An Efficient K-means Clustering Algorithm on MapReduce

Q Li, P Wang, W Wang, H Hu, Z Li, J Li, In Proc. of DASFAA 2014

Presented by:

Duan Yurou

17M38118

K-means

• What is K-means

- 1. Randomly select *k* cluster centers
- 2. Calculate the distance between Each data point and cluster centers
- 3. Assign the data point to the most close cluster center
- 4. Recalculate the new cluster center in each group
- 5. Recalculate the distance between each data point and new obtained cluster centers
- 6. If no data point was reassigned then stop, otherwise repeat from step 3

K-means

- Main Disadvantages
- 1. Requires decide number of cluster centers empirically
- 2. Sensitive to the selection of initial cluster centers
- 3. Time consuming in clustering the massive highdimensional data (O(nkt))

K-means++

• Improve the quality of initial centers

Algorithm 1. k-means++ initializationRequire: X : the set of points, k: number of centers;1: $C \leftarrow$ sample a point uniformly at random from X2: while $|C| \leq k$ do3: Sample $x \in X$ with probability $\frac{d^2(x,c)}{\phi_X(C)}$ 4: $C \leftarrow C \bigcup x$ 5: end while

• Main Disadvantages

Inherent sequential nature

K-means++

• Example

序号。	(1) _*	2,	3.	4.	5,	6,	(T) _*	8,
D(x) .	2\sqrt{2} +	√ <u>13</u> .₀	$\sqrt{5}$	$\sqrt{10}$.	1 +	^{د،} 0	$\sqrt{2}$	1.0
$D(x)^2 $	به 8	13 .	5.0	10 +2	1 🕫	^{وب} 0	2 👳	1.0
$P(x) \circ$	0.2 +>	0.325 +	0.125 0	0.25 0	0.025 0	به 0	0.05 +>	0.025 0
Sum .	0.2 +	0.525 +	0.65 0	0.9 0	0.925 0	0.925 +	0.975 +	1.0

K-means | |

• Improve parallelism of K-means++

Algorithm 2. k-means|| initialization

Require: X : the set of points, l: the number of centers sampled for a time, k: number of centers;

- 1: $C \leftarrow$ sample a point uniformly at random from X
- 2: $\psi \leftarrow \phi_X C$
- 3: for $o(\log \psi)$ do
- 4: Sample C' each point $x \in X$ with probability $\frac{l \cdot d^2(x,C)}{\phi_X(C)}$
- 5: $C \leftarrow C \bigcup C'$
- 6: **end for**
- 7: For $x \in C$, set w_x to be the number of points in X closer to x than any other point in C
- 8: Recluster the weighted points in C into k

Hadoop

- Apache Hadoop is an open-source software framework
 - Hadoop Distributed File System (HDFS)
 - Hadoop MapReduce a model for large-scale data processing.

MapReduce

• Structure

MapReduce

- Client
- JobTracker
- TaskTacker
- Task

LSH

Locality Sensitive Hashing

- Property: Points in high-dimensional data that are close to each other wil have higher probability to be close after LSH functions
- Aim: High-dimensional data similarity search

Definition 1. A function family $\mathcal{H} = \{h : S \to U\}$ is called $(r; cr; p_1; p_2)$ - sensitive for D if for any $v; q \in S$

- if $v \in B(q,r)$ then $P_{rH}[h(q) = h(v)] \ge p_1$, - if $v \notin B(q,cr)$ then $P_{rH}[h(q) = h(v)] \le p_2$.
 - different distance functions
 - Eclidean distance

$$h_{a,b}(v) = \left\lfloor \frac{a.v+b}{r} \right\rfloor$$

LSH for Data Skeleton

• Group similar points together

Theorem 1. Given c_1 and c_2 as two centers, p_1 and p_2 as two points with the distance d, r_1 , $r_{1'}$, r_2 and $r_{2'}$ are the distances between p_1 , p_2 and c_1 , c_2 respectively. If $r_1 < r_2$ and $r_2 - r_1 > 2 * d$, then it holds that $r_{1'} < r_{2'}$.

Proof. According to triangle inequality, we have $r_1 - d < r_{1'} < r_1 + d$ and $r_2 - d < r_{2'} < r_2 + d$. Therefore, we have

$$\begin{aligned} r_{1'} &< r_1 + d \\ &< r_2 - 2d + d \\ &= r_2 - d \\ &< r_{2'} \end{aligned} \qquad (r_2 - r_1 > 2 * d) \\ (r_2 - d < r_{2'}) \end{aligned}$$

LSH for Data Skeleton

• Representative data point

$< p_r, L_p, weight >$

Improve center initialization

- Data partitioning and weight initialization
 - Divide the points in data skeleton into |B| blocks
 - Map phase: Assign each point to a block randomly; Calculate the distances between these points to current Centers
 - The sampling weight for a weighted point
 - $\langle x, w_x \rangle$ is $w_x * d^2(x, C)$, denoted as wp_x .
 - Reduce phase: Compute the sum of the weight in each block

 $\sum_{x \in B_i} w p_x$, denoted as $w b_i$

- Sampling L centers in K-means | |
- Update the weights
 - Map phase

- First Strategy based on Theorem 1
 - To adjust the centers, we don't need to compute the distance between centers and all points
 - C1 is the nearest center for all points represented by pr

$$d(p_r, c_2) - d(p_r, c_1) > 2\varepsilon$$

Theorem 1. Given c_1 and c_2 as two centers, p_1 and p_2 as two points with the distance d, r_1 , $r_{1'}$, r_2 and $r_{2'}$ are the distances between p_1 , p_2 and c_1 , c_2 respectively. If $r_1 < r_2$ and $r_2 - r_1 > 2 * d$, then it holds that $r_{1'} < r_{2'}$.

