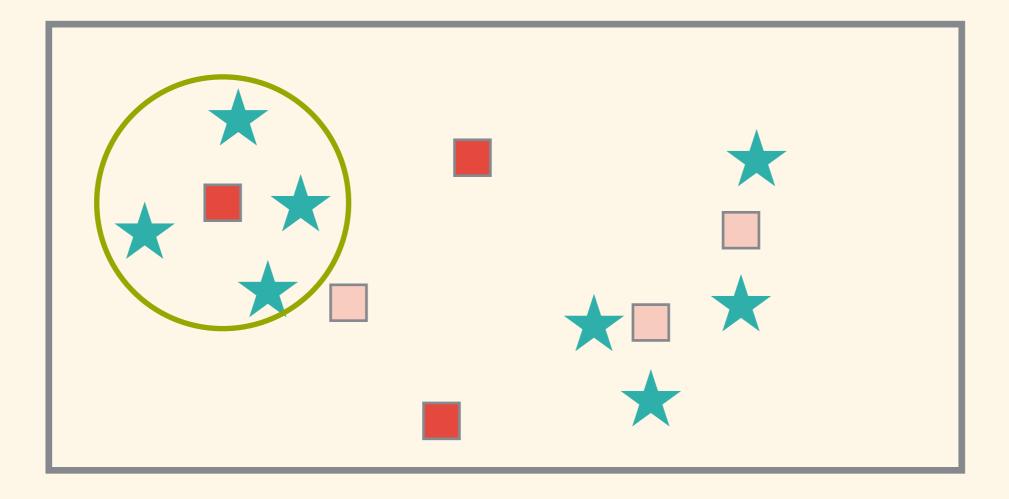
- for maximizing a monotone sub modular function with matroid constraint
- runs greedy algorithm with small subset of dataset in single machine; prune some of the elements in dataset with results and reduce the data size
- More general than GreeDi, but communication overhead is high

RandGreeDi Algorithm

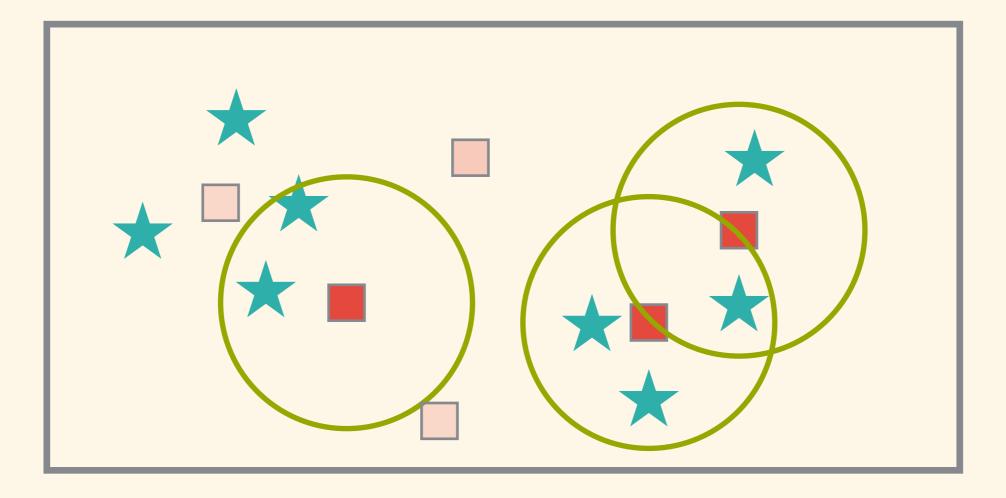
- Distribute input elements randomly to machines
- Run Greedy algorithm for each machines
- Combine them

Algorithm 2 The distributed algorithm RANDGREEDIfor $e \in V$ doAssign e to a machine i chosen uniformly at randomend forLet V_i be the elements assigned to machine iRun GREEDY (V_i) on each machine i to obtain S_i Place $S = \bigcup_i S_i$ on machine 1Run ALG(S) on machine 1 to obtain TLet $S' = \arg \max_i \{f(S_i)\}$ return $\arg \max\{f(T), f(S')\}$

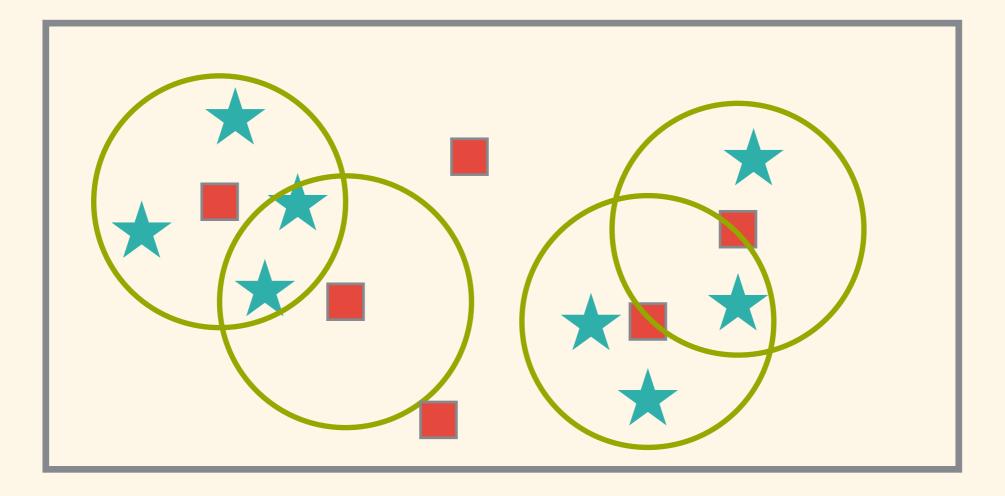
- · Loop: Add one element which maximizes the function
- · Unable to parallelize because of S's dependency



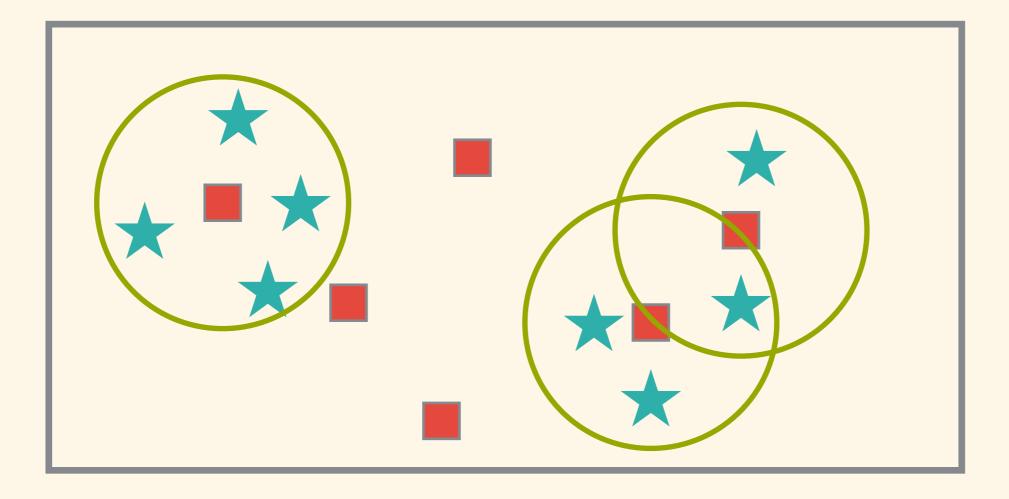
- · Loop: Add one element which maximizes the function
- · Unable to parallelize because of S's dependency



- · Loop: Add one element which maximizes the function
- · Unable to parallelize because of S's dependency



- · Loop: Add one element which maximizes the function
- · Unable to parallelize because of S's dependency



Hereditary Constraints

· Consider submodular maximization:

 $\max\{f(s): S \subseteq V, S \in \mathcal{I}\}$

- · where $f: 2^V \to \mathbb{R}_{\geq 0}$ is a sub modular function and $\mathcal{I} \subseteq 2^V$ is a family of subsets of V
- · Hereditary Constrains: if some set is in \mathcal{I} , then all of its subsets is in \mathcal{I} .

RandGreeDi Algorithm

- When Greedy algorithm is α-approximation, RandGreeDi algorithm is:
 - for monotone submodular function: $\alpha/2$ -approximation
 - for non-monotone submodular function: $\alpha / (4+2\alpha)$ -approximation

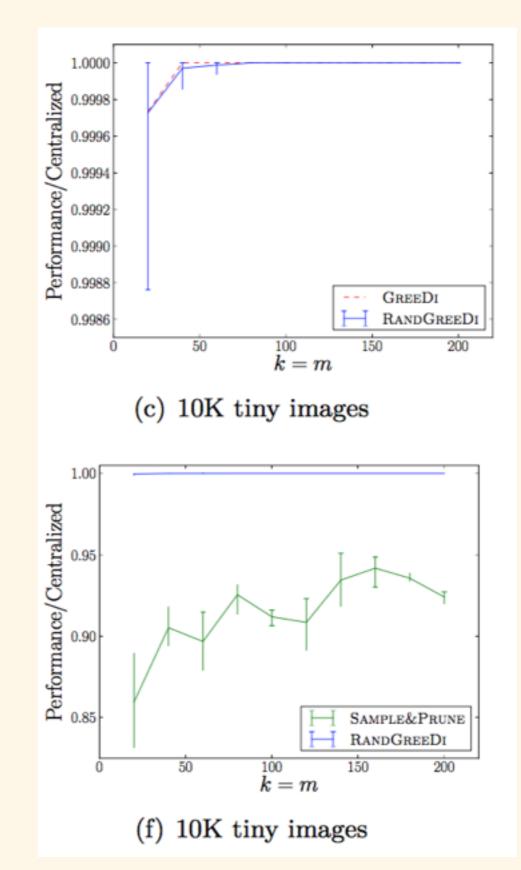
Constraint	α	monotone approx. $\left(\frac{\alpha}{2}\right)$	non-monotone approx. $\left(\frac{\alpha}{4+2\alpha}\right)$
cardinality	$1 - \frac{1}{e} pprox 0.632$	≈ 0.316	≈ 0.12
matroid	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{10}$
knapsack	pprox 0.35	≈ 0.17	≈ 0.074
<i>p</i> -system	$\frac{1}{p+1}$	$\frac{1}{2(p+1)}$	$\frac{1}{2+4(p+1)}$

Table 1: New approximation results for randomized GREEDI for constrained monotone and nonmonotone submodular maximization³

Experiments

•

- Exemplar based clustering
 - Clustering by minimizing distances between images and 'exemplar'
 - Solving k-medoid problem,
 which is sub modular
 function with cardinality
 constraint
 - Better performance than
 Sample & Prune

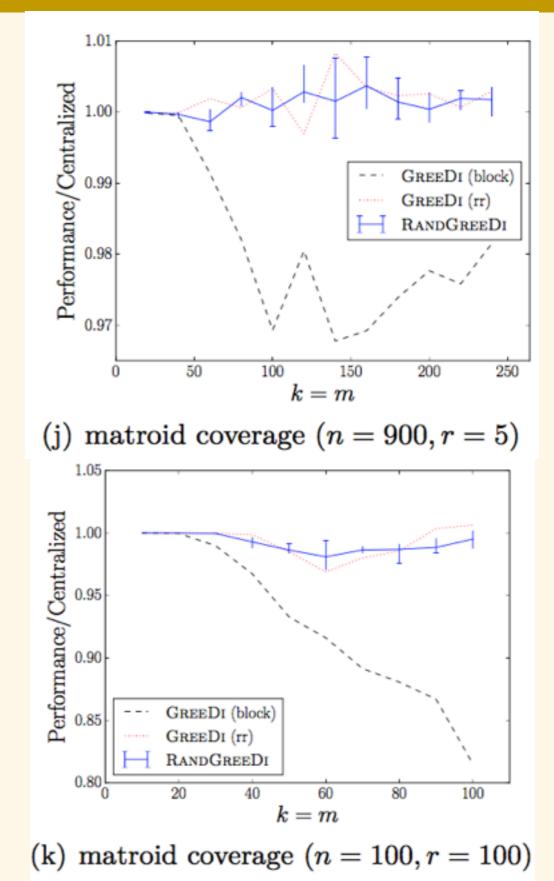


Experiments

Matroid constraints

•

- · 'sensor placement problem'
- randomized / round-robin
 distribution is better than
 block distribution
 - This is because each machine
 receives elements from several
 distinct partitions; which allows
 them to return a solution which
 is more nearer to optimal



Conclusion

- RandGreeDi is distributed Greedy algorithm with high approximation rate
- By using randomizing, Greedy algorithm allows each machine to return more usable solutions after reduce