Proof. According to triangle inequality, we have $r_1 - d < r_{1'} < r_1 + d$ and $r_2 - d < r_{2'} < r_2 + d$. Therefore, we have

$$\begin{aligned} r_{1'} &< r_1 + d \\ &< r_2 - 2d + d \\ &= r_2 - d \\ &< r_{2'} \end{aligned} (r_2 - r_1 > 2 * d) \\ (r_2 - d < r_{2'}) \end{aligned}$$

- Second Strategy based on Theorem 2
 - Reduce the centers to be compared
 - Only compute the distance between a point and it's nearby buckets' centers
 - We only compute the distance between p and centers in set:

$$\{c||h(c) - h(p)| < \delta_h\}$$

Theorem 2. Given a LSH function: $h_{a,b}(v) = \lfloor \frac{a \cdot v + b}{r} \rfloor$. If $|h_{a,b}(v_1) - h_{a,b}(v_2)| \geq \delta_h$, then we have $d(v_1 - v_2) \geq \frac{(\delta_h - 1) \cdot r}{|a|}$.

Proof. According to definition of LSH, we have $|h_{a,b}(v_1) - h_{a,b}(v_2)| = |\lfloor \frac{a \cdot v_1 + b}{r} \rfloor - \lfloor \frac{a \cdot v_2 + b}{r} \rfloor | \ge \delta_h$. We can conclude that $|\frac{a \cdot v_1 + b}{r} - \frac{a \cdot v_2 + b}{r} + 1| \ge \delta_h$. Therefore, we have $|\frac{a \cdot (v_1 - v_2)}{r}| \ge \delta_h - 1$. We have $|v_1 - v_2| \ge \frac{r(\delta_h - 1)}{|a \cos \theta|} \ge \frac{r \cdot (\delta_h - 1)}{|a|}$. Here θ is the angle between point a and vector $v_1 - v_2$.

- Combine the two Strategy
 - Compute threshold δ_h

Require: Set[1:k] C, parameter a, b, r, ε 1: Pruning-Map(Key k, Value v) 2: begin 3: Set $\langle p_r, L_p, weight \rangle \leftarrow v$ 4: $hash1 = h(p_r)$ 5: get so - far - closest from the closest bucket from hash1 using binary search;

6:
$$dis = d(p_r, so - far - closest)$$

7: $\delta_h = \frac{|a| \cdot dis}{r} + 1$

• Compute Strategy 2

8:	Set $C' = null$
9:	for c in C do
10:	$hash2 = \left\lfloor \frac{a \cdot c + b}{r} \right\rfloor$
11:	Set $diff \leftarrow abs(hash1 - hash2)$
12:	if $diff \leq \delta_h$ then
13:	$C' = C' + \{c\}$
14:	end if
15:	end for
	//

• Compute Strategy 1

16:	get closest center c' for p_r in C'
17:	$min = distance(p_r, c')$
18:	closeSet = null
19:	for c in C' do
20:	$dis2 = d(p_r,c)$
21:	if $ dis2 - min \leq 2\varepsilon$ then
22:	$closeSet = closeSet + \{c\}$
23:	end if
24:	end for

• Find closest center for Pr

25:	$ if \ closeSet = null \ then \\$
26:	for p in L_p do
27:	Output(c',p)
28:	end for
29:	else
30:	for p in L_p do
31:	get closest center cen' from $closeSet$
32:	Output(cen',p)
33:	end for
34:	end if
35:	$Output(c', p_r)$
36:	end

• Reduce: to calculate new center

37: Pruning-Reduce(Key k, Set values)38: begin39: $mean = (\sum_{v \in values} v)/sizeof(values)$ 40: center = nearest point from mean41: Output(center, null)42: end

Experiment

• Environment

- a cluster of 14 computers
- Two Pentium(R) Dual-Core (2.70GHz) CPU E5400 and 4GB of memory
- Linux. Hadoop version 0.20.3 and Java 1.6 are used as the MapReduce system.

Dataset

- KDDCUP1999
- Self-build music database
 - 919711 Mp3 songs
 - POP, classical and folk music
 - 26-dimension represents a frame of the song

Results

Number of Points

• Data Reduction of Data Skeleton

VS

- For KDDCUP1999 60s
- For Music Frames 130s vs

Iteration

Above 600s for k=1500 Above 1567s for k=1500

1 Iteration

(b) r=0.01

3

0

KDDCUP1999

Results

The Center Initialization

- The time for using LSH-kmeans is about 1/3 that of k- means++
- Cost comparison

Table 1. Comparison of Clustering Cost (k=3000)

Iteration	Cost of Original Dataset	Cost of Data Sleleton
1	47824.77	47664.18
2	40292.91	40200.01
3	38318.60	38222.02
4	37474.73	37355.58
5	37019.76	36950.85
6	36714.02	36672.52

Results

- The Overall Performance Comparisons
 - KDDCUP1999 : The time cost is reduced by 67% when k is 1500, and 76% when k is 3000
 - Music frame: The time cost is reduced by 57% when k is 1500, and 64% when k is 3000.

Conclusion

- Cluster high- dimensional data on MapReduce with the LSH technology
- Evaluate its performance on several datasets
- Improve the clustering performance dramatically without decreasing the quality.

Thank you!

